
slide 1

*Slides borrowed from Vitaly Shmatikov

SSL/TLS

slide 2

Reading

◆ Kaufman. Chapters 15.1-7 and 19.

slide 3

What Is SSL/TLS?

◆ Secure Sockets Layer and
 Transport Layer Security protocols

•  Same protocol design, different crypto algorithms

◆ De facto standard for Internet security
•  “The primary goal of the TLS protocol is to provide

privacy and data integrity between two
communicating applications”

◆ Deployed in every Web browser; also VoIP,
payment systems, distributed systems, etc.

slide 4

SSL / TLS Guarantees

◆ End-to-end secure communications in the
presence of a network attacker
•  Attacker completely 0wns the network: controls Wi-Fi,

DNS, routers, his own websites, can listen to any
packet, modify packets in transit, inject his own
packets into the network

◆ Scenario: you are reading your email from an
Internet café connected via a r00ted Wi-Fi access
point to a dodgy ISP in a hostile authoritarian
country

slide 5

History of the Protocol

◆ SSL 1.0 – internal Netscape design, early 1994?
•  Lost in the mists of time

◆ SSL 2.0 – Netscape, Nov 1994
•  Several weaknesses

◆ SSL 3.0 – Netscape and Paul Kocher, Nov 1996
◆ TLS 1.0 – Internet standard, Jan 1999

•  Based on SSL 3.0, but not interoperable (uses different
cryptographic algorithms)

◆ TLS 1.1 – Apr 2006
◆ TLS 1.2 – Aug 2008

slide 6

SSL Basics

◆ SSL consists of two protocols
◆ Handshake protocol

•  Uses public-key cryptography to establish several
shared secret keys between the client and the server

◆ Record protocol
•  Uses the secret keys established in the handshake

protocol to protect confidentiality, integrity, and
authenticity of data exchange between the client and
the server

slide 7

SSL Handshake Protocol

◆ Runs between a client and a server
•  For example, client = Web browser, server = website

◆ Negotiate version of the protocol and the set of
cryptographic algorithms to be used
•  Interoperability between different implementations

◆ Authenticate server and client (optional)
•  Use digital certificates to learn each other’s public

keys and verify each other’s identity
•  Often only the server is authenticated

◆ Use public keys to establish a shared secret

slide 8

Handshake Protocol Structure

C

ClientHello

ServerHello,
[Certificate],
[ServerKeyExchange],
[CertificateRequest],
ServerHelloDone

S [Certificate],
ClientKeyExchange,
[CertificateVerify]

Finished

switch to negotiated cipher

Finished
switch to negotiated cipher

Record of all sent and
received handshake messages

slide 9

ClientHello

C

ClientHello

S

Client announces (in plaintext):
•  Protocol version he is running
•  Cryptographic algorithms he supports
•  Fresh, random number

slide 10

struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites;
 CompressionMethod compression_methods;
} ClientHello

ClientHello (RFC)

Highest version of the protocol
supported by the client

Session id (if the client wants to
resume an old session)

Set of cryptographic algorithms
supported by the client (e.g.,
RSA or Diffie-Hellman)

slide 11

ServerHello

C

C, versionc, suitesc, Nc

ServerHello

S
Server responds (in plaintext) with:
•  Highest protocol version supported by
 both the client and the server
•  Strongest cryptographic suite selected
 from those offered by the client
•  Fresh, random number

slide 12

ServerKeyExchange

C

versions, suites, Ns,
ServerKeyExchange

S Server sends his public-key certificate
containing either his RSA, or
his Diffie-Hellman public key
(depending on chosen crypto suite)

C, versionc, suitesc, Nc

slide 13

ClientKeyExchange

C

versions, suites, Ns,
certificate,
“ServerHelloDone”

S

C, versionc, suitesc, Nc

ClientKeyExchange

The client generates secret key material
and sends it to the server encrypted with
the server’s public key (if using RSA)

slide 14

struct {
 select (KeyExchangeAlgorithm) {
 case rsa: EncryptedPreMasterSecret;
 case diffie_hellman: ClientDiffieHellmanPublic;
 } exchange_keys
} ClientKeyExchange

struct {
 ProtocolVersion client_version;
 opaque random[46];
} PreMasterSecret

ClientKeyExchange (RFC)

Random bits from which
symmetric keys will be derived
(by hashing them with nonces)

Where do random
bits come from?

slide 15

Debian Linux (2006-08)

◆ A line of code commented out from md_rand
•  MD_Update(&m,buf,j); /* purify complains */

◆ Without this line, the seed for the pseudo-random
generator is derived only from process ID
•  Default maximum on Linux = 32768

◆ Result: all keys generated using Debian-based
OpenSSL package in 2006-08 are predictable
•  “Affected keys include SSH keys, OpenVPN keys,

DNSSEC keys, and key material for use in X.509
certificates and session keys used in SSL/TLS
connections”

slide 16

“Core” SSL 3.0 Handshake

C

versions=3.0, suites, Ns,
certificate for PKs,
“ServerHelloDone”

S

C, versionc=3.0, suitesc, Nc

{Secretc}PKs if using RSA

switch to keys derived
from secretc , Nc , Ns

C and S share
secret key material (secretc) at this point

switch to keys derived
from secretc , Nc , Ns

Finished Finished

slide 17

Version Rollback Attack

C

versions=2.0, suites, Ns,
certificate for PKs,
“ServerHelloDone”

S

C, versionc=2.0, suitesc, Nc

{Secretc}PKs

C and S end up communicating using SSL 2.0
(weaker earlier version of the protocol that

does not include “Finished” messages)

Server is fooled into thinking he
is communicating with a client
who supports only SSL 2.0

slide 18

SSL 2.0 Weaknesses (Fixed in 3.0)

◆ Cipher suite preferences are not authenticated
•  “Cipher suite rollback” attack is possible

◆ Weak MAC construction, MAC hash uses only 40
bits in export mode

◆ SSL 2.0 uses padding when computing MAC in
block cipher modes, but padding length field is
not authenticated
•  Attacker can delete bytes from the end of messages

◆ No support for certificate chains or non-RSA
algorithms

slide 19

“Chosen-Protocol” Attacks

◆ Why do people release new versions of security
protocols? Because the old version got broken!

◆ New version must be backward-compatible
•  Not everybody upgrades right away

◆ Attacker can fool someone into using the old,
broken version and exploit known vulnerabilities
•  Similar: fool victim into using weak crypto algorithms

◆ Defense is hard: must authenticate version early
◆ Many protocols had “version rollback” attacks

•  SSL, SSH, GSM (cell phones)

slide 20

Version Check in SSL 3.0

C

versions=3.0, suites, Ns,
certificate for PKs,
“ServerHelloDone”

S

C, versionc=3.0, suitesc, Nc

{versionc, secretc}PKs

C and S share
secret key material secretc at this point

“Embed” version
number into secret

Check that received version is
equal to the version in ClientHello

switch to key derived
from secretc, Nc, Ns

switch to key derived
from secretc, Nc, Ns

slide 21

Exploiting SSL for Denial of Service

2 simple commands in bash:
-----BASH SCRIPT BEGIN-----
thc-ssl-dosit() { while :; do (while :; do echo R; done) | openssl s_client
-connect 127.0.0.1:443 2>/dev/null; done }
for x in `seq 1 100`; do thc-ssl-dosit & done
-----BASH SCRIPT END-------

THC-SSL-DOS is a tool to verify the performance of SSL

Establishing a secure SSL connection requires 15x more processing
power on the server than on the client

“THC-SSL-DOS exploits this asymmetric property by overloading the
server and knocking it off the Internet”

https://www.thc.org/thc-ssl-dos/

slide 22

SSL/TLS Record Protection

Use symmetric keys established
in the handshake protocol

slide 23

Most Common Use of SSL/TLS

HTTPS and Its Adversary Model

◆ HTTPS: end-to-end secure protocol for Web
◆ Designed to be secure against network attackers,

including man-in-the-middle (MITM) attacks

◆ HTTPS provides encryption, authentication

(usually for server only), and integrity checking

slide 24

browser	 HTTPS	server	
Internet	proxy	

HTTPS	tunnel	

The Lock Icon

◆ Goal: identify secure connection
•  SSL/TLS is being used between client and server to

protect against active network attacker

◆ Lock icon should only be shown when the page
is secure against network attacker
•  Semantics subtle and not widely understood by users
•  Problem in user interface design

slide 25

HTTPS Security Guarantees

slide 26

◆ The origin of the page is what it says in the
address bar
•  User must interpret what he sees - remember

amazonaccounts.com?

◆ Contents of the page have not been viewed or
modified by a network attacker

Evolution of the Lock in Firefox

slide 27

[Schultze]

How about Firefox 4?

Combining HTTPS and HTTP

slide 28

◆ Page served over HTTPS but contains HTTP
•  IE 7: no lock, “mixed content” warning
•  Firefox: “!” over lock, no warning by default
•  Safari: does not detect mixed content

•  Flash does not trigger warning in IE7 and FF

◆ Network attacker can now inject scripts,
hijack session

Lock icon

Flash file served
over HTTP

Can script
embedding page!

Mixed Content: UI Challenges

slide 29

◆ Banks: after login, all content served over HTTPS
◆ Developer error: somewhere on bank site write

<script src=http://www.site.com/script.js> </script>
•  Active network attacker can now hijack any session

(how?)

◆ Better way to include content:
<script src=//www.site.com/script.js> </script>
•  Served over the same protocol as embedding page

Mixed Content and Network Attacks

slide 30

slide 31

HTTP → HTTPS and Back

◆ Typical pattern: HTTPS upgrade
•  Come to site over HTTP, redirect to HTTPS for login
•  Browse site over HTTP, redirect to HTTPS for checkout

◆ sslstrip: network attacker downgrades connection

•  Rewrite to
•  Redirect Location: https://... to Location: http://...
•  Rewrite <form action=https://… >
 to <form action=http://…>

attacker

SSL HTTP

Can the server detect
this attack?

slide 32

Will You Notice?
[Moxie Marlinspike]

⇒

Clever favicon inserted
by network attacker

slide 33

Motivation https://

Whose public key is used to
establish the secure session?

slide 34

Authenticity of Public Keys

?

Problem: How does Alice know that the public key
 she received is really Bob’s public key?

private key

Alice
Bob

public key

slide 35

Distribution of Public Keys

◆ Public announcement or public directory
•  Risks: forgery and tampering

◆ Public-key certificate
•  Signed statement specifying the key and identity

–  sigAlice(“Bob”, PKB)

◆ Common approach: certificate authority (CA)
•  An agency responsible for certifying public keys
•  Browsers are pre-configured with 100+ of trusted CAs
•  A public key for any website in the world will be

accepted by the browser if certified by one of these CAs

slide 36

Trusted Certificate Authorities

slide 37

CA Hierarchy

◆ Browsers, operating systems, etc. have trusted
root certificate authorities
•  Firefox 3 includes certificates of 135 trusted root CAs

◆ A Root CA signs certificates for intermediate CAs,
they sign certificates for lower-level CAs, etc.
•  Certificate “chain of trust”

–  sigVerisign(“UT Austin”, PKUT), sigUT(“Vitaly S.”, PKVitaly)

◆ CA is responsible for verifying the identities of
certificate requestors, domain ownership

slide 38

Certificate Hierarchy

What power do they have?

Who trusts their certificates?

slide 39

Example of a Certificate

Important fields

slide 40

Common Name

◆ Explicit name: www.foo.com
◆ Wildcard: *.foo.com or www*.foo.com
◆ Matching rules

•  Firefox 3: * matches anything
•  Internet Explorer 7: * must occur in the leftmost

component, does not match ‘.’
–  *.foo.com matches a.foo.com, but not a.b.foo.com

slide 41

International Domain Names

◆ Rendered using international character set
◆ Chinese character set contains characters that look

like / ? = .
•  What could go wrong?

◆ Can buy a certificate for *.foo.cn, create any
number of domain names that look like

 www.bank.com/accounts/login.php?q=me.foo.cn
•  What does the user see?
•  *.foo.cn certificate works for all of them!

slide 42

Example
[Moxie Marlinspike]

Meaning of Color

slide 43

[Schultze]

What is the difference?

Domain Validation (DV)
certificate
vs.
Extended Validation (EV)
certificate

Means what?

Mobile Browsing

slide 44

[Schultze]

Same lock for DV and EV

Windows Phone 7: same behavior
 … but only when URL bar present
 … landscape mode: no URL bar

http://www.freedom-to-tinker.com/blog/sjs/web-browser-security-
user-interfaces-hard-get-right-and-increasingly-inconsistent

slide 45

Extended Validation (EV) Certificates

◆ Certificate request must be approved by a human
lawyer at the certificate authority

slide 46

Questions about EV Certificates

◆ What does EV certificate mean?
◆ What is the difference between an HTTPS

connection that uses a regular certificate and an
HTTPS connection that uses an EV certificate?

◆ If an attacker has somehow obtained a non-EV
certificate for bank.com, can he inject a script into
https://bank.com content?
•  What is the origin of the script? Can it access or modify

content that arrived from actual bank.com via HTTPS?

◆ What would the browser show – blue or green?

When Should The Lock Be Shown?

slide 47

◆ All elements on the page fetched using HTTPS
 For all elements:
◆ HTTPS certificate is issued by a certificate

authority (CA) trusted by the browser
◆ HTTPS certificate is valid – means what?
◆ Common Name in the certificate matches

domain name in the URL

slide 48

X.509 Authentication Service

◆ Internet standard (1988-2000)
◆ Specifies certificate format

•  X.509 certificates are used in IPsec and SSL/TLS

◆ Specifies certificate directory service
•  For retrieving other users’ CA-certified public keys

◆ Specifies a set of authentication protocols
•  For proving identity using public-key signatures

◆ Can use with any digital signature scheme and
hash function, but must hash before signing

Remember MD5?

slide 49

X.509 Certificate

Added in X.509 versions 2 and 3 to address
usability and security problems

hash

Back in 2008

◆ Many CAs still used MD5
•  RapidSSL, FreeSSL, TrustCenter, RSA Data Security,

Thawte, verisign.co.jp

◆ Sotirov et al. collected 30,000 website certificates
◆ 9,000 of them were signed using MD5 hash
◆ 97% of those were issued by RapidSSL

[Sotirov et al. “Rogue Certificates”]

slide 50

serial number

validity period

real cert
domain name

real cert
RSA key

X.509 extensions

signature
identical bytes

(copied from real cert)

collision bits
(computed)

chosen prefix
(difference)

serial number

validity period

rogue cert
domain name

???

X.509 extensions

signature

set by
the CA

slide 51

Colliding Certificates
[Sotirov et al. “Rogue Certificates”]

Hash to the same
MD5 value!

Valid for both certificates!

slide 52

Generating Collisions
[Sotirov et al. “Rogue Certificates”]

1-2 days on a cluster of
200 PlayStation 3’s

Equivalent to 8000
desktop CPU cores or
$20,000 on Amazon EC2

slide 53

Generating Colliding Certificates

◆ RapidSSL uses a fully automated system
•  $69 for a certificate, issued in 6 seconds
•  Sequential serial numbers

◆ Technique for generating colliding certificates
•  Get a certificate with serial number S
•  Predict time T when RapidSSL’s counter goes to S+1000
•  Generate the collision part of the certificate
•  Shortly before time T buy enough (non-colliding)

certificates to increment the counter to S+999
•  Send colliding request at time T and get serial number

S+1000

[Sotirov et al. “Rogue Certificates”]

slide 54

Creating a Fake Intermediate CA
[Sotirov et al. “Rogue Certificates”]

serial number

validity period

real cert domain
name

real cert
RSA key

X.509 extensions

signature

rogue CA cert

rogue CA RSA key

rogue CA X.509
extensions

Netscape Comment
Extension

(contents ignored by
browsers)

signature
identical bytes

(copied from real cert)

collision bits
(computed)

chosen prefix
(difference)

CA bit!

We are now an
intermediate CA.
W00T!

Result: Perfect Man-in-the-Middle

◆ This is a “skeleton key” certificate: it can issue
fully trusted certificates for any site (why?)

◆ To take advantage, need a network attack
•  Insecure wireless, DNS poisoning, proxy auto-

discovery, hacked routers, etc.

 slide 55

[Sotirov et al. “Rogue Certificates”]

slide 56

A Rogue Certificate

Remember Flame?

◆ Cyber-espionage virus (2010-2012)
◆ Signed with a fake intermediate CA certificate

that appears to be issued by Microsoft and thus
accepted by any Windows Update service
•  Fake intermediate CA certificate was created using an

MD5 chosen-prefix collision against an obscure
Microsoft Terminal Server Licensing Service certificate
that was enabled for code signing and still used MD5

◆ MD5 collision technique possibly pre-dates
Sotirov et al.’s work
•  Evidence of state-level cryptanalysis?

slide 57

slide 58

SSL/TLS Handshake

C

Hello

Here is my certificate

S
Validate
the certificate

slide 59

SSL/TLS Handshake

Android
app

Hello

Here is my certificate
I am Chase.com

Issued by GoDaddy to
AllYourSSLAreBelongTo.us

Ok!

Failing to Check Hostname

 “Researchers at the University of Texas at Austin and
Stanford University have discovered that poorly
designed APIs used in SSL implementations are to
blame for vulnerabilities in many critical non-browser
software packages. Serious security vulnerabilities
were found in programs such as Amazon’s EC2 Java
library, Amazon’s and PayPal’s merchant SDKs,
Trillian and AIM instant messaging software, popular
integrated shopping cart software packages, Chase
mobile banking software, and several Android
applications and libraries. SSL connections from
these programs and many others are vulnerable to a
man in the middle attack…”
 - Threatpost (Oct 2012)

slide 60

Major payment processing gateways,
client software for cloud computing,
integrated e-commerce software, etc.

slide 61

What Happens After Validation?

Hello

Here is PayPal’s certificate for
 its RSA signing key
And here is my signed Diffie-Hellman value

I am PayPal.com
(or whoever you want me to be)

… then verify the signature on the DH value
using the public key from the certificate

Validate the certificate

slide 62

Goto Fail
Here is PayPal’s certificate
And here is my signed Diffie-Hellman value

… verify the signature on the DH value using
the public key from the certificate

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail;
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
 goto fail; …
err = sslRawVerify(...);
…
fail: … return err …

Signature is verified here

???

slide 63

Complete Fail Against MITM

◆ Discovered in February 2014
◆ All OS X and iOS software

vulnerable to man-in-the-middle
attacks
•  Broken TLS implementation provides

no protection against the very attack
it was supposed to prevent

◆ What does this tell you about
quality control for security-critical
software?

slide 64

Certificate Revocation

◆ Revocation is very important
◆ Many valid reasons to revoke a certificate

•  Private key corresponding to the certified public key
has been compromised

•  User stopped paying his certification fee to the CA and
the CA no longer wishes to certify him

•  CA’s certificate has been compromised!

◆ Expiration is a form of revocation, too
•  Many deployed systems don’t bother with revocation
•  Re-issuance of certificates is a big revenue source for

certificate authorities

slide 65

Certificate Revocation Mechanisms

◆ Online revocation service
•  When a certificate is presented, recipient goes to a

special online service to verify whether it is still valid

◆ Certificate revocation list (CRL)
•  CA periodically issues a signed list of revoked certificates
•  Can issue a “delta CRL” containing only updates

Q: Does revocation protect against forged
 certificates?

slide 66

X.509 Certificate Revocation List

Because certificate serial numbers
 must be unique within each CA, this is
 enough to identify the certificate

hash

slide 67

Some Questions About Certificates

◆ How do CAs verify identities of domains to whom
they issue certificates (domain validation)?

◆ Does your browser check whether the site’s
certificate has been revoked?

◆ What do you do when your browser warns you
that the site’s certificate has expired?
•  Most users click through, enter credentials

◆ Over 40% of certs are self-signed – means what?

slide 68

Invalid Certificate Warnings
http://news.netcraft.com/archives/2013/10/16/us-government-aiding-spying-against-itself.html

slide 69

Comodo

◆ Comodo is one of the trusted root CAs
•  Its certificates for any website in the world are accepted

by every browser

◆ Comodo accepts certificate orders submitted
through resellers
•  Reseller uses a program to authenticate to Comodo and

submit an order with a domain name and public key,
Comodo automatically issues a certificate for this site

slide 70

Comodo Break-In

◆ An Iranian hacker broke into instantSSL.it and
globalTrust.it resellers, decompiled their certificate
issuance program, learned the credentials of their
reseller account and how to use Comodo API
•  username: gtadmin, password: globaltrust

◆ Wrote his own program for submitting orders and
obtaining Comodo certificates

◆ On March 15, 2011, got Comodo to issue 9 rogue
certificates for popular sites
•  mail.google.com, login.live.com, login.yahoo.com,

login.skype.com, addons.mozilla.org, “global trustee"

slide 71

Consequences

◆ Attacker needs to first divert users to an attacker-
controlled site instead of Google, Yahoo, Skype,
but then…
•  For example, use DNS to poison the mapping of

mail.yahoo.com to an IP address

◆ … “authenticate” as the real site
◆ … decrypt all data sent by users

•  Email, phone conversations, Web browsing

Q: Does HTTPS help? How about EV certificates?

slide 72

Message from the Attacker

I'm single hacker with experience of 1000 hacker, I'm single programmer
with experience of 1000 programmer, I'm single planner/project
manager with experience of 1000 project managers …

When USA and Isarel could read my emails in Yahoo, Hotmail, Skype,
Gmail, etc. without any simple little problem, when they can spy using
Echelon, I can do anything I can. It's a simple rule. You do, I do, that's
all. You stop, I stop. It's rule #1 …

Rule#2: So why all the world got worried, internet shocked and all writers
write about it, but nobody writes about Stuxnet anymore?... So nobody
should write about SSL certificates.

Rule#3: I won't let anyone inside Iran, harm people of Iran, harm my
country's Nuclear Scientists, harm my Leader (which nobody can), harm
my President, as I live, you won't be able to do so. as I live, you don't
have privacy in internet, you don't have security in digital world, just
wait and see...

http://pastebin.com/74KXCaEZ

slide 73

DigiNotar Break-In

◆ In June 2011, the same “ComodoHacker” broke
into a Dutch certificate authority, DigiNotar
•  Message found in scripts used to generate fake certificates:
 “THERE IS NO ANY HARDWARE OR SOFTWARE IN THIS WORLD

EXISTS WHICH COULD STOP MY HEAVY ATTACKS MY BRAIN OR
MY SKILLS OR MY WILL OR MY EXPERTISE"

◆ Security of DigiNotar servers
•  All core certificate servers in a single Windows domain,

controlled by a single admin password (Pr0d@dm1n)
•  Software on public-facing servers out of date, unpatched
•  Tools used in the attack would have been easily

detected by an antivirus… if it had been present

slide 74

Consequences of DigiNotar Hack

◆ Break-in not detected for a month
◆ Rogue certificates issued for *.google.com, Skype,

Facebook, www.cia.gov, and 527 other domains
◆ 99% of revocation lookups for these certificates

originated from Iran
•  Evidence that rogue certificates were being used, most

likely by Iranian government or Iranian ISPs to intercept
encrypted communications

–  Textbook man-in-the-middle attack

•  300,000 users were served rogue certificates

slide 75

Another Message from the Attacker

Most sophisticated hack of all time … I’m really sharp, powerful,
dangerous and smart!

My country should have control over Google, Skype, Yahoo, etc. […] I’m
breaking all encryption algorithms and giving power to my country to
control all of them.

You only heards Comodo (successfully issued 9 certs for me -thanks by the
way-), DigiNotar (successfully generated 500+ code signing and SSL
certs for me -thanks again-), StartCOM (got connection to HSM, was
generating for twitter, google, etc. CEO was lucky enough, but I have
ALL emails, database backups, customer data which I'll publish all via
cryptome in near future), GlobalSign (I have access to their entire
server, got DB backups, their linux / tar gzipped and downloaded, I
even have private key of their OWN globalsign.com domain,
hahahaa).... BUT YOU HAVE TO HEAR SO MUCH MORE! SO MUCH
MORE! At least 3 more, AT LEAST!

http://pastebin.com/u/ComodoHacker

slide 76

TrustWave

◆ In Feb 2012, admitted issuance of an intermediate
CA certificate to a corporate customer
•  Purpose: “re-sign” certificates for “data loss prevention”
•  Translation: forge certificates of third-party sites in order

to spy on employees’ encrypted communications with
the outside world

◆ Customer can now forge certificates for any site in
world… and they will be accepted by any browser!
•  What if a “re-signed” certificate leaks out?

◆ Do other CAs do this?

TurkTrust

◆ In Jan 2013, a rogue *.google.com
 certificate was issued by an intermediate
 CA that gained its authority from the Turkish

 root CA TurkTrust
•  TurkTrust accidentally issued intermediate CA certs

to customers who requested regular certificates
•  Ankara transit authority used its certificate to issue a

fake *.google.com certificate in order to filter SSL
traffic from its network

◆ This rogue *.google.com certificate was trusted
by every browser in the world

slide 77

