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ABSTRACT 
Augmented reality (AR) makes it possible to create games in 
which virtual objects are overlaid on the real world, and real ob-
jects are tracked and used to control virtual ones. We describe the 
development of an AR racing game created by modifying an ex-
isting racing game, using an AR infrastructure that we developed 
for use with the XNA game development platform. In our game, 
the driver wears a tracked video see-through head-worn display, 
and controls the car with a passive tangible controller. Other 
players can participate by manipulating waypoints that the car 
must pass and obstacles with which the car can collide. We dis-
cuss our AR infrastructure, which supports the creation of AR 
applications and games in a managed code environment, the user 
interface we developed for the AR racing game, the game’s soft-
ware and hardware architecture, and feedback and observations 
from early demonstrations. 

Categories and Subject Descriptors 
I.3.6 [Computer Graphics]: Methodology and Techniques—

Interaction techniques; H.5.1 [Information Interfaces and Pre-
sentation]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities; H.5.2 [Information Interfaces and 
Presentation]: User Interfaces—Input devices and strategies, 
interaction styles; K.8.0 [Personal Computing]: General—
Games 

General Terms 
Human Factors, Design, Experimentation 

Keywords 
Augmented Reality, Mixed Reality, Gaming, Virtual Reality, 
Wearable Computer, Tangible Interaction, XNA 

1. INTRODUCTION 
Most current computer games are locked within the confines of a 
computer, console, or hand-held display. The display acts as a 
small window onto the virtual game world, separating the player 
from the surrounding physical environment. User interaction is 
similarly restricted to a relatively small set of devices. Even sys-
tems that break this mold, such as the Nintendo Wii [32], are lim-
ited to what its controllers’ buttons and sensors can support. In 
contrast, Augmented Reality (AR) [11] makes it possible to com-
bine the physical and the virtual by displaying virtual images and 
sounds overlaid on the physical world, and can allow players to 
interact by manipulating existing real world objects. AR enables a 
new class of games that move game play into the physical envi-
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Figure 1. Augmented reality racing game. (a) User controlling virtual car on tracked physical gameboard. 
(b) Car collides with virtual signpost. (Images in all figures are captured live during game play.) 



ronment (e.g., [5, 40, 41]). AR can make the physical environ-
ment an integral part of the game, supporting multi-player experi-
ences, enabling direct spatial interaction, and maintaining the 
real-world context of game play. One way of advancing AR gam-
ing is to explore new development tools and techniques for game 
interaction. 

In this paper, we present a novel multi-player AR racing game 
(Figure 1). We created our game by extensively modifying the 
existing XNA Racing Game [10], using an AR gaming platform 
that we are currently developing. We begin by discussing previ-
ous work in AR gaming. Next, we describe our goals for develop-
ing our AR racing game. We then introduce the architecture for 
the game, including its software, user interface, and hardware, 
describe the game play, and discuss preliminary user feedback. 
We finish by presenting our conclusions and ongoing and future 
work. 

2. PREVIOUS WORK 
2.1 AR Gaming 
Some of the earliest research in AR games was conducted by 
Ohshima and colleagues to demonstrate advances in underlying 
hardware and software infrastructure, by creating, from scratch, 
multiplayer air hockey [36] and first-person shooter [35] games. 
In 2000, Piekarski and colleagues [1, 38, 41] extended the exist-
ing desktop game, Quake, into ARQuake, a first-person outdoor 
AR game. Movement of the player in physical space moves the 
point of view of the character in the AR game. In ARQuake, the 
player uses a two-button hand-held device to fire the weapon at a 
target at the center of the view seen through a head-worn display. 
Matysczok and colleagues [25] developed AR-Bowling, where 
players throw virtual bowling balls with tracked pinch gloves that 
detect hand gestures. The speed and spin of the virtual bowling 
ball vary according to a player’s hand and finger movement. In all 
these systems, wired controllers, either held or worn, are used as 
interaction devices.  

Knoerlein and colleagues [19] implemented an AR ping-pong 
game with a haptic interface in which the players receive force 
feedback through optically tracked ping-pong racket handles at-
tached to SensAble PHANTOM haptic devices when hitting the 
virtual ping-pong ball. In contrast, AR Chinese Checkers [8] util-
izes optically-tracked fiducial markers (printed black and white 
patterns whose pose and identity can be determined automati-
cally) as input devices, in conjunction with attached wireless 
physical buttons for precise selection tasks. Barakonyi and col-
leagues [3] developed MonkeyBridge, in which players position 
similar fiducial markers to control virtual bridge components to 
construct a path along which virtual monkeys can travel. Cheok 
and colleagues [5] created an AR adventure game with a room-
sized tracked area in which a player walks around and collects 
treasures to defeat a witch; a tracked hand-held wand is used to 
explore the game space. 

AR games have also been implemented in tabletop environments 
with either front or rear projection. For example, Magerkurth and 
colleagues [23, 24] developed AR KnightMage, a rear-projected 
board-based role-playing adventure game. Physical game ele-
ments, such as dice and avatars, affect the virtual game world 
when moved and placed on top of the projected display. Lee and 
colleagues [21] developed a table-top card battle game using front 

projection. Optically tracked markers are attached below the cards, 
and the cards are visible to a camera underneath a transparent 
glass table.  

As computers increased in power during the past few years, re-
searchers have ported AR infrastructures to hand-held devices that 
are less costly, simpler, and lighter than earlier wearable AR sys-
tems. Wagner and colleagues [42] demonstrated an AR train game 
using a camera equipped PDA device. A miniature physical rail-
road track on a flat surface is surrounded by fiducial markers for 
tracking. Multiple players can each interact through a PDA. Game 
play involves switching the track direction at intersections to 
avoid collisions among several trains. Mobile-phone–based AR 
games [37] are also being actively investigated as an affordable 
AR system with multiplayer capabilities [4, 9, 15, 16]. 

We have been developing Goblin XNA [33], an infrastructure for 
creating AR games in particular, and AR applications in general, 
on top of an existing non-AR game development environment, 
XNA [29]. As a test case for our infrastructure, which emphasizes 
tracking and rendering for video see-through augmented reality, 
we decided to extend one of the “starter kit” games [30] already 
available for XNA. We selected the XNA Racing Game starter kit 
because it provided the richest set of assets at the time we chose 
it. 

Wilson [43] has independently modified part of the XNA Racing 
Game, with the very different goal of demonstrating the utility of 
a prototype real-time depth camera. In his work, an overhead 
depth camera captures the height field and color image of real 3D 
objects on a table beneath the camera, which are combined to 
create an interactive textured mesh. Free-running cars drive over 
the terrain represented by the mesh, which can change dynami-
cally as users move the objects. The cars are projected onto the 
physical table and objects by an overhead projector, while a sepa-
rate display shows a fully synthesized view of the textured mesh 
and cars from an arbitrary viewpoint.  

2.2 The Original XNA Racing Game 
The XNA Racing Game starter kit is a typical racing game with a 
predefined track and environment. The single player tries to com-
plete three laps as quickly as possible without driving off the 
track. The player is prompted first to select a track from among a 
small set of tracks with varying levels of difficulty, and next to 
select one of several possible cars. The player then accelerates, 
decelerates, steers left or right, and moves forward or backward 
with either keyboard/mouse presses or an Xbox 360 controller. 

During the game, sound effects are triggered by events such as 
acceleration, braking, and collisions. A replay of the best lap per-
formance is displayed using a phantom racing car every time the 
driver starts a new lap. From the second lap on, a time difference 
compared against the best performance is displayed when passing 
each waypoint. Finally, the ranking based on the previously 
played record is shown to the player after she completes three 
laps. 

3. AR RACING GAME  
In designing our game, we decided to support multiplayer interac-
tion between a driver and additional players who can modify the 
game environment. To emphasize the interaction with the physi-
cal world and remove the artificial boundaries of the game world, 



we eliminated the original predefined environment, including the 
track. Instead of being restricted to the track, the driver can drive 
the car anywhere she wants on the ground plane, which is defined 
by a planar array of optical markers forming a gameboard of es-
sentially arbitrary size (covering several tabletops in our largest 
version). Virtual objects that act as physical obstacles are overlaid 
on the gameboard and can be attached to separate movable mark-
ers that can be manipulated by additional players.  

We then redefined the completion of a lap to require the driver to 
pass through a series of designated waypoints in sequence, poten-
tially slowed by collisions with obstacles. The driver views the 
game through a head-worn display tracked by an attached camera, 
and additional players watch stationary displays associated with 
other cameras. The head-worn display and additional cameras can 
be positioned and oriented arbitrarily in the environment, pro-
vided they have an adequate view of the gameboard. 

Rather than relying on conventional wired or wireless game con-
trollers, or special-purpose driving controllers, we decided to use 
optical marker tracking to track an otherwise passive physical 
artifact, as described below. 

4. SYSTEM ARCHITECTURE 
To create the AR Racing Game, we combined the XNA Racing 
game with our AR Gaming Platform (Goblin XNA), an optical 
marker tracking system (ARTag [13]) a physics engine (BulletX 
[44]), and a network message passing library (Lidgren [22]). 

As depicted in Figure 2, our game uses three machines: a Control-
ler Machine, a Driver Machine, and a God’s Eye Machine. The 
Controller Machine captures an image from a camera and proc-
esses the image to detect the optical marker configuration of the 
driving controller and interpret its pose. It then sends this infor-
mation to the Driver Machine over the (wireless) network. The 
Driver Machine uses a physics simulator to model the interaction 
of the car with the environment based on the driving controller 
input obtained from the Controller Machine. The Driver Machine 
renders the view from its physical camera (on the driver’s head-
worn display) and combines it with the view of the rendered vir-
tual environment, as seen from a virtual camera whose position 
and orientation are derived by the optical marker tracking system, 
based on the physical camera’s view of the gameboard. Note that 
the physics simulator can also cause objects other than the car to 
move in the virtual environment. 

The God’s Eye Machine receives, from the Driver Machine, vir-
tual objects’ positions and orientations; sound events; and game 
status data, including current car speed, lap number, number of 
waypoints passed, and time. It tracks the pose of the ground plane 
relative to its camera, renders the virtual models in their proper 
locations, and displays the game status data. To avoid audible 
synchronization delays, we currently play audio only on the 
God’s Eye Machine, which is connected to a speaker system. 
(Were we to use headphones instead, we would play audio on 
both the Driver Machine and God’s Eye Machine.) 

To support multiple drivers, the Controller Machine camera must 
be able to see the additional drivers’ controllers. Alternatively, 
additional cameras can be attached to the Controller Machine, or 
additional Controller Machines with their own cameras can be 
added. Each additional driver uses a Driver Machine similar to 
that of the original driver, with one important distinction. An 

additional Driver Machine does not run its own physics simulator, 
but instead relies on the single copy of the physics simulator on 
the original Driver Machine (as does the God’s Eye Machine). 
While this simple approach is not intended to scale well to sup-
port large numbers of additional drivers, it works for the intimate 
environment of our shared physical game space. 

4.1 XNA and XNA Racing Game Starter Kit 
XNA unites multiple game development application program 
interfaces into a common managed code [28] framework based on 
a managed version of DirectX [27]. It is designed with an exten-
sive set of class libraries specific to game development exercises. 
XNA managed code has its execution overseen by a runtime-
aware infrastructure that makes possible a range of development 
advantages and safety guarantees.  

The XNA Racing Game starter kit is written in C# and contains 
many of the components we needed, including game logic, simple 
car collision detection, movement control, shaders, landscape 
models, shadow mapping, and audio files. We removed large 
portions of the game that we did not need, and modified many 
other parts, retaining approximately half of the code. Major 
changes included replacing the predefined track and landscape 
with the real world background image captured live from the 
cameras, changing the first-person view to a third-person view 
similar to that of real remote-controlled model racing cars, replac-
ing keyboard and mouse input with fiducial marker-based control-
ler input, placing landscape objects on the fiducial marker tracked 
ground plane, modifying the collision detection mechanism and 
adding the landscape objects to the physics simulation, adding 
networking capabilities for controller inputs and god’s eye views, 
and modifying the basic game play.  

4.2 Managed AR Gaming Platform 
AR games require a range of functionality, including accurate 
6DOF tracking, real-time video capture at interactive frame rates, 
user interaction techniques and devices, physics simulation, net-
working, and combined rendering of real and virtual worlds. 

 
 

Figure 2. System architecture.  



While other researchers have developed infrastructures to support 
the development of AR applications, typically using OpenGL and 
C++ (e.g., Ohlenburg and colleagues [34]), we have been building 
Goblin XNA to support AR games in a managed environment. 
Goblin XNA is also being used to teach a course on 3D user inter-
face design, emphasizing AR interaction techniques [6], where the 
use of C# makes the system easily accessible to students already 
familiar with Java or C++. 

Goblin XNA provides interfaces to several video capture libraries 
(DirectShow [26], OpenCV [17], and FlyCapture [39]) to handle a 
wide range of cameras. Images captured using these libraries have 
different image formats, and Goblin XNA automatically converts 
these formats to a unified format that is used to pass images to 
vision-based tracking systems (e.g., ARTag) and to render the 
physical world. Goblin XNA also supports a set of 2D and 3D 
interaction techniques, and facilities for incorporating external 2D 
GUIs through texture-mapping.  

4.3 Physics Engine 
The original XNA Racing Game had only a very simple collision 
detection mechanism between the car and the guardrails on the 
predefined tracks. To make possible a better physical simulation, 
including rigid body dynamics and efficient 3D collision detec-
tion, we use BulletX, a fully managed 3D physics engine that is 
being ported from the original Bullet library [7]. We use BulletX 
to support collision detection between the car and other objects, 
and the effects of collisions. We also utilize BulletX’s collision 
detection capability to handle interaction with 3D widgets. Unfor-
tunately, BulletX is not completely ported at this time, and does 
not yet provide the support for triangle mesh collision detection 
and vehicle physics that is part of Bullet. Thus, all collision detec-
tion is performed using bounding box approximations. Because 
vehicle physics is not available, we enhanced the race car dynam-
ics by imposing ground and air friction. 

4.4 Networking 
Since XNA does not currently include any network communica-
tion functionality, we integrated a reliable UDP network library. 
We chose the Lidgren open source C# library [22] to provide a 
simple way of transferring data between machines with a small 
amount of overhead. Lidgren supports flexible message delivery 

methods, message fragmentation, message coalescing, and con-
nection statistics.  

4.5 Tracking 
We require accurate 6DOF tracking to establish a ground plane on 
which the car, environment objects, and waypoints interact, and to 
track the controller. Portability is also an important concern for 
our game in order to be able to play it anywhere.  

Many tracking technologies that have been applied to AR [2] 
would not be suitable for our application. For example, GPS is a 
highly portable position-tracking technology, but it does not work 
well indoors, is too coarse to support registration with nearby 
objects, and must be combined with other technologies to support 
orientation. A number of systems track position and orientation 
by attaching active components, such as diodes and electromag-
netic sensors, to tracked objects, but we wanted to avoid this to 
limit size, weight, and cost. Therefore, we decided to use ARTag 
[13], a computer-vision–based fiducial marker tracking package 
that is highly portable and can provide millimeter-level accuracy. 
We chose ARTag over ARToolKit [18], which had been devel-
oped earlier and used more extensively, because, in our experi-
ence, ARTag performs better in a wider range of lighting condi-
tions, has a lower rate of false marker detection, and is more ro-
bust to partial marker occlusions [12].  

Figure 1 shows an array of fiducial markers used for tracking our 
ground plane. We chose to combine markers of different size to 
achieve accurate tracking when the camera is close to the ground 
plane, as well as when it is further away. 

5. USER INTERFACE 
One of the main benefits of AR gaming is the ability to manipu-
late 3D objects in the environment directly to make possible in-
novative and intuitive user interface [20]. This capability can 
greatly enhance the 3D game experience. In this section, we de-
scribe the user interface for the driver and the non-driver players. 

5.1 Driver  
We constructed a passive tangible interaction device to function 
as the game controller in the spirit, for example, of Fiala’s magic 
mirror device [14]. The initial version of our driving controller 
(Figure 3a) consisted of a fiducial marker array mounted on a 
piece of foam core board, which is rigidly fixed to a pair of bicy-
cle handlebars. (We chose the mixed metaphor of a bicycle con-
troller for a racing car because we found the handlebars to make a 
more comfortable unattached controller than a steering wheel.) 
Turning is accomplished by rotating the controller roughly paral-
lel to the ground plane, while the car is accelerated or decelerated 
by tilting the controller forward or backwards.  

Initial observations and informal user feedback made it clear that 
the controller did not have a sufficiently large pitch angle range 
relative to the Controller Machine camera. Therefore, we added 
another fiducial marker array to the controller, perpendicular to 
the first array (Figure 3b), significantly improving the range and 
accuracy of tracked pitch. Both of these marker arrays need to be 
visible from the controller camera at the start of the game to regis-
ter their initial pitch angles. Optical marker tracking made it pos-
sible for these changes to be accomplished quickly and inexpen-
sively.  

(b) 
Figure 3. (a) Initial driving controller. (b) Modified driving 

controller. 
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5.2 Non-Driver Players 
Unlike traditional console games, in which a limited number of 
players have access to controllers through which they can partici-
pate in the game, marker tracking makes it much easier to support 
additional players who can manipulate game objects. To take 
advantage of this, we attached environment objects to additional 
marker arrays. This enables observers to become non-driver play-
ers, who can work alone or together to assist or hinder the driver 
by dynamically modifying the environment during game play. 
These additional players view the game and the effect they have 
on it through the God’s Eye camera. 

Thus, there are four types of environment objects in the scene: 
pre-positioned dynamic objects, player-manipulated waypoints, 
static waypoints, and player-manipulated static objects. Pre-
positioned dynamic objects are associated with the game board 
and act as obstacles in the scene. They can physically interact 
with the racing car and other virtual objects (except for the way-
points) and move in accordance with the physics simulation. For 
example, the road sign shown in Figure 1(b) is a pre-positioned 
dynamic object, which is knocked over as the car bumps onto it.  

Player-manipulated waypoints, such as the one shown in Figure 
4, are each associated with a fiducial array mounted on a separate 
card and act as pass points that must be visited to complete a lap. 
Their positions can be modified at any time during game play, 
and they do not physically interact with any other virtual objects 
including the racing car. 

Static waypoints, such as the one shown in Figure 1(a), are each 
associated with a pre-set position on the gameboard, and can be 
used together with or as replacements for player-manipulated 
waypoints. For example, a complete set of static waypoints may 
be used when the driver wishes to play against a pre-set course.  

Finally, player-manipulated static objects are associated with 
individual fiducial arrays, like the player-manipulated waypoints 
shown in Figure 4, but act as obstacles. Their positions can be 
changed like the player-manipulated waypoints, and they can 
physically interact with the racing car and other virtual objects in 
the scene. However, they do not move in response to collision 
events, and thus remain rigidly fixed to their arrays.  

6. HARDWARE PLATFORM 
A typical hardware configuration (Figure 5) that we have used for 
this game consists of three laptops (Controller, Driver, and God’s 
Eye Machines), a video see-through head-worn display, three 
cameras, the driving controller (Figure 3), the ground plane 
marker array, and a set of smaller marker arrays.  

We use a Sony LDI-D100B 800×600 resolution, color, head-worn 
display, on which we mounted a Point Grey FireFly MV camera 
to capture the driver’s view for 6DOF fiducial tracking and biocu-
lar (i.e., two-eye, non-stereo) video see-through AR. Both are 
connected to the Driver Machine, which is a Sony VAIO VGN-
SZ480 computer running Windows Vista with NVIDIA GeForce 
Go 7400 graphics card, 2GB RAM, and a 2.0 GHz Intel Core 2 
Duo CPU, mounted on a small, lightweight backpack frame. The 
loaded backpack weighs well under 10 lbs. For our Controller 
Machine, another Point Grey FireFly MV camera is connected to 
an Apple Macbook running Windows XP with 1GB RAM and a 
2GHz Intel Core Duo CPU. The God’s Eye Machine uses a Point 
Grey DragonFly 2 camera connected to a Dell XPS M1710 com-
puter running Windows XP with NVIDIA GeForce Go 7950 
GTX, 2GB RAM, and a 2.33 GHz Intel Core 2 Duo CPU. All 
machines are interconnected wirelessly through an IEEE 802.11g 
network. 

ARTag requires a relatively high-resolution image and high frame 
rate to achieve accurate dynamic position and orientation tracking. 
It is possible to use low-end capture devices such as web cameras, 
but we have found that accuracy suffers, resulting in jitter in both 
static and dynamic scenes, and complete loss of tracking in fast 
moving scenes. Therefore, we chose FireWire cameras that pro-
vide 640×480 resolution at frame rates of up to 60 Hz and use 
better lenses, providing significantly better image quality than 
commodity web cameras. While the pixel resolution is the same 
or less than that of high-end web-cameras, the captured image 
quality is significantly better. We use color cameras for the driver 
and god’s eye cameras, since they provide a crucial part of the 
displayed imagery. However, we use a grayscale camera to track 
the controller, whose image is not displayed. In comparison to a 
single-chip color camera of the same nominal pixel resolution, not 
having an array of dyed pixels results in greater effective spatial 
resolution, decreasing the width in pixels at which markers can be 
detected [12]. 

 
Figure 4. Moving a waypoint attached to a marker array. Figure 5. Hardware configuration. 



We have used gameboards spanning a wide range of sizes. For 
public demonstrations and the images in this paper, an 80" wide × 
60" deep gameboard array is mounted on a set of foam core 
boards to maintain a relatively flat surface across the array, which 
is lit with a pair of Lowell RIFA-LITE LC44 250W Softbox 
lights. Our more portable gameboards have been as small as 10-
2/3" wide × 8" deep. Smaller gameboards are useful for debug-
ging purposes. Note that no changes to the software are needed to 
account for the actual size of the physical gameboard, since all 
virtual imagery scales with the gameboard fiducials. (On the other 
hand, the controller orientation alone affects game play, so a 
large-scale controller can be used with a small-scale gameboard.)  

7. GAME PLAY 
The driver first puts on the head-worn display and wireless back-
pack, and holds the driving controller. Next, she is prompted to 
select whether to start the game, change display options, view 
credits, or obtain help through a 3D user interface whose 3D but-
tons hover directly in front of her. Selection is accomplished by 
pointing at the appropriate button with a fiducial array for three 
seconds. Once the driver chooses to start the game, a count down 
is played, and the car emerges near the center of the gameboard.  

The driver’s goal is to finish three laps as quickly as possible, as 
in the original game. The driver is expected to traverse waypoints 
in a specific sequence in order to complete a lap. The next way-
point in the sequence is indicated by an animated arrow hovering 
above it, and a large round marker below it. As shown in Figure 
6, the difficulty of the game for the driver depends on the number, 
size, and layout of the objects in the scene, compounded by how 
the additional players place the player-manipulated waypoints and 
obstacles (if any) on the gameboard. The car can fall off the 
gameboard if it goes over the boundary of the printed array when 
the array is not placed on a larger surface, such as the floor. When 
this occurs, the car reemerges near the center of the gameboard. In 
order to enhance realism, the ground plane is used for occlusion, 
so anything that falls off from the ground plane will be partially 
or fully occluded by it. 

8. FEEDBACK AND OBSERVATIONS 
We received substantial informal feedback during a demo at the 
2007 Microsoft Research Faculty Summit [31] of an early version 
of the system, both directly from player comments and indirectly 
through observation of player performance and behavior. Before 
each driver started the game, we gave them brief verbal instruc-
tions on how to play. Most of the approximately twenty drivers 
who tried the system clearly enjoyed the AR experience of the 
game play. However, more than half of them remarked about 
playability issues due to an overly difficult course layout or lack 
of responsiveness of the driving controller. Responsiveness issues 
were in part caused by delays in the early version of the network-
ing code used in the demo. In addition, the controller software at 
that time did not support the ability to reverse the car, so once the 
player was stuck on an obstacle, they could not drive their way 
out of it. Adding the ability to put the car in reverse has improved 
game play significantly. 

We observed that some players had difficulty in steering the car 
from the fixed exocentric viewpoint typical of a remote-control 
car system, rather than a viewpoint that moved with the car 
(whether inside or outside) that is typical of a real car or classical 
racing game. Several players suggested that we supplement the 
AR views corresponding to the driver’s camera and god’s eye 
camera with a fully synthesized VR view inside or attached to the 
car. While we intend to provide this additional view for use at the 
driver’s discretion, we are also looking at control interfaces from 
existing remote control car systems. 

We also observed that, in general, it can be difficult for a player 
to understand the extent of the playing field in AR. In contrast, a 
conventional computer display provides a clearly defined bound-
ary between the virtual and the real. To address this potential 
confusion, we optionally add in visible virtual walls at the edges 
of the gameboard that prevent players from driving off the end of 
the world, examples of which are shown at the left edges of Fig-
ures 4 and 6(a–b). However, when the gameboard is placed on top 
of a larger surface, we often leave off the walls, allowing the car 
to drive off the gameboard (and push obstacles off it, too), which 
will be tracked as long as a sufficiently large portion of the game-
board is visible to the camera. 

(b)

Figure 6. Game play. (a) Car collides with a windmill and knocks it down.  (b) Car passes a waypoint. 

(a) 



9. CONCLUSIONS AND FUTURE WORK 
We have described our experiences implementing an AR racing 
game that explores tangible input devices using vision tracking 
and non-driver player interaction. Our AR infrastructure made it 
relatively easy to expand an existing non-AR game to become an 
AR game incorporating an external physics engine and network-
ing support. The infrastructure supported video capture and com-
positing, 6DOF vision tracking using the ARTag library, and 3D 
user interaction techniques. We are continuing to develop the 
game, both to explore AR gaming further and to test our infra-
structure as we extend it. One significant advantage of building on 
top of XNA is the set of powerful development tools that it lever-
ages, which made it especially easy and fast to experimentally 
modify system behavior, even during demo sessions. 

Rather than providing support for physics purely at the level of an 
individual game, we are currently extending Goblin XNA to in-
clude an interface that will make it easier to incorporate external 
physics engines. While the current version of XNA does not sup-
port networking, the next version will, so we will need to deter-
mine what additional networking support, if any, to include.  
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