Learn & Fuzz

Patrice Godefroid, Hila Peleg, and Rishabh Singh
Microsoft Research

Presenter: Yoongbok Lee

QOutline

* Fuzzing

* PDF files

* RNN (LSTM)

* Training methods

* Analysis

Fuzzing

* Testing an input-parsing code by generating inputs
* Blackbox
* No limitations on the input format
* Whitebox
* Maximize code coverage
* Grammar-based

* So far the most effective method

Grammar-based fuzzing

* Providing specific constraints for the inputs to be generated

* Need to be done by hand
* A lot of work

* Error-prone

Objective

* Automatically generate input based on the grammar with machine learning

e similar with grammar based fuzzing, but no manual specifications

* large corpus of sample inputs
* Previous attempts

* Genetic algorithm

e Context-free grammar learning algorithms
* This paper

* first attempt at using neural-network-based statistical learning techniques

Process

e Machine-learning model
* Need sample inputs for training for a specific input format

e Large data of sample input for an input format
e Used to train the model

e Generate inputs/fuzz
e Test for pass rate and coverage.

Case Study: PDF

* PDF: a complicated input format

* 1300 pages format specification

* Microsoft Edge browser’s PDF parser
 Specifically PDF objects parser

PDF format

* PDF
* A sequence of at least one PDF body
* PDF body

* Objects
e Cross-reference table

* trailer

xref

9 0 obj 0 6 brwiler

& 0000000000 65535 £ 5o o
/Type /Pages 0000000010 00000 n fléij T
/Kids [3 0 R] 0000000059 00000 n /Root 1 0 R
/Count 1 0000000118 00000 n >>'

o 0000000296 00000 n i
endob] 0000000377 00000 n 5661

0000000395 00000 n
(a) (b) ()

PDF data objects

* Similarly formatted
* First line identifier (for indirect reference)

* Generation number (incremented when the object is
updated/overwritten)

* “obj” keyword to start the actual object
* “endobj” to end the object
* PDF objects are updated incrementally

1256 0 ebj 88 0 obj 79 0 obj
[680.6 680.6] (Related Work) 4171

endob] endobj endob]
(a) (b) (c)
47 1 obj
| false 170 85.5 (Hello) /My#20Name]
endob]

(d)

Scope of the paper

* Non-binary PDF data objects
* Formatted text

* Well-suited for learning with neural networks

* Binary PDF data objects

* Blackbox and whitebox testings are sufficient enough for these formats

Recurrent Neural Networks

* GIVen X; X, X3 Xy Xz oo Xpp Xy 3
* Generate X, X, ...

* Recurrent Neural Network (seq2seq)

* Operates on variable length inputs
e Arbitrary length input, rather than n-grams
* hy = f(hi—q,%)

* xisthe new input, h; is the hidden state at character i.
* Ve = ¢(he)
* ¢ is the activation function, y; is the i-th output.
* i.e., learning the conditional distribution P(x|<xy, ..., X,.;>)

Seq2Zseg

 Variant of RNN (LSTM)
* Encoder-decoder
* Hidden state
* heps = f(hat—15,Ye-1,€)

e cis the summary of the input sequence
* v, , of last symbol
* h,, of last hidden state

e Conditional distribution
* P(elye—1, ez s ¥1,€) = g(hes, Ye—1,C)

Decoder

Encoder

Gated Recurrent Unit

Notations
X :input
* Reset gate h.... : previous state
L — , ' o Logistic sigmoid function

"= O'([]/er]] T [Urh<t_1>]1) [];: i-th element of a vector
* Update gate W, U: Learnt Weight matrices

o _ (©: Element-wise product

Zj = O-([I/sz]] + [Uzh<t—1>]j) h, = 0 vector

* Activation
. hj<t> = ¢([Wx]] + U © h<t—1>)]j)
h” =T + (1 -)R

~<— X

< / T y p -
I l | I |
[[[| [[[[
0 b] < < / I y
W,

\— e A

Y TN
Encoder RNN Decoder RNN

(I
0 b j
—

< / T y
| l | |
| [[[
< < /) |

o

< —1 —T

Y
Encoder RNN

"
Decoder RNIN

Training Process

* From a large corpus of PDF object files s4, 5, 53, ..., S, make a
concatenation of all of the filess = s; + s, + 53 + -+ s,

* Put multiple training sets of fixed size d.
* Thus the i-th training sequence t; = s[i *d: (i + 1) * d]

* Put output sequence as the input sequence shifted by 1 position
 Thus the i-th output sequence 0; = s[i*d + 1: (i + 1) *d + 1]

* Then seg2seq trained end-to-end to learn a generative model over
the instances

Generating PDF objects

* Basic idea
 Start with the prefix “obj”, query the model until it generates “endobj”
* Strategies

* NoSample

 Sample

* SampleSpace

NoSample

* Greedy algorithm to generate the best character given a prefix.

* Most likely to generate well-formed objects, but less likely to create
diverse formats of objects

* Precluded from being useful in fuzzing

Sample

 Given a prefix, sample the set of next possible characters (rather than
picking the best one)

* Allows generation of diverse objects by combining various different
patterns

e Sampling process creates some possibility that the generated object is
not well-formed (good for fuzzing)

SampleSpace

* Combination of NoSample and Sample

e Samples the distribution to generate the next character only when
the current character is a whitespace

* While in middle of a word, generate using NoSample method
* After completing a word, generate using Sample method

* Expected to generate more well-formed objects than Sample

Challenge

* Challenge

* Too good training technique:
* Would mostly consist of well-formed objects that would not execute error-handling code

e Too bad training technique:

* Would mostly consist of ill-formed objects that would be rejected by the parser before
entering major parts of the parser

* Solution: SampleFuzz

SampleFuzz

* Input
* Learnt distribution D(x, ©)

* Probability of fuzzing a character (t;,,,)
* Threshold probability (p,)

* While generating,

« Sample the model to get next character ¢ and its probability p(c)

* If p(c) is greater than the threshold probability, replace ¢ with ¢’ where ¢’ is
the character least likely in the learnt distribution

* This happens only of a random function py,,, returns greater than the
probability of fuzzing a character t;_,,

SampleFuzz
* Characteristic

* Introduce anomalies only in places where the model is
highly confident in the next character

* Generated object length bounded by MAXLEN

* Algorithm itself not guaranteed to terminate, but made
to terminate after MAXLEN

Algorithm 1 SampleFuzz(D(x,0), truzz, i)

seq := “obj”
while — seq.endswith(“endobj”) do
c,p(c) := sample(D(seq,d)) (* Sample ¢ from the learnt distribution *)
Pruzz := random(0, 1) (* random variable to decide whether to fuzz *)
if Ptfuzz > tfuzz /\p(C) - Pt then
¢ := argmin_, {p(c’) ~ D(seq.f)} (* replace ¢ by ¢’ (with lowest likelihood) *)
end if
seq :=— seq + C
if len(seq) > MAXLEN then

seq := “obj 7 (* Reset the sequence *)
end if

end while
return seq

Training

* Seg2seq model
* unsupervised
* Epochs

 Divided up into five different number of epochs: 10, 20, 30, 40, 50
* Each epoch takes about 12 minutes
* 50 epochs = ~10 hours

* LSTM model (variant of RNN)
* 2 hidden layers
* 128 hidden states within a layer

Test environment

* Edge browser
 Self-contained single-processor test-driver
» Takes PDF file, executes PDF parser within Microsoft Edge browser
* Upon encountering an error, prints the error message in the log

* Machine
* 4-core
* 64-bit
« 20G RAM
 Windows 10

Considerations

* Coverage
* Union of the instruction coverage for all test cases

* Pass rate
* If no error log, pass. Otherwise, fail
* Pass means the generated PDF document is well-formed
* Helps in estimating the quality of the learning

* Bugs
* Each tests are run under AppVerifier to catch memory corruption bugs with
low overhead
* Used widely while fuzzing in Windows environment

Training Data

* 63000 non-binary PDF object out of 534 PDF files, provided
by Windows fuzzing team

* PDF files previously used for Windows Edge PDF parser fuzzing

e 534 files

e Result of seed minimization

 Larger set of PDF files

Edge PDF parser

* Only processes full PDF documents (not objects)

* Workaround
* Simple program to append the generated PDF objects to a
well-formed PDF documents (host)

* Steps
* Find the last trailer, and gather information
* Add a new PDF body

Baseline Coverage

* Coverage without fuzzing

» Selected 1000 out of the sample 63000 objects and measured the instruction
coverage of the parser

* Used as the baseline coverage

* Can a newly inserted objects interfere with the previous objects?

* Could influence the resulting coverage

Testing interference

e Select smallest 3 PDF files out of the 534 set
* hostl~host3
* Coverage ranges from 353,327~457,464 unique instructions
* Union 494,652 instructions

* Each host covers some unique instructions not covered by the
other two

* Smallest file doesn’t mean smallest coverage.

* Combine 3 files with 1000 selected baseline objects to create
3 * 1000 = 3000 files

600000

500000

400000

300000 - M host

@ baseline
200000 -

100000 -

1 2 = 123

* 90% of instructions are covered by host
e 1000 PDF files took ~90 minutes to be processed by the Edge parser

Learning

* Trained with 10~50 epochs

e After training, generate 1000 new objects

* Compared with 63000 existing samples with no exact match

e Generation method
* Sample
e SampleSpace

Pass Rate

* SampleSpace pass rate significantly better than Sample

» After 10 epochs Sample already at 70% pass rate = learning is of
good quality

* More epochs = higher pass rate, more time consumption

* Best pass rate: 97% with SampleSpace and 50 epochs

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%

10

20

== Sample(%)

30 40

—fii=SampleSpace(%)

50

Coverage

 Combined with hosts (mentioned before) to measure coverage

* Depends heavily on host
* Coverage change over epochs varies with host
* Best coverage tended to happen at Sample 40-epochs

* Baselinel23 is second best behind Sample 40-epochs

* Best with SampleSpace is also 40-epochs

408000

407000

406000

405000

404000

403000

402000

401000

400000

458000
456000
454000
452000
450000
448000
446000
444000
442000
440000
438000
436000

host1l

N\

50

10 20 30 40
—p—Sample —@—SampleSpace —i— basecline
host3
e A A & \:
10 20 30 40

—#—Sample

—f#i—SampleSpace —&— baseline

a0

525000

520000

515000

510000

505000

500000

562000
560000
558000
556000
554000
552000
550000
5438000
546000
544000
542000
540000

host2
——
:/ 'y 'y y 1
20 30 A0 50

10

——Sample

—@—SampleSpace —&— baseline

host123

s e - i
:>/ Bk

10

20

—+—Sample

30 40

—ii—SampleSpace —a— baseline

s 4

50

Comparing Coverage sets

Row\Column |Sample-40e|SampleSpace-40e|baselinel123|host123
Sample-40e 0 10,799 6,658 65,442
SampleSpace-40e 1,680 0 3,893 56,523
baselinel23 660 6,514 0 59,444
host123 188 781 223 0

* Table above indicates how many unique instructions the row method
generated objects cover that are not covered by the column method

Comparing Coverage sets

e Sample-40e and SampleSpace-40e have way more instructions in
common than they differ (10,799 and 1,680), with Sample-40e having
better coverage than SampleSpace-40e.

* SampleSpace-40e is incomparable with baseline123: it has 3,393
more instructions but also 6,514 missing instructions.

Combining Learning and Fuzzing

 Random, a widely used blackbox fuzzing algorithm
 Randomly picks a position of a file, replace a byte with random bytes
* Fuzz factor of 100: length of file / 100 will be the average number of bytes
replaced

e Use Random to generate 10 random variants for each of the
generated object with Sample-40e, SampleSpace-40e, and baseline

* (result: 30000 files for each of the methods)

* For extra comparison, Sample-10K is added to the list (10,000 objects
generated by Sample-40e)

* Finally, SampleFuzz discusses before is added to the list
* Learnt distribution of 40-epochs RNN model with t;,, =0.9 and p, = 0.9

Sample-40e SampleSpace-40e Baseline

1000 objects 1000 objects 1000 objects

l Random l Random l Random

10000 10000 10000

Fuzzed objects

Fuzzed objects Fuzzed objects

|

10000
Fuzzed objects

10000
Fuzzed objects

10000
Fuzzed objects

Algorithm Coverage|Pass Rate

SampleSpace+Random| 563,930 | 36.97%
baseline+Random | 564.195 | 44.05%
Sample-10K 565,590 | 78.92%
Sample+Random 566,964 | 41.81%
SampleFuzz 567,634 | 68.24%

Analysis of the result

e After applying Random on objects generated with Sample, SampleSpace
ano/lbaseline, coverage goes up while the pass rate goes down to below
50%

* All fuzzed sets are almost supersets of their original non-fuzzed sets (as
expected)

* Coverage for Sample-10K also increases by 6,173 instructions compared to
Sample, while the pass rate remains around 80%

* Best overall coverage is obtained with SampleFuzz. Its pass rate is 68.24%

* The difference in absolute coverage between SampleFuzz and the next best
Sample+Random is only 670 instructions.

e SampleFuzz covers 2622 more instructions than Sample+Random
* Sample+Random covers 1952 more instructions than SampleFuzz

Coverage and Pass Rate

* As the coverage increased, the pass rate decreased

* Intuitive explanation:

e Pure-learning algorithm with nearly perfect pass rate (SampleSpace) almost
only generates well-formed objects and covers less error handling code

* Noise-making algorithm with decent pass rate (Sample) not only generates
well-formed objects, but also generates some ill-formed objects to exercise
error handling code

* Applying random fuzzing on the generated objects lowered the pass rate even
more but increased coverage

SampleFuzz

* Seemed to be the best option so far

e Pass rate around 65% ~ 70%

* High enough to generate enough well-formed objects
* Low enough to allow execution of error handling codes

Bugs

* Fuzzing effectiveness metric

* No bugs were found

* Edge parser had been thoroughly fuzzed for months with other fuzzers
* All the bugs found had been fixed

* However, a stack overflow bug was found with larger training data
 Sample+Random

100000 objects, 300000 PDF files

Took 5 days

Regular-sized PDF file triggering unexpected recursion

Later confirmed and fixed

Conclusion

* First attempt at neural-network based statistical learning of grammars
to generate input grammars

* Devised several sampling techniques to generate new PDF objects
from learnt distribution

* Able to generate well-formed objects as well as ill-formed objects for
fuzzing and code coverage

* Learning & Fuzzing
* Learning wants to capture the pattern or structure
* Fuzzing wants to diverge from that pattern

Future work

 Entire PDF file rather than objects

* Reinforcement learning of seq2seq with coverage feedback from the
application (parser) = guide the learning towards more coverage

