
Goblin
Columbia University
Marc Eaddy, Erik Peterson, John Waugh, Hrvoje Benko,

www.cs.columbia.edu/~eaddy/goblin

Sean White, Steven Feiner

Goblin is a research platform for building augmented reality
and virtual reality applications and games. It is written in C#
and uses Managed DirectX. Goblin leverages the Common
Language Runtime and .NET Framework to provide innovative
application features, including Edit-and-Continue and, soon,
Aspect-Oriented Programming.

F tFeatures
• Scene graph

• Animation
• Collision detection
• Pathfinding

• Devices
• Sony LDI-D100B optical see-through head-worn

displays (800 600 resolution)
• InterSense IS900 and IS600 6DOF tracking devices
• EssentialReality P5 gloves
• 6DOF device abstraction

• Application plug-ins
• Edit-and-Continue In addition to enabling the development of 3D applications

and games, Goblin serves as a proving ground for research in
software architecture, programming languages, virtual
machines, and compilers.

Edit-and-Continue NET is a technology that we developed for

Figure 1. Goblin system architecture.

Edit-and-Continue.NET
Edit and Continue.NET is a technology that we developed for
Goblin that allows you to modify the source files of a running
application written in C#, VB.NET, or JScript.NET (or a
combination). Changes are automatically compiled in the
background and the running application is updated on-the-
fly. The entire update process is very fast (< 1 second) and
suitable for interactive development and debugging, with very
low overhead This even works for changes made to
dynamically loaded plug-ins.

For example, in Goblin we use Edit-and-Continue.NET toFor example, in Goblin we use Edit and Continue.NET to
tweak calibration and configuration code while Goblin is
running. This allows us to quickly prototype small changes
without stopping the application.

Future Directions

Figure 2. Edit-and-Continue.NET system architecture.

We are working with Microsoft’s Phoenix researchers to extend
their compiler backend infrastructure to enable non-native C#
language constructs, such as Open Classes and Aspect-
Oriented Programming. The goal is to provide techniques for
implementing certain features that require time-consuming,
laborious, or error-prone development, or adding features that
were not originally anticipated. Goblin will serve as a testbed
for these techniques. Examples of features we would like to
implement using Aspect-Oriented Programming are state
h tifi ti d t fl i li ti l i

Figure 3. Botica—A prototype 3D game built using Goblin, and

Columbia University
Computer Graphics and

User Interfaces Lab

change notifications, data flow visualization, plug-ins,
persistence, replication, logging, and profiling.

g p yp g g
playable in augmented reality or virtual reality.

