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Introduction

. Biocatalytic fuel cells using enzyme as catalysts offer
several advantages over conventional fuel cells, such as
low manufacturing cost and superior selectivity. But one
fundamental limitation is the low current density.

Conclusions

High surface area carbon materials such as
nanotubes immobilized on micron-scale car-
bon fiber substrates provide an effective way
to dramatically improve electron transfer in
biocatalytic electrodes without compromis-
ing structural strength.
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« Glucose oxidase electrodes have been dem-

. . . (a) Bare carbon fibers (b) Iron-catalyzed nanotube growth (c) Nanotube growth catalyzed by Fe/Al203 (d) Nanotube growth on Ohmically haeted fibers . . .
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Figure 3. Scanning electron micrographs of carbon paper supports untreated (a) and modified for high surface area using various techniques (b-d). bon-based materials.
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