
INTRODUCTION
In the past century, we have made outstanding

progress in many areas of biology, such as discovering
the structure of DNA, elucidating the processes of micro-
and macroevolution, and making the simple but critical
calculation of the magnitude of species diversity on the
planet. In this century, we expect to witness an explosion
of discoveries revolutionizing the biological sciences
and, in particular, the relation of human society to the
environment. However, most scientists agree that global
environments face a tremendous threat as human popula-
tions expand and natural resources are consumed. As nat-
ural habitats rapidly disappear, the present century may
be our last opportunity to understand fully the extent of
our planet’s biological complexity.

This urgency demands a marriage of biology and
advanced scientific tools; new technologies are essential
to our progress in understanding global biocomplexity.
As field taxonomists conduct their expeditions to the
remaining natural habitats on the Earth, they must have
access to and methods for searching through the vast

store of biodiversity information contained in our
libraries, museums, and botanical gardens (Bisby, 2000;
Edwards & al., 2000). New techniques being developed
in areas of computer science such as vision, graphics,
modeling, image processing, and user interface design
can help make this possible.

One can envision that 21st century naturalists will be
equipped with palm-top and wearable computers, global
positioning system (GPS) receivers, and web-based
satellite communication (Wilson, 2000; Kress, 2002;
Kress & Krupnick, 2005). These plant explorers will
comb the remaining unexplored habitats of the earth,
identifying and recording the characters and habitats of
species not yet known to science. Through remote wire-
less communication, the field botanist will be able to
immediately compare his/her newly collected plants with
type specimens and reference collections archived and
digitized in museums thousands of miles away. The
information on these species gathered by botanists will
be sent with the speed of the Internet to their colleagues
around the world. This vision of discovering and describ-
ing the natural world is already becoming a reality
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through the partnership of natural history biologists,
computer scientists, nanotechnologists, and bioinfor-
maticists (Wilson, 2003; Kress, 2004).

Accelerating the collection and cataloguing of new
specimens in the field must be a priority. Augmenting
this task is critical for the future documentation of biodi-
versity, particularly as the race narrows between species
discovery and species lost due to habitat destruction.
New technologies are now being developed to greatly
facilitate the coupling of field work in remote locations
with ready access to and utilization of data about plants
that already exist as databases in biodiversity institutions.
Specifically, a taxonomist who is on a field expedition
should be able to easily access via wireless communica-
tion through a laptop computer or high-end PDA critical
comparative information on plant species that would
allow him/her to (1) quickly identify the plant in question
through electronic keys and/or character recognition rou-
tines, (2) determine if the plant is new to science, (3)
ascertain what information, if any, currently exists about
this taxon (e.g., descriptions, distributions, photographs,
herbarium and spirit-fixed specimens, living material,
DNA tissue samples and sequences, etc.), (4) determine
what additional data should be recorded (e.g., colors, tex-
tures, measurements, etc.), and (5) instantaneously query
and provide information to international taxonomic spe-
cialists about the plant. Providing these data directly and
effectively to field taxonomists and collectors would
greatly accelerate the inventory of plants throughout the
world and greatly facilitate their protection and conser-
vation (Kress, 2004).

This technological vision for the future of taxonomy
should not trivialize the magnitude of the task before us.
It is estimated that as many as 10 million species of
plants, animals and microorganisms currently inhabit the
planet Earth, but we have so far identified and described
less than 1.8 million of them (Wilson, 2000). Scientists
have labored for nearly three centuries on systematic
efforts to find, identify, name and make voucher speci-
mens of new species. This process of identification and
naming requires extremely specialized knowledge. At
present, over three billion preserved specimens are
housed in natural history museums, herbaria, and botan-
ic gardens with a tremendous amount of information
contained within each specimen. Currently, taxonomists
on exploratory expeditions make new collections of
unknown plants and animals that they then bring back to
their home institutions to study and describe. Usually,
many years of tedious work go by, during which time sci-
entists make comparisons to previous literature records
and type specimens, before the taxonomic status of each
new taxon is determined.

In the plant world, estimates of the number of spe-
cies currently present on Earth range from 220,000 to o-

ver 420,000 (Govaerts, 2001; Scotland & Wortley, 2003).
By extrapolation from what we have already described
and what we estimate to be present, it is possible that at
least 10 percent of all vascular plants are still to be dis-
covered and described (J. Kress & E. Farr, unpubl.). The
majority of what is known about plant diversity exists
primarily as written descriptions that refer back to phys-
ical specimens housed in herbaria. Access to these spec-
imens is often inefficient and requires that an inquiring
scientist knows what he/she is looking for beforehand.
Currently, if a botanist in the field collects a specimen
and wants to determine if it is a new species, the botanist
must examine physical samples from the type specimen
collections at a significant number of herbaria. Although
this was the standard mode of operation for decades,
such arrangement is problematic for a number of reasons.
First, type specimens are scattered in hundreds of her-
baria around the world. Second, the process of request-
ing, approving, shipping, receiving, and returning type
specimens is extremely time-consuming, both for the
inquiring scientists and for the host herbarium. It can
often take many months to complete a loan, during which
time other botanists will not have access to the loaned
specimens. Third, type specimens are often incomplete,
and even a thorough examination of the relevant types
may not be sufficient to determine the status of a new
specimen gathered in the field. New, more efficient
methods for accessing these specimens and better sys-
tems for plant identification are needed.

Electronic keys and field guides, two modern solu-
tions for identifying plants, have been available since
computers began processing data on morphological char-
acteristics (Pankhurst, 1991; Edwards & Morse, 1995;
Stevenson & al., 2003). In the simplest case of electron-
ic field guides, standard word-based field keys using
descriptive couplets have been enhanced with color
images and turned into electronic files to make identifi-
cation of known taxa easier and faster. More sophisticat-
ed versions include electronic keys created through char-
acter databases (e.g., Delta: delta-intkey.com, Lucid:
www.lucidcentral.org). Some of these electronic field
guides are now available on-line or for downloading onto
PDAs (e.g., Heidorn, 2001; OpenKey: http://www3.isrl
.uiuc.edu/~pheidorn/cgi-bin/schoolfieldguide.cgi), while
others are being developed as active websites that can
continually be revised and updated (e.g., Flora of the
Hawaiian Islands: http://ravenel.si.edu/botany/pacificis
landbiodiversity/hawaiianflora/index.htm).

Somewhat further afield, previous work has also
addressed the use of GPS-equipped PDAs to record in-
field observations of animal tracks and behavior (e.g.,
Pascoe, 1998; CyberTracker Conservation, 2005), but
without camera input or recognition (except insofar as
the skilled user is able to recognize on her own an animal
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and its behavior). PDAs with cameras have also been
used by several research groups to recognize and trans-
late Chinese signs into English, with the software either
running entirely on the PDA (Zhang & al., 2002) or on a
remote mainframe (Haritaoglu, 2001). These sign-trans-
lation projects have also explored how user interaction
can assist in the segmentation problem by selecting the
areas in the image in which there are signs.

We envision a new type of electronic field guide that
will be much more than a device for wireless access to
taxonomic literature. It should allow for visual and tex-
tual search through a digital collection of the world’s
type specimens. Using this device, a taxonomist in the
field will be able to digitally photograph a plant and
determine immediately if the plant is new to science. For
plants that are known, the device should provide a means
to ascertain what data currently exist about this taxon,
and to query and provide information to taxonomic spe-
cialists around the world.

Our project aims to construct prototype electronic
field guides for the plant species represented in the
Smithsonian’s collection in the United States National
Herbarium (US). We consider three key components in
creating these field guides. First, we are constructing a
digital library that is recording image and textual infor-
mation about each specimen. We initially concentrated
our efforts on type specimens (approximately 85,000
specimens of vascular plants at US) because they are
critical collections and represent unambiguous species
identification. We envision that this digital collection at
the Smithsonian can then be integrated and linked with
the digitized type specimen collections at other major
world herbaria, such as the New York Botanical Garden,
the Missouri Botanical Garden, and the Harvard
University Herbaria. However, we soon realized that in
many cases the type specimens are not the best represen-
tatives of variation in a species, so we have broadened
our use of non-type collections as well in developing the
image library. Second, we are developing plant recogni-
tion algorithms for comparing and ranking visual simi-
larity in the recorded images of plant species. These
recognition algorithms are central to searching the image
portion of the digital collection of plant species and will
be joined with conventional search strategies in the tex-
tual portion of the digital collection. Third, we are devel-
oping a set of prototype devices with mobile user inter-
faces to be tested and used in the field. In this paper, we
will describe our progress towards building a digital col-
lection of the Smithsonian’s type specimens, developing
recognition algorithms that can match an image of a leaf
to the species of plant from which it comes, and design-
ing user interfaces for electronic field guides. 

To start, we are developing prototype electronic field
guides for the flora of Plummers Island, a small, well-

studied island in the Potomac River. Our prototype sys-
tems contain multiple images for each of about 130
species of plants on the island, and should soon grow to
cover all 200+ species currently recorded (Shetler & al.,
in press). Images of full specimens are available, as well
as images of isolated leaves of each species. Zoomable
user interfaces allow a user to browse these images,
zooming in on ones of interest. Visual recognition algo-
rithms assist a botanist in locating the specimens that are
most relevant to identify the species of a plant. Our sys-
tem currently runs on small hand-held computers and
Tablet PCs. We will describe the components of these
prototypes, and also explain some of the future chal-
lenges we anticipate if we are to provide botanists in the
field with access to all the resources that are now cur-
rently available in the world’s museums and herbaria.

TYPE SPECIMEN DIGITAL COLLEC-
TION

The first challenge in producing our electronic field
guides is to create a digital collection covering all of the
Smithsonian’s 85,000 vascular plant type specimens. For
each type specimen, the database should eventually
include systematically acquired high-resolution digital
images of the specimen, textual descriptions, links to
decision trees, images of live plants, and 3D models.

So far, we have taken high resolution photographs of
approximately 78,000 of the Smithsonian’s type speci-
mens, as illustrated in Fig. 1. At the beginning of our
project, specimens were photographed using a Phase One
LightPhase digital camera back on a Hasselblad 502 with
an 80 mm lens. This created an 18 MB color image with
2000×3000 pixels. More recently we have used a Phase
One H20 camera back, producing a 3600×5000 pixel
image. The image is carried to the processing computer
by IEEE 1394/FireWire and is available to be processed
initially in the proprietary Capture One software that
accompanies the H20. The filename for each high-reso-
lution TIF image is the unique value of the bar code that
is attached to the specimen. The semi-processed images
are accumulated in job batches in the software. When the
job is done, the images are finally batch processed in
Adobe Photoshop, and from these derivatives can be
generated for efficient access and transmission. Low res-
olution images of the type specimens are currently avail-
able on the Smithsonian’s Botany web site at http://
ravenel.si.edu/botany/types. Full resolution images may
be obtained through ftp by contacting the Collections
Manager of the United States National Herbarium.

In addition to images of type specimens, it is ex-
tremely useful to obtain images of isolated leaves of each
species of plant. Images of isolated leaves are used in our
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prototype systems in two ways. First of all, it is much
easier to develop algorithms that judge the similarity of
plants represented by isolated leaves than it is to deal
with full specimens that may contain multiple, overlap-
ping leaves, as well as branches. While the appearance of
branches or the arrangement of leaves on a branch may
provide useful information about the identity of a plant,
this information is difficult to extract automatically. The
problem of automatically segmenting an image of a
complex plant specimen to determine the shape of indi-
vidual leaves and their arrangement is difficult, and still
unsolved. We are currently addressing these problems,
but for our prototype field guides we have simply been
collecting and photographing isolated leaves from all
species of plants present on Plummers Island. Secondly,
not only are isolated leaves useful for automatic recogni-
tion, but they also make useful thumbnails—small
images that a user can quickly scan when attempting to
find relevant information. We will discuss this further in
a following section.

As our project progresses, we plan to link other fea-
tures to this core database, such as other sample speci-
mens (not types), of which there are 4.7 million in the
Smithsonian collection, live plant photographs, and com-
puter graphics models, such as image-based or geometric

descriptions. We also aim to enable new kinds of data
collection, in which botanists in the field can record large
numbers of digital photos of plants, along with informa-
tion (accurate to the centimeter) about the location at
which each photo and sample were taken.

The full collection of 4.7 million plant specimens
that the Smithsonian manages provides a vast represen-
tation of ecological diversity, including as yet unidenti-
fied species, some of which may be endangered or
extinct. Furthermore, it includes information on variation
in structure within a species that can be key for visual
identification or computer-assisted recognition. A poten-
tial future application of our recognition algorithms is for
automatic classification of these specimens, linking them
to the corresponding type specimens, and identifying
candidates that are hard to classify, requiring further
attention from botanists. In this way, the visual and tex-
tual search algorithms discussed in the next section could
be used to help automatically discover new species
among the specimens preserved in the Smithsonian—
something that would be extremely laborious without
computer assistance.

The most direct approach to acquisition and repre-
sentation is to use images of the collected specimens.
However, it will also be of interest to explore how
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Fig. 1. On the left, our set-up at the Smithsonian for digitally photographing type specimens. On the right, an example
image of a type specimen.



advances in computer graphics and modeling could build
richer representations for retrieval and display that cap-
ture information about the 3-D structure of specimens. A
first step towards this might concentrate on creating
image-based representations of the specimens, building
on previous work in computer graphics on image-based
rendering methods (Chen & Williams, 1993; McMillan
& Bishop, 1995; Gortler & al., 1996; Levoy & Hanrahan,
1996; Wood & al., 2000). The challenge for this
approach will be to use a small number of images, to
keep the task manageable, while capturing a full model
of the specimen, making it possible to create synthetic
images from any viewpoint. One advantage is that spec-
imens such as leaves are relatively flat and therefore
have a relatively simple geometry. One could therefore
start with leaf specimens, combining view-dependent
texture-mapping approaches (Debevec & al., 1996) with
recent work by us and others on estimating material
properties from sparse sets of images by inverse tech-
niques (Sato & al., 1997; Yu & Malik, 1998; Yu & al.,
1999; Boivin & Gagalowicz, 2001; Ramamoorthi &
Hanrahan, 2001).

Finally, it would be very exciting if one could meas-
ure geometric and photometric properties to create com-
plete computer graphics models. Geometric 3D informa-
tion will allow for new recognition and matching algo-
rithms that better compensate for variations in viewpoint,
as well as provide more information for visual inspec-
tion. For example, making a positive classification may
depend on the precise relief structure of the leaf or its
veins. Also, rotating the database models to a new view-
point, or manipulating the illumination to bring out fea-
tures of the structure, could provide new tools for classi-
fication. Furthermore, this problem is of interest not just
to botanists, but also to those seeking to create realistic
computer graphics images of outdoor scenes. While
recent work in computer graphics (Prusinkiewicz & al.,
1994; Deussen & al., 1998) has produced stunning, very
complex outdoor images, the focus has not been on
botanical accuracy.

To achieve this, one can make use of recent advances
in shape acquisition technology, such as using laser range
scanning and volumetric reconstruction techniques
(Curless & Levoy, 1996) to obtain geometric models.
One can attempt to acquire accurate reflectance informa-
tion or material properties for leaves—something that
has not been done previously. To make this possible, we
hope to build on and extend recent advances in measure-
ment technology, such as image-based reflectance meas-
urement techniques (Lu & al., 1998; Marschner & al.,
2000). Even accurate models of a few leaves, acquired in
the lab, might be useful for future approaches to recogni-
tion that use photometric information. Reflectance mod-
els may also be of interest to botanists; certainly research

on geometric and reflectance measurements would be of
immense importance in computer graphics for synthesiz-
ing realistic images of botanically accurate plants.

VISUAL MATCHING OF ISOLATED
LEAVES

Our project has already produced a large collection
of digital images, and we expect that, in general, the
number of images and models of plants will grow to huge
proportions. This represents a tremendous potential re-
source. It also represents a tremendous challenge, be-
cause we must find ways to allow a botanist in the field
to navigate this data effectively, finding images of speci-
mens that are similar to and relevant to the identification
of a new specimen. Current technology only allows for
fully automatic judgments of specimen similarity that are
somewhat noisy, so we are building systems in which
automatic visual recognition algorithms interact with
botanists, taking advantage of the strengths of machine
systems and human expertise.

Many thorny problems of recognition, such as seg-
mentation, and filtering our dataset to a reasonable size,
can be solved for us by user input. We can rely on a
botanist to take images of isolated leaves for matching,
and to provide information, such as the location and fam-
ily of a specimen, that can significantly reduce the num-
ber of species that might match it. With that starting
point, our system supplements text provided by the user
by determining the visual similarity between a new sam-
ple and known specimens. Our problem is simplified by
the fact that we do not need to produce the right answer,
just a number of useful suggestions.

PRIOR WORK ON VISUAL SIMILAR-
ITY OF ORGANISMS

There has been a large volume of work in the fields
of computer vision and pattern recognition on judging
the visual similarity of biological organisms. Probably
the most studied instance of this problem is in the auto-
matic recognition of individuals from images of their
faces (see Zhao & al., 2003 for a recent review). Early
approaches to face recognition used representations
based on face-specific features, such as the eyes, nose,
and mouth (Kanade, 1973). While intuitive, these ap-
proaches had limited success for two reasons. First, these
features are difficult to reliably compute automatically.
Second, they lead to sparse representations that ignore
important but more subtle information. Current ap-
proaches to face recognition have achieved significant
success using much more general representations. These
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are informed by the general character of the object recog-
nition problem, but are not based on specific properties
of the human face (e.g., Turk & Pentland, 1991; Lades &
al., 1993). Some successful methods do make use of pri-
or knowledge about the 3D shape of faces (e.g., Blanz &
Vetter, 2003). However, successful approaches do not ne-
cessarily rely on representations of faces that might seem
to correspond to human descriptions of faces (e.g., a big
nose, or widely spaced eyes). Such systems achieve the
best current performance, allowing effective retrieval of
faces from databases of over a thousand images, provid-
ed that these are taken under controlled conditions (Phil-
lips & al., 2002). This encourages us to explore the use
of general purpose shape matching algorithms in plant
identification, before attempting to compute descriptions
of plants that correspond to more traditional keys.

There has also been work on automatic identification
of individuals within a (nonhuman) species. For exam-
ple, biologists may track the movements of individual a-
nimals to gather information about population sizes, de-
mographic rates, habitat utilization, and movement rates
and distances. This is done using visual recognition in
cases in which mark-recapture methods are not practical
because of the stress they place on animals, for example,
or the small size of some animals (e.g., salamanders).
Some researchers have exploited distinctive visual traits
recorded from direct observations and photographs, such
as scars on cetaceans (Hammond, 1990) or more general
shape characteristics of marine invertebrates (Hillman,
2003), pelage patterns in large cats (Kelley, 2001), and
markings on salamanders (Ravela & Gamble, 2004).

A number of studies have also used intensity patterns
to identifying the species of animals, and of some plants
such as pollen or phytoplankton. Gaston & O’Neill
(2004) review a variety of these methods. They primari-
ly apply fairly general pattern recognition techniques to
the intensity patterns found on these organisms.

There have also been several works that focus
specifically on identifying plants using leaves, and these
have generally concentrated on matching the shape of
leaves. For example, Abbasi & al. (1997) and Mokhtari-
an & Abbasi (2004) have worked on the problem of clas-
sifying images of chrysanthemum leaves. Their motiva-
tion is to help automate the process of evaluating appli-
cants to be registered as new chrysanthemum varieties.
The National Institute of Agricultural Botany in Britain
has registered 3000 varieties of chrysanthemums, and
must test 300 applicants per year for distinctness. They
compare silhouettes of leaves using features based on the
curvature of the silhouette, extracted at multiple scales,
also using other features that capture global aspects of
shape. They experiment using a dataset containing ten
images each of twelve different varieties of chrysanthe-
mums. They achieve correct classification of a leaf up to

85% of the time, and the correct variety is among the top
three choices of their algorithm over 98% of the time.
While the number of varieties in their dataset is rather
small, their problem is difficult because of the close sim-
ilarity between different varieties of chrysanthemums.

In other work, Im & al. (1998) derive a description
of leaf shapes as a straight line approximation connecting
curvature extrema, although they do not report recogni-
tion results, only showing a few sample comparisons.
Saitoh & Kaneko (2000) use both shape and color fea-
tures in a system that recognizes wild flowers, using a
neural net, which is a general approach developed for
pattern recognition and machine learning. In a dataset
representing sixteen species of wildflowers, they correct-
ly identify a species over 95% of the time, although per-
formance drops drastically when only the shape of leaves
are used. Wang & al. (2003) develop a novel shape de-
scription, the centroid-contour distance, which they com-
bine with more standard, global descriptions of shape.
They use this for recognition on a dataset containing
1400 leaves from 140 species of Chinese medicinal
plants. This approach correctly recognizes a new leaf on-
ly about 30% of the time, and a correct match is from the
same species as one of the top 50 leaves retrieved only
about 50% of the time. However, this dataset appears to
be challenging, and their system does outperform meth-
ods based on curvature scale-space (Abbasi & al., 1997),
and another method based on Fourier descriptors. It is
somewhat difficult to evaluate the success of these previ-
ous systems, because they use diverse datasets that are
not publicly available. However, it appears that good
success can be achieved with datasets that contain few
species of plants, but that good performance is much
more difficult when a large number of species are used.

In addition to these methods, Söderkvist (2001) pro-
vides a publicly available dataset (http://www.isy.liu.se/
cvl/Projects/Sweleaf/samplepage.html) containing 75
leaves each from 15 different species of plants, along
with initial recognition results using simple geometric
features, in which a recognition rate of 82% is reported.

MEASURING SHAPE SIMILARITY
The core requirement of providing automatic assis-

tance to species identification is a method for judging the
similarity of two plant specimens. While there are many
ways one can compare the visual similarity of plant spec-
imens, we have begun by focusing on the problem of
determining the similarity of the shape of two leaves that
have been well segmented from their background. It will
be interesting in the future to combine this with other
visual information (e.g., of fruit or flowers) and metada-
ta (e.g., describing the position of a leaf). We will now
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discuss a novel approach that performs this task well.
When we discuss our prototype user interfaces, we will
explain how we achieve segmentation in practice, and
how we use this measure of leaf similarity to aid in
species identification.

Our approach is motivated by the fact that leaves
possess complex shapes with many concavities. Many
approaches to visual recognition attempt to deal with
complex shapes by dividing an object into parts (e.g.,
Siddiqi & al., 1999; Sebastian & al., 2004). However
leaves often lack an obvious part structure that fully cap-
tures their shape. Therefore, we have instead introduced
a new shape representation that reflects the part structure
and concavities of a shape without explicitly dividing a
shape into parts.

Our representation is based on the inner-distance
between two points on the boundary of a shape. This is
defined as the length of the shortest path that connects
the two points and that lies entirely inside the leaf. Figure
2 illustrates the inner-distance by showing a pair of
points (p, q) on the boundary of three idealized leaf sil-
houettes. The Euclidean distance between the two points
in (b) is more similar to the Euclidean distance between
the pair of points in (c) than those in (a). Shape descrip-
tions based on this ordinary notion of distance will treat
(b) as more similar to (c). In contrast, the inner-distance
between the pair of points in (b) is more similar to those
in (a) than in (c). As a consequence, the inner-distance-
based shape descriptors can distinguish the three shapes
more effectively.

Using the inner-distance, we build a description of
the relationship between a boundary point and a set of
other points sampled along the leaf boundary. This con-
sists of a histogram of the distances to all other boundary
points, as well as the initial direction of the shortest inner
path to each point. This descriptor is closely related to

the shape context (Belongie & al., 2002), using the inner-
distance instead of the Euclidean distance. We therefore
call our method the Inner-Distance Shape Context
(IDSC).

Once a descriptor is computed for each point on the
boundary of the leaf, we compare two leaves by finding
a correspondence between points on the two leaves, and
measuring the overall similarity of all corresponding
points. Using a standard computer science algorithm
called dynamic programming, we can efficiently find the
best possible matching between points on the two leaf
boundaries that still preserves the order of points along
the boundary. More details of this algorithm can be found
in Ling & Jacobs (2005).

We have tested this algorithm on a set of isolated
leaves used in one of our prototype systems. This test set
contains images of 343 leaves from 93 different species
of plants found on Plummers Island, and is available at
http://www.cs.umd.edu/~hbling/Research/data/SI-93
.zip. In the experiment, 187 images are used as training
examples that the system uses as its prior information
about the shape of that species. The remaining 156 im-
ages are used as test images. For each test image, we
measure how often a leaf from the correct species is
among the most similar leaves in the training set.
Information about the effectiveness of a retrieval mecha-
nism can be summarized in the Receiver Operating
Characteristics (ROC) curve (Fig. 3). This measures how
the probability of retrieving the correct match increases
with the number of candidate matches produced by the
system. The horizontal axis shows the number of species
retrieved, and the vertical axis shows the percentage of
times that the correct species is among these. 

The figure compares our method to ordinary shape
contexts (SC) and to Fourier Descriptors computed using
the discrete Fourier transform (DFT). Fourier
Descriptors are a standard approach to shape description,
in which a contour is described as a complex function,
and the low-frequency components of its Fourier trans-
form are used to capture its shape (see e.g., Lestrel,
1997). The figure shows that our new method (IDSC)
performs best, although IDSC and SC perform similarly
once twenty or more species of plants are retrieved.
These results show that if we use IDSC to present a user
with several potential matching species to a new leaf
specimen, the correct species will be among these choic-
es well over 95% of the time. Note that our results are
either much more accurate than, or use a much larger
dataset than, the prior work that we have described.
However, it is difficult to compare results obtained on
different datasets, since they can vary widely in difficul-
ty, depending on the similarity of plants used. We have
not yet been able to compare IDSC to all prior methods
for species identification on a common dataset. However,
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Fig. 2. This figure shows three compound leaves, where
(a) and (b) are from the same species which is different
from that of (c). The lengths of the dotted line segments
denote the Euclidean distances between two points, p
and q. The solid lines show the shortest paths between p
and q. The inner-distances are defined as the length of
these shortest paths. The Euclidean distance between p
and q in (b) is more similar to that in (c) than in (a). In
contrast, the inner-distance between p and q in (b) is
more similar to that in (a) than in (c).

http://www.cs.umd.edu/~hbling/Research/data/SI-93.zip
http://www.cs.umd.edu/~hbling/Research/data/SI-93.zip


Ling & Jacobs (2005) compare IDSC to ten other shape
comparison methods on a variety of commonly used test
sets of non-leaf shapes. IDSC performs better than the
competing methods in every case.

In addition to these experiments we have also tested
our algorithm on Söderkvist’s dataset. The top species
matched to a leaf by our algorithm is correct 94% of the
time, compared to Söderkvist’s reported results of 82%.
Our own implementations of Fourier Descriptors and a
method using Shape Contexts achieve 90% and 88%
recognition performance, respectively.

While these experimental results are encouraging,
they should be viewed with some caution. First of all, in
our current test set, all leaves from a single species were
collected at the same time, from the same plant.
Therefore, data does not reflect the possible variations
that can occur as leaves mature, or between different
plants growing in different regions. We are in the process
of collecting additional specimens now, which will help
us to test our algorithm in the face of some of this varia-
tion. Second, for many environments, it will be necessary
to perform retrieval when many more species of plants
are possible candidates for matching. We anticipate that
in many cases it will be necessary to supplement shape
matching with information about the intensity patterns
within leaves, especially of the venation. While impor-
tant, these features are more difficult to extract automat-
ically, and will pose a significant challenge in future
work. 

We also plan, in future work, to evaluate our algo-
rithm for use in matching an isolated leaf to a full plant
specimen. This would be helpful, since it may not be fea-
sible for us to collect new specimens for every species of
plant in the type specimen collection of the United States
National Herbarium. One possible solution is to extract
isolated leaves from the type specimens, and use these
for matching. This might be done manually with a good
deal of work and the aid of some automatic tools. We are
also exploring methods for automatically segmenting
leaves in images of type specimens, although this is a
very challenging problem due to the extreme clutter in
many of these images.

PROTOTYPE ELECTRONIC FIELD
GUIDES

We have integrated our approach to visual similarity
with existing tools for image browsing into several pro-
totype Electronic Field Guides (EFGs). Our EFGs cur-
rently contain information about 130 species of plants
found on Plummers Island.

While we envision that a field guide will ultimately
reside on devices no larger than current PDAs, we want-

ed to avoid the short-term constraints of implementing
for existing PDAs, with their low-resolution displays,
small memories, underpowered CPUs, and limited oper-
ating systems. For this reason, our initial handheld pro-
totype was implemented on a slightly larger, but far more
powerful, ultraportable hand-held computer, sometimes
referred to as a “handtop”. Our entire initial system runs
on a Sony VAIO U750, running Windows XP
Professional. This device measures 6.57"×4.25"×1.03",
weighs 1.2 lbs, and includes a 1.1 GHz Mobile Pentium
M processor, 512 MB Ram, a 5" 800×600 resolution,
color, sunlight-readable display, a touch-sensitive display
overlay, and 20 GB hard drive. 

Our initial prototype was based on PhotoMesa
(Bederson, 2001), which is a zoomable user interface. It
shows the thumbnails of images arranged in 2D array. As
a user mouses on an image, the image is shown at a
somewhat larger size. The user can zoom in/out using the
mouse (left/right) clicks. If the user wants to see more
images of a particular species, s/he can double click with
the left mouse button. Thus s/he can control the informa-
tion s/he wants to see at any instant. These mouse-based
controls make browsing and navigation easier.

We added some new features to the browsing capa-
bilities offered by PhotoMesa:

Similarity based clustering and display of
data. — Species are clustered based on the similarity
between images of isolated leaves from these species. To
do this we use a variation on the k-means clustering algo-
rithm (see, e.g., Forsyth & Ponce, 2003) in which indi-
vidual leaves are used as cluster centers. The images are
displayed so that similar images are displayed as groups.
This should help the user to better isolate the group to
which the query image belongs. Once the correct group
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Fig. 3. ROC curves describing the performance of our
new method (IDSC) in contrast with two other methods
(SC, DFT = discrete Fourier transform).



is determined, s/he can zoom into that group to get more
information.

Visual search. — The user can provide a query
image, which is matched with the images in the database
using the IDSC method introduced above. In a complete
system, a user will be able to photograph a leaf collected
in the field and use this as input to the system. In this ini-
tial prototype, images we have taken of isolated leaves
are provided as input. Example leaves from the 20 best
matching species are then displayed to the user.

Text search. — The user can see the images for a
particular genus or species by typing the names. Partial
names are accepted.

The prototype database consists of large specimens,
including Type Specimens, and isolated leaf images (Fig.
5). At present, the database has over 1500 isolated leaves
from 130 species, and approximately 400 larger speci-
men images for 70 species.

The shape matching algorithm requires the contour
of leaves as input. Since leaves are photographed on a

plain background, extracting their contour reliably is not
too difficult, although this process is simplified if care is
taken to avoid shadows in the image. We obtain the con-
tour also by using k-means clustering to divide the image
into two regions, based on color. We use the central and
the border portions of the image as initial estimates of the
leaf and background colors. We then use some simple
morphological operations to fill in small holes (see e.g.,
Haralick & Shapiro, 1992). The input and output of this
step are shown in Fig. 6.

We have performed user studies to evaluate the
effectiveness of the different features of this prototype
system, using 21 volunteers from the Department of
Botany at the Smithsonian Institution. In these studies,
users were presented with a query image showing an iso-
lated leaf from Plummers Island, and asked to identify
the species of the leaf using three versions of our system.
In some queries, the users were given the basic features
of PhotoMesa described above, with leaves placed ran-
domly. A second version placed leaves using clustering.
A third version displayed the results of visual search to
the user.

A complete description of our results is presented by
Agarwal (2005). Here, we briefly summarize these
results. With random placement, users identified 71% of
the query leaves correctly, in an average time of 30 sec-
onds. With clustering, users found the correct species
84% of the time, in an average time of 29 seconds. With
visual search, users were correct 85% of the time, with an
average time of 22 seconds. The superior performance of
subjects using visual search was statistically significant,
both in terms of time and accuracy. Subjects also per-
formed better with clustering than with random place-
ment, but this difference was not statistically significant.
In addition, users reported higher satisfaction with the
system using visual search, next highest with clustering,
and the least satisfaction with random placement. All
these differences in satisfaction were statistically signifi-
cant.

Our results suggest that visual search can produce a
significantly better retrieval system, and that clustering
may also produce a system that is easier to use, compared
to one in which images are placed randomly. However,
visual search will require substantially more overhead
than the other methods, since a user must photograph a
leaf in order to use visual search to help identify its
species. The other features of the EFG can be used with-
out photographic input. We believe that these results are
promising, but that to measure the true impact of these
methods, it is essential to experiment with larger datasets
and with live field tests, in which a botanist uses the sys-
tem to identify plants in the field. A difference of a few
seconds to identify a plant is probably not important in
practice, but the differences we observe for this relative-
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Fig. 4. Screenshots from our initial EFG prototype, with
random placement (top) and placement based on cluste-
ring (bottom).



ly small dataset may be magnified in systems containing
information about hundreds of species of plants. We plan
to expand our experiments in these directions.

More recently, we have developed a second proto-
type, based on a Tablet PC tablet-based system, which
incorporates lessons learned from our user studies and
initial prototype to provide a user interface that can be
effectively deployed in the field (Fig. 7). The system
hardware incorporates an IBM Thinkpad X41 Tablet PC,
(shown in the figure, but recently replaced with a Motion
Computing LE 1600 Tablet PC with daylight-readable
display), a Delorme Earthmate Bluetooth and a Nikon
CoolPix P1 camera that transmits images wirelessly to
the tablet PC. The user interface comprises five screens
accessible through a tabbed interface, much like a tabbed
set of file folders: browse, current sample, search results,
history, and help.

The browse tab represents the entire visual leaf data-
base in a zoomable user interface developed using
Piccolo (Bederson & al., 2004). The species are present-
ed as an ordered collection, based on the clustering algo-
rithm described earlier. Each leaf node in the visual data-
base contains individual leaf images, reference text, and
digital images of specimen vouchers for that species. The
collection can be browsed by looking at sections of the
collection or at individual leaves.

The next tab displays the current sample leaf. Taking
a picture of a leaf with the digital camera or selecting an
earlier photo from the history list (described later) places
the image of the leaf in this tab. Each picture is immedi-

ately placed in a database, along with relevant contextu-
al information such as time, collector, and GPS coordi-
nates. The black and white outline of the segmented
image, which is used to identify the leaf, is displayed
next to the original image as feedback to the botanist
regarding the quality of the photo. If the silhouette looks
broken or incomplete, a replacement photo can be taken.
A button at the bottom of the screen can be used to dis-
play the search results.

The third tab presents the results of a visual search
using the current sample, as shown in Fig. 7. Leaves are
displayed in an ordered collection, with the best matches
presented at the top. Each represented species can be
inspected in the same way that leaves in the browser can
be inspected, including all voucher images for a given
species. If the botanist feels they have found a species
match, pressing a button with a finger or stylus associates
that species with the current sample in the database.

The fourth tab provides a visual history of all the
samples that have been collected using the system. The
samples in this leaf collection can be enlarged for inspec-
tion and the search results from a given sample can be
retrieved. The last tab provides a simple help reference
for the system.

Our current visual search algorithm returns an
ordered set of the top ten possible matches to a leaf. In
the future, it will be interesting to explore how the user
can help narrow the identification further. This could
involve a collaborative dialogue in which the system
might suggest that the user provide additional input data,
such as one or more new images (perhaps taken from an
explicitly suggested vantage point, determined from an
analysis of the originally submitted image). In addition,
it would be interesting to develop ways for users to spec-
ify portions of a 2D image (and, later, of a 3D model) on
which they would like the system to focus its attention,
and for the system to specify regions on which the user
should concentrate. Here, we will rely on our work on
automating the design and unambiguous layout of textu-
al and graphical annotations for 2D and 3D imagery
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Fig. 5. A sample photograph of an isolated leaf.

Fig. 6. Isolated leaf before and after preprocessing.



(Bell & Feiner, 2000; Bell & al., 2001), which we have
already used with both head-worn and hand-held dis-
plays.

WEARABLE COMPUTING
To complement our hand-held prototypes, we are

exploring the use of head-tracked, see-through, head-
worn displays, which free the user’s hands and provide
information that is overlaid on and integrated with the
user’s view of the real world. Here, we are building on
our earlier work on wearable, backpack-based, mobile
augmented reality systems (e.g., Feiner & al., 1997;
Höllerer & al., 1999b). One focus is on addressing the
effective display of potentially large amounts of infor-
mation in geospatial context, including spatialized
records of field observations during the current and pre-
vious visits to a site, and 3D models. Another focus is
facilitating the search and comparison task by presenting
results alongside the specimen.

Our earlier backpack systems have used relatively
large and bulky displays (e.g., a Sony LDI-D100B stereo
color display with the size and appearance of a pair of ski
goggles, and a MicroVision Nomad retinal scanning dis-
play). In contrast, we are currently experimenting with a
Konica Minolta prototype “forgettable” display (Kasai &
al., 2000), which is built into a pair of conventional eye-
glasses, a commercially available MicroOptical “clip-
on” display that attaches to conventional eyeglasses, a
Liteye LE-500 monocular see-through display, and sev-
eral other commercial and prototype head-worn displays.
In addition to the touch-sensitive display overlays that
are part of our hand-held prototypes, we are also inter-
ested in the use of speech input and output, to exploit the
hands-free potential of head-worn displays, and smaller
manual interaction devices that do not require the user’s

visual attention (Blaskó & Feiner, 2005).
We have been developing two mobile augmented

reality user interfaces that use head-tracked head-worn
displays (White & al., 2006). One user interface provides
a camera-tracked tangible augmented reality in which the
results of the visual search are displayed next to the phys-
ical leaf. The results consist of a set of virtual vouchers
that can be physically manipulated for inspection and
comparison. In the second user interface, the results of a
visual search query are displayed in a row in front of the
user, floating in space and centered in the user’s field of
view. These results can be manipulated for inspection
and comparison by using head-movement alone, tracked
by an inertial sensor, leaving the hands free for other
tasks.

To support geographic position tracking in our hand-
held and head-worn prototypes, we have used the
DeLorme Earthmate, a small WAAS-capable GPS
receiver. WAAS (Wide Area Augmentation System) is a
Federal Aviation Administration and Department of
Transportation initiative that generates and broadcasts
GPS differential correction signals through a set of geo-
stationary satellites. These error corrections make possi-
ble positional accuracy of less than three meters in North
America. While regular GPS would be more than ade-
quate to create the collection notes for an individual
specimen and assist in narrowing the search to winnow
out species that are not known to live in the user’s loca-
tion, we are excited about the possibility of using the
increased accuracy of WAAS-capable GPS to more accu-
rately localize individual living specimens relative to
each other.

Future prototypes of our electronic field guide could
take advantage of even higher accuracy real-time-kine-
matic GPS (RTK GPS) to support centimeter-level local-
ization, as used in our current outdoor backpack-driven
mobile augmented reality systems. Coupled with the
inertial head-orientation tracker that we already exploit
in our augmented reality systems, this would allow us to
overlay on the user’s view of the environment relevant
current and historical data collected at the site, with each
item positioned relative to where it was collected, build-
ing on our earlier work on annotating outdoor sites with
head-tracked overlaid graphics and sound (Höllerer &
al., 1999a; Güven & Feiner, 2003; Benko & al., 2004).
Further down the road, we will be experimenting with an
Arc Second Constellation 3DI wide-area, outdoor, 6DOF
tracker (+/- .004" accuracy) to track a camera and display
over a significant area. This could make it possible to
assemble sets of images for use in creating 3D models in
the field of both individual plants and larger portions of
a local ecosystem.

In our current prototypes, all information is resident
on the disk of a mobile computer. This may not be possi-
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Fig. 7. Search results shown by our second prototype,
running on a Tablet PC.



ble for future prototypes that make use of more data, or
data that might not be readily downloaded. These proto-
types and their user interfaces should be built so that the
databases can reside entirely on the remote server or be
partially cached and processed on the mobile system. We
also note that in field trials even low-bandwidth world-
wide-web connectivity may not be available. In this case,
a local laptop, with greater storage and computation
capabilities than the hand-held or wearable computer,
could be used to host the repository (or the necessary
subset) and run the recognition algorithms, communicat-
ing with the hand-held or wearable computer through a
local wireless network.

CONCLUSIONS
New technology is making it possible to create vast,

digital collections of botanical specimens. This offers
important potential advantages to botanists, including
greater accessibility and the potential to use automatic
strategies to quickly guide users to the most relevant
information. We have sketched an admittedly ambitious
plan for building and using these collections, and have
described our initial results.

The work that we have accomplished thus far helps
underscore three key challenges. The first challenge is to
build digital documents that capture information avail-
able in libraries, herbaria, and museums. This includes
the well-understood task of building large collections of
high resolution images and the still open problems of
how best to capture visual information about 3D speci-
mens. The second challenge is to build effective retrieval
methods based on visual and textual similarity. While
this is a very difficult research problem, we have
improved on existing methods for visual search and pro-
vided evidence that these methods may provide useful
support to botanists. We have done this by building pro-
totype systems that combine visual similarity measures
with image browsing capabilities. This provides a
retrieval system that doesn’t solve the problem of species
identification, but rather aims to help a botanist to solve
this problem more efficiently. While our work to date has
focused largely on leaf shape, we intend to consider other
measures of visual similarity, such as leaf venation, tex-
ture, and even multispectral color. Furthermore, we have
just begun to investigate how visual search can be com-
bined with textual search, with an aim toward leveraging
the existing taxonomic literature. Finally, in addition to
the image retrieval methods present in our prototype sys-
tems, we have discussed some of the ways that future
work in wearable computing may allow us to build sys-
tems that make it possible for a botanist to use and col-
lect even more information in the field. 
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