
Learn & Fuzz
Patrice Godefroid, Hila Peleg, and Rishabh Singh

Microsoft Research

Presenter: Yoongbok Lee

Outline

• Fuzzing

• PDF files

• RNN (LSTM)

• Training methods

• Analysis

Fuzzing

• Testing an input-parsing code by generating inputs

• Blackbox

• No limitations on the input format

• Whitebox

• Maximize code coverage

• Grammar-based

• So far the most effective method

Grammar-based fuzzing

• Providing specific constraints for the inputs to be generated

• Need to be done by hand

• A lot of work

• Error-prone

Objective

• Automatically generate input based on the grammar with machine learning

• similar with grammar based fuzzing, but no manual specifications

• large corpus of sample inputs

• Previous attempts

• Genetic algorithm

• Context-free grammar learning algorithms

• This paper

• first attempt at using neural-network-based statistical learning techniques

Process

model
• Machine-learning model
• Need sample inputs for training for a specific input format

data
• Large data of sample input for an input format
• Used to train the model

fuzz
• Generate inputs/fuzz
• Test for pass rate and coverage.

Case Study: PDF

• PDF: a complicated input format

• 1300 pages format specification

• Microsoft Edge browser’s PDF parser
• Specifically PDF objects parser

PDF format

• PDF

• A sequence of at least one PDF body

• PDF body

• Objects

• Cross-reference table

• trailer

PDF data objects

• Similarly formatted
• First line identifier (for indirect reference)
• Generation number (incremented when the object is

updated/overwritten)
• “obj” keyword to start the actual object
• “endobj” to end the object
• PDF objects are updated incrementally

Scope of the paper

• Non-binary PDF data objects

• Formatted text

• Well-suited for learning with neural networks

• Binary PDF data objects

• Blackbox and whitebox testings are sufficient enough for these formats

Recurrent Neural Networks

• Given x1 x2 x3 x4 x5 … xt-2 xt-1

• Generate xt xt+1 …
• Recurrent Neural Network (seq2seq)

• Operates on variable length inputs
• Arbitrary length input, rather than n-grams
• ௧ ௧ିଵ

• x is the new input, hi is the hidden state at character i.
• ௧ ௧

• φ is the activation function, yi is the i-th output.
• i.e., learning the conditional distribution P(x|<x1, … , xt-1>)

Seq2seq

• Variant of RNN (LSTM)
• Encoder-decoder

• Hidden state
• ழ௧வ ழ௧ିଵவ ௧ିଵ

• c is the summary of the input sequence
• yt-1 of last symbol
• ht-1 of last hidden state

• Conditional distribution
• ௧ ௧ିଵ ௧ିଶ ଵ ழ௧வ ௧ିଵ

Gated Recurrent Unit

• Reset gate
•

• Update gate
•

• Activation
•

•

Notations
x : input
h<t-1> : previous state

: Logistic sigmoid function
௜: i-th element of a vector

: Learnt Weight matrices
: Element-wise product

଴ vector

Training Process

• From a large corpus of PDF object files make a
concatenation of all of the files

• Put multiple training sets of fixed size .
• Thus the i-th training sequence ௜

• Put output sequence as the input sequence shifted by 1 position
• Thus the i-th output sequence ௜

• Then seq2seq trained end-to-end to learn a generative model over
the instances

Generating PDF objects

• Basic idea

• Start with the prefix “obj”, query the model until it generates “endobj”

• Strategies

• NoSample

• Sample

• SampleSpace

NoSample

• Greedy algorithm to generate the best character given a prefix.

• Most likely to generate well-formed objects, but less likely to create
diverse formats of objects

• Precluded from being useful in fuzzing

Sample

• Given a prefix, sample the set of next possible characters (rather than
picking the best one)

• Allows generation of diverse objects by combining various different
patterns

• Sampling process creates some possibility that the generated object is
not well-formed (good for fuzzing)

SampleSpace

• Combination of NoSample and Sample
• Samples the distribution to generate the next character only when

the current character is a whitespace
• While in middle of a word, generate using NoSample method
• After completing a word, generate using Sample method

• Expected to generate more well-formed objects than Sample

Challenge

• Challenge

• Too good training technique:
• Would mostly consist of well-formed objects that would not execute error-handling code

• Too bad training technique:
• Would mostly consist of ill-formed objects that would be rejected by the parser before

entering major parts of the parser

• Solution: SampleFuzz

SampleFuzz

• Input
• Learnt distribution D(x, Θ)
• Probability of fuzzing a character (tfuzz)
• Threshold probability (pt)

• While generating,
• Sample the model to get next character c and its probability p(c)
• If p(c) is greater than the threshold probability, replace c with c’ where c’ is

the character least likely in the learnt distribution
• This happens only of a random function pfuzz returns greater than the

probability of fuzzing a character tfuzz

SampleFuzz

• Characteristic

• Introduce anomalies only in places where the model is
highly confident in the next character

• Generated object length bounded by MAXLEN
• Algorithm itself not guaranteed to terminate, but made

to terminate after MAXLEN

Training

• Seq2seq model
• unsupervised

• Epochs
• Divided up into five different number of epochs: 10, 20, 30, 40, 50
• Each epoch takes about 12 minutes
• 50 epochs  ~10 hours

• LSTM model (variant of RNN)
• 2 hidden layers
• 128 hidden states within a layer

Test environment

• Edge browser
• Self-contained single-processor test-driver
• Takes PDF file, executes PDF parser within Microsoft Edge browser
• Upon encountering an error, prints the error message in the log

• Machine
• 4-core
• 64-bit
• 20G RAM
• Windows 10

Considerations

• Coverage
• Union of the instruction coverage for all test cases

• Pass rate
• If no error log, pass. Otherwise, fail
• Pass means the generated PDF document is well-formed
• Helps in estimating the quality of the learning

• Bugs
• Each tests are run under AppVerifier to catch memory corruption bugs with

low overhead
• Used widely while fuzzing in Windows environment

Training Data

• 63000 non-binary PDF object out of 534 PDF files, provided
by Windows fuzzing team

• PDF files previously used for Windows Edge PDF parser fuzzing

• 534 files

• Result of seed minimization

• Larger set of PDF files

Edge PDF parser

• Only processes full PDF documents (not objects)
• Workaround

• Simple program to append the generated PDF objects to a
well-formed PDF documents (host)

• Steps
• Find the last trailer, and gather information
• Add a new PDF body

Baseline Coverage

• Coverage without fuzzing

• Selected 1000 out of the sample 63000 objects and measured the instruction
coverage of the parser

• Used as the baseline coverage

• Can a newly inserted objects interfere with the previous objects?

• Could influence the resulting coverage

Testing interference

• Select smallest 3 PDF files out of the 534 set
• host1~host3
• Coverage ranges from 353,327~457,464 unique instructions
• Union 494,652 instructions
• Each host covers some unique instructions not covered by the

other two
• Smallest file doesn’t mean smallest coverage.

• Combine 3 files with 1000 selected baseline objects to create
3 * 1000 = 3000 files

• 90% of instructions are covered by host
• 1000 PDF files took ~90 minutes to be processed by the Edge parser

Learning

• Trained with 10~50 epochs

• After training, generate 1000 new objects

• Compared with 63000 existing samples with no exact match

• Generation method
• Sample
• SampleSpace

Pass Rate

• SampleSpace pass rate significantly better than Sample

• After 10 epochs Sample already at 70% pass rate  learning is of
good quality

• More epochs  higher pass rate, more time consumption

• Best pass rate: 97% with SampleSpace and 50 epochs

Coverage

• Combined with hosts (mentioned before) to measure coverage
• Depends heavily on host
• Coverage change over epochs varies with host
• Best coverage tended to happen at Sample 40-epochs

• Baseline123 is second best behind Sample 40-epochs

• Best with SampleSpace is also 40-epochs

Comparing Coverage sets

• Table above indicates how many unique instructions the row method
generated objects cover that are not covered by the column method

Comparing Coverage sets

• Sample-40e and SampleSpace-40e have way more instructions in
common than they differ (10,799 and 1,680), with Sample-40e having
better coverage than SampleSpace-40e.

• SampleSpace-40e is incomparable with baseline123: it has 3,393
more instructions but also 6,514 missing instructions.

Combining Learning and Fuzzing

• Random, a widely used blackbox fuzzing algorithm
• Randomly picks a position of a file, replace a byte with random bytes
• Fuzz factor of 100: length of file / 100 will be the average number of bytes

replaced
• Use Random to generate 10 random variants for each of the

generated object with Sample-40e, SampleSpace-40e, and baseline
• (result: 30000 files for each of the methods)

• For extra comparison, Sample-10K is added to the list (10,000 objects
generated by Sample-40e)

• Finally, SampleFuzz discusses before is added to the list
• Learnt distribution of 40-epochs RNN model with tfuzz = 0.9 and pt = 0.9

1000 objects 1000 objects 1000 objects

10000
Fuzzed objects

10000
Fuzzed objects

10000
Fuzzed objects

Random RandomRandom

BaselineSample-40e SampleSpace-40e

10000
Fuzzed objects10000

Fuzzed objects10000
Fuzzed objects

10000
Fuzzed objects10000

Fuzzed objects10000
Fuzzed objects

10000
Fuzzed objects10000

Fuzzed objects10000
Fuzzed objects

Host 1 Host 3Host 2

Analysis of the result

• After applying Random on objects generated with Sample, SampleSpace
and baseline, coverage goes up while the pass rate goes down to below
50%

• All fuzzed sets are almost supersets of their original non-fuzzed sets (as
expected)

• Coverage for Sample-10K also increases by 6,173 instructions compared to
Sample, while the pass rate remains around 80%

• Best overall coverage is obtained with SampleFuzz. Its pass rate is 68.24%
• The difference in absolute coverage between SampleFuzz and the next best

Sample+Random is only 670 instructions.
• SampleFuzz covers 2622 more instructions than Sample+Random
• Sample+Random covers 1952 more instructions than SampleFuzz

Coverage and Pass Rate

• As the coverage increased, the pass rate decreased

• Intuitive explanation:
• Pure-learning algorithm with nearly perfect pass rate (SampleSpace) almost

only generates well-formed objects and covers less error handling code
• Noise-making algorithm with decent pass rate (Sample) not only generates

well-formed objects, but also generates some ill-formed objects to exercise
error handling code

• Applying random fuzzing on the generated objects lowered the pass rate even
more but increased coverage

SampleFuzz

• Seemed to be the best option so far

• Pass rate around 65% ~ 70%
• High enough to generate enough well-formed objects
• Low enough to allow execution of error handling codes

Bugs

• Fuzzing effectiveness metric
• No bugs were found

• Edge parser had been thoroughly fuzzed for months with other fuzzers
• All the bugs found had been fixed

• However, a stack overflow bug was found with larger training data
• Sample+Random
• 100000 objects, 300000 PDF files
• Took 5 days
• Regular-sized PDF file triggering unexpected recursion
• Later confirmed and fixed

Conclusion

• First attempt at neural-network based statistical learning of grammars
to generate input grammars

• Devised several sampling techniques to generate new PDF objects
from learnt distribution

• Able to generate well-formed objects as well as ill-formed objects for
fuzzing and code coverage

• Learning & Fuzzing
• Learning wants to capture the pattern or structure
• Fuzzing wants to diverge from that pattern

Future work

• Entire PDF file rather than objects

• Reinforcement learning of seq2seq with coverage feedback from the
application (parser)  guide the learning towards more coverage

