How crypto fails in practice?
CSS, WEP, MIFARE classic

*Slides borrowed from Vitaly Shmatikov



Stream Ciphers
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¢ One-time pad:
Ciphertext(Key,Message)=Message®Key
e Key must be a random bit sequence as long as message
¢ Idea: replace “random” with “pseudo-random”

e Use a pseudo-random number generator (PRNG)

e PRNG takes a short, truly random secret seed and
expands it into a long “random-looking” sequence

— E.g., 128-bit seed into a 10°-bit —
pseudo-random sequence
¢ Ciphertext(Key,Msg)=1V, Msg®PRNG(IV, Key)
e Message processed bit by bit (unlike block cipher)
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Stream Cipher Terminology
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¢ The seed of a pseudo-random generator typically
consists of initialization vector (IV) and key

e The key is a secret known only to the sender and the
recipient, not sent with the ciphertext

e IV is usually sent with the ciphertext

# The pseudo-random bit stream
PRNG(IV,key) is referred to as t

¢ Encrypt message by XORing wit

broduced by
ne keystream

N keystream

e ciphertext = message @ keystream
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Properties of Stream Ciphers
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¢ Usually very fast (faster than block ciphers)
o Used where speed is important: WiFi, DVD, RFID, VoIP

¢ Unlike one-time pad, stream ciphers do not provide
perfect secrecy

e Only as secure as the underlying PRNG
e If used properly, can be as secure as block ciphers

4 PRNG must be cryptographically secure

slide 4



Using Stream Ciphers
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¢ No integrity
e Associativity & commutativity:
(M,;®PRNG(seed)) ® M, = (M;®M,) ® PRNG(seed)
e Need an additional integrity protection mechanism

¢ Known-plaintext attack is very dangerous if
keystream is ever repeated
e Self-cancellation property of XOR: X®X=0
e (M;®PRNG(seed)) ® (M,®PRNG(seed)) = M;®M,
o If attacker knows M,, then easily recovers M, ...

also, most plaintexts contain enough redundancy that
can recover parts of both messages from M;®M,
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Cryptographically Secure PRNG
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¢ Next-bit test: given N bits of the pseudo-random
sequence, predict (N+1)st bit

e Probability of correct prediction should be very close to
1/2 for any efficient adversarial algorithm

(means what?)

@ PRNG state compromise

e Even if the attacker learns the complete or partial state
of the PRNG, he should not be able to reproduce the
previously generated sequence

— ... or future sequence, if there’ Il be future random seed(s)

4 Common PRNGs are not cryptographically secure
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Example: ‘ l

4'b|t LFSR bo < bl < b2 < b3

add to pseudo-random sequence

¢ For example, if the seed is 1001, the generated
sequence is 1001101011110001001...

¢ Repeats after 15 bits (24-1)



Content Scrambling System (CSS)
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¢ DVD encryption scheme from Matsushita and Toshiba

S~
N

Each player has its own PLAYER KEY
(409 player manufacturers,
each has its player key)

KEY DATA BLOCK contains disk key encrypted
with 409 different player keys:

/ ® EncryptDiskKey(DiSkKeYD

° Encryp PIayerKeyl(D|5kKeY) EncryptPIayerKey4O9(DiSKKeY)

This helps attacker
verify his guess of disk key
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Attack on CSS Decryptlon Scheme

T S P ST D SR ewmssswmee [Frank Stevenson]

“1” seeded in 15t bit

16 key bits \ LFSR-17 (3]

=) |

disk key +mod 256 D—»@—» Decrypted title key

g I
24 key bits . ;
“1” seeded in 4“{'—':5 R_25 e
carry |«
EncwptDiskKey(DiskKeyé
stored on disk : »| Table-based
Encrypted title key “mangling”

@ Given known 40-bit plaintext, repeat the following 5 times (once for each plaintext byte):
guess the byte output by the sum of the two LFSRs; use known ciphertext to verify
— this takes O(28)

® For each guessed output byte, guess 16 bits contained in LFSR-17 — this takes O(216)

©® Clock out 24 bits out of LFSR-17, use subtraction to determine the corresponding
output bits of LFSR-25 — this reveals all of LFSR-25 except the highest bit

® “Roll back” 24 bits, Fry both possibilities — thIS- takes O(2) This attack takes O(225)
© Clock out 16 more bits out of both LFSRs, verify the key 10
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DeCSS
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¢ In CSS, disk key is encrypted under hundreds of
different player keys... including Xing, a
software DVD player

# Reverse engineering the object code of Xing

revealed its player key

e Every CSS disk contains the master disk key
encrypted under Xing’ s key

e One bad player = entire system is broken!
# Easy-to-use DeCSS software
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DeCSS Aftermath
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¢ DVD CCA sued Jon Lech Johansen
(“DVD Jon™), one of DeCSS authors -
eventually dropped

4 Publishing DeCSS code violates copyright

e Underground distribution as haikus and T-shirts

e “Court to address DeCSS T-Shirt: When can a T-shirt
become a trade secret? When it tells you how to copy
a DVD.” - Wired News
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RC4
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# Designed by Ron Rivest for RSA in 1987

¢ Simple, fast, widely used
e SSL/TLS for Web security, WEP for wireless

Byte array S[256] contains a permutation of numbers from 0 to 255
1=j:=0
loop
i ;= (i+1) mod 256
j .= (j+S[i]) mod 256
swap(S[i],SIi])
output (S[i]+SJj]) mod 256
end loop
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RC4 Initialization
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E)I:/:dzeokfg/;?:jool_ bytes % Key can be any length
S[i] .=
j=0
fori=01to 255 do
j = (j+S[i]+K][i mod L]) mod 256% Generat?r:)nrir’fiakleselzmutation
swap(S[il,S[j])

@ To use RC4, usually prepend initialization vector (IV) to the key
e IV can be random or a counter

4 RC4 is not random enough... First byte of generated sequence depends
only on 3 cells of state array S - this can be used to extract the key!

e To use RC4 securely, RSA suggests discarding first 256 bytes
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802.11b Overview
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¢ Standard for wireless networks (IEEE 1999)
& Two modes: infrastructure and ad hoc

' ' Access Point

Client A ' Client A
Client B

Client C Client B

IBSS (ad hoc) mode BSS (infrastructure) mode
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A Point SSID
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@ Service Set Identifier (SSID) is the “name” of the
access point

e By default, access point broadcasts its SSID in
plaintext “beacon frames” every few seconds

® Default SSIDs are easily guessable
e Manufacturer’ s defaults: “linksys”, “tsunami”, etc.
e This gives away the fact that access point is active

® Access point settings can be changed to prevent
it from announcing its presence in beacon frames
and from using an easily guessable SSID

e But then every user must know SSID in advance
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# Special-purpose protocol for 802.11b

¢ Goals: confidentiality, integrity, authentication
e Intended to make wireless as secure as wired network

® Assumes that a secret key is shared between
access point and client

¢ Uses RC4 stream cipher seeded with 24-bit
initialization vector and 40-bit key

e Terrible design choice for wireless environment
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Shared Key Authentlcatlon
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¥

Prior to communicating data, access point may require client to authenticate

Access Point Client
| beacon = >| unauthenticated & ‘
‘ I(_ probe request unassociated

)

authenticated &
Challengﬁ'\unassociated ‘
IV, challenge®RC4(IV.K l
authenticated & ‘

association _
associated

request
‘ |/assoaat|on
— response Passive eavesdropper recovers RC4(1V,K),
can respond to any subsequent challenge
without knowing K
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How WEP Works
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(1IV, shared key) used as RC4 seed

» Must never be repeated (why?)

» There is no key update protocol, so
security relies on never repeating IV

Fﬁbits

Plaintext

Shared Ke
"'\"". |[' l |

Integrity

CRC-32 checksum is linear in ®:

if attacker flips some plaintext bits, he knows which
bits of CRC to flip to produce the same checksum

Nech
Algorithm

RC4 I\o—'j str=am
vV iphertext
L/ KeylD A 4
XOR

no integrity!

C Fn»-rtmN

IV sent in the clear

Worse: changing IV with
each packet is optional!

slide 19



RC4 Is a Bad Ch0|ce for ereless
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¢ Stream ciphers require sender and receiver to be
at the same place in the keystream

e Not suitable when packet losses are common

¢ WEP solution: a separate keystream for each
packet (requires a separate seed for each packet)
e Can decrypt a packet even if a previous packet was lost
# But there aren’ t enough possible seeds!
e RC4 seed = 24-bit initialization vector + fixed key
e Assuming 1500-byte packets at 11 Mbps,
224 possible IVs will be exhausted in about 5 hours

® Seed reuse is deadly for stream ciphers
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Recovering the Keystream
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® Get access point to encrypt a known plaintext
e Send spam, access point will encrypt and forward it
e Get victim to send an email with known content

¢ With known plaintext, easy to recover keystream
e C®M = (M®RCA(IV,key)) @ M = RCA4(IV,key)

¢ Even without knowing the plaintext, can exploit
plaintext regularities to recover partial keystream

e Plaintexts are not random: for example, IP packet
structure is very regular

¢ Not a problem if the keystream is not re-used
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Keystream Will Be Re-Used
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¢ In WEP, repeated IV means repeated keystream

# Busy network will repeat IVs often

e Many cards reset IV to 0 when re-booted, then
increment by 1 = expect re-use of low-value IVs

e If IVs are chosen randomly, expect repetition in O(212)
due to birthday paradox

® Recover keystream for each 1V, store in a table
e (KnownM @ RC4(1IV,key)) ® KnownM = RC4(1V,key)

¢ Wait for IV to repeat, decrypt, enjoy plaintext
e (M ® RC4(1V,key)) ® RCA(IV,key) = M’
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It Gets Worse
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¢ Misuse of RC4 in WEP is a design flaw with no fix

e Longer keys do not help!
— The problem is re-use of IVs, their size is fixed (24 bits)

e Attacks are passive and very difficult to detect

¢ Perfect target for the Fluhrer et al. attack on RC4
e Attack requires known IVs of a special form
e WEP sends IVs in plaintext
e Generating IVs as counters or random numbers will
produce enough “special” IVs in a matter of hours
# This results in key recovery (not just keystream)
e Can decrypt even ciphertexts whose 1V is unique
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Fixing the Problem
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¢ Extensible Authentication Protocol (EAP)

e Developers can choose their own authentication method

— Passwords (Cisco EAP-LEAP), public-key certificates (Microsoft
EAP-TLS), passwords OR certificates (PEAP), etc.

¢ 802.11i standard fixes 802.11b problems

e Patch (TKIP): still RC4, but encrypts IVs and establishes
new shared keys for every 10 KBytes transmitted
— Use same network card, only upgrade firmware
— Deprecated by the Wi-Fi alliance

e Long-term: AES in CCMP mode, 128-bit keys, 48-bit IVs

— Block cipher in a stream cipher-like mode
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¢ Multi-year project on evaluating security of
MIFARE cards at Radboud University in Holland

e http://www.ru.nl/ds/research/rfid/

¢ MIFARE = a case study in how not to design
cryptographic authentication systems

# The following slides are from
Peter Van Rossum
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MIFARE Chips
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# Series of chips used in contactless smart cards
e Developed by NXP Semiconductors in the Netherlands

OVery common in transport payment cards

-chipkaal t

CharlieCard |

'OXOAA NPHIOXHTD K XXENTOMY KPYTY
BANTMOATOPA

0200180477

YCTAMABAHSAOTCR @ COOTBETCTEMM C

® MIFARE Classic: 80% of the market
e QOver 1 billion sold, over 200 million in use
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Memory Structure of the Card
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Cryptol Cipher

Key Tag/Reader EV

0| [47] [31]

(o

1 2 301 o 1 23] o 1 2 3] |o 1 2 3

wwww

f5 = 0XEC57E80A

Challenge?

Reader 1V?
Tag IV Response?

out

£:4=0x9E98 = (a+b)(ct+1)(a+d)+(b+1)c+a }‘ag IV ® Serial is
oaded first, then

fi} = 0xB48E = (a+c)(atb+d)+(a+b)cd+b Reader IV ® NFSR
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Challenge-Response in CRYPTOl
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'[ Tag ] [ Reader ]

uid LFSR stream:
> Initial state of the LFSR is the key
auth(block) a =k i e [0,47]
pick nT
nT .
Generated Shift nT + uid into the LFSR
by PRNG 45:= L(a@y...,a,4,) + NT, + uid. i € [0,31]
check aR
aT:=SUc%(nR) Shift nR into the LFSR |
{aT} 48 1= L(3j--/81447) + NRi3; I € [32,63]
> After authentication, LFSR keeps shifting
check aT Q148 1= L(@y/--/8i1147) | € [64, o)

( auth. ok ) ( auth ok ) Keystream:

b; := (110,14 11/+-+181447) i € [32, ) slide 29
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e Linear feedback shift register
e 16-bit internal state
e Period 216 — 1 = 65535

Feedback:
Lie(Xg/ X1,/ X15) 1= Xg+Xo+X3+Xs
Successor:

SUC(Xg,X1,---/X31) = (X{,X5,---1X30,L16(X16/X17s-+/X31))
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Replay Attack
4 Good challenge-response authentication requires
some form of “freshness” in each session
e For example, timestamp or strong (pseudo)randomness
# MIFARE Classic: no clock + weak randomness
e “Random” challenges repeat a few times per hour
¢ Eavesdrop and record communication session

® When challenge repeats, send known plaintext,
extract keystream, use it to decrypt recorded
communication that used the same challenge
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Extracting the Key from Reader
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1. Acquire keystream
e Observe authentication - keystream
e 1 to 3 authentication sessions — takes microseconds

2. Invert the filter function

o Keystream - internal state of LFSR
e Approx. 2% operations — takes seconds

3. Roll back (“unshift”) the LFSR

e Internal state of LFSR at any time = seed (= key)

e Problem: bad PRNG design... cryptographically
secure PRNG should not allow rollback and recovery
of the seed even if state is compromised
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Acquiring Keystrea
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Tag Reader

uid Intercepted communication:
auth(block) > » nT, {aR}, {aT} visible to attacker
« e {aR} = suc®(nT), {aT} = suc’®®(nT)
pick nT > m * 64 keystream bits
nT
N OR

Access to reader only:

e NnT under attacker control

e {aR} = suc¥(nT) visible to attacker
check aR » 32 keystream bits

aR:=suc®(nT)

aT:=suc’®(nT)

{aT}

>

check aT

( auth. ok ) ( auth. ok )
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Inverting the Filter Functi
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keystream: 01100111100110110

HHBUBHHRHBHBHBHHRHHH
( 00000000000000000000 ]
00000000000000000001
00000000000000000011
21 00000000000000000100 |

\

—»

00000000000000000110

produces ‘odd’ keystream 0

H HARBHBHARHBHBHBHARHRH #

0 0000000000000000000 O
0 0000000000000000000 1

T 006060606060060000001

0 0000000000000000011 1
0 0000000000000000100 O

produces ‘odd’ keystream 01

H#t HHBHHHHBHBHBHHHHHH

T 00 000000000000000000 1
1T 00 000000000000000001 1
/v 00 000000000000000111 0

I R 00 000000000000000111 1
—00000000000006061660

produces ‘odd’ keystream 010

#

Filter function only depends only on 20 odd bits of input — easily inverted

e Compute ‘odd’ bits of LFSR using table and deduce ‘even’ bits (linear relation) OR
e Compute ‘odd’ and ‘even’ bits of LFSR using tables separately and combine tables
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Rolllng Back the LFSR
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Feedback:
L(Xg/X1---1X47) := XgHX5+Xg+Xq9HX15HX 4
X411 X43

LFSR stream:
Initial state of the LFSR is the key
a, = k; i € [0,47]
Shift nT + uid into the LFSR
Airag -= L(a;,...,847) + NT; + uid; i € [0,31]
Shift nR into the LFSR
48 1= L(3j.-/31147) + NRi3; | € [32,63]
After authentication, LFSR keeps shifting

148 1= L(@y--/81147) | € [64, )
Keystream:
b; := f(@i,0/i111/--/8i447) 1€

Inverting feedback:

R(X1/...1X47 Xag) 1= X5+Xg+X;9HX p X4
X151 X171 X19TX4 X5 X57 X9+ X35+ X359
X411 X431 X5g

R(Xq,- - X47,L(X0s X1, -1 X47)) = Xo

Inverting LFSR stream:

Unshift LFSR until end of authentication

3 = R(aj41/-+/3i448) i € [64, o)

Unshift nR from the LFSR

a; = R(a;1,---/8i145) + NR 3, i € [32,63]

= R(@j;1/---s8i148) + {NR}i 3, + by

= R(@j41/---18i448) + {NR}i 55 + (@118 147)
Unshift nT + uid from the LFSR
a, = R(ai;1,---,8i4g) + NT, + uid, i € [0,31]
Key is the initial state of the LFSR

k =a i € [0,47]
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Summary Weaknesses of CRYPTOl

S P S G T B R N R P i G T e W T R P i G ST B R e T P P S G ST S R D O RV PR N G ST A

¢ Stream cipher with 48-bit internal state
e Enables brute-force attack

¢ Weak 16-bit random number generator
e Enables chosen-plaintext attack and replay attack

# Keystream based on simple LFSR structure +
weak “one-way” filter function
e Invert filter function - obtain state of LFSR

e Roll back LFSR - recover the key

— 64-bit keystream - recover unique key
— 32-bit keystream > 216 candidate keys
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Extractlng the Key (Card Only)
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¢ Parity bit of plaintext is encrypted with the same
bit of the keystream as the next bit of plaintext

e “One-time” pad is used twice

¢ If parity bit is wrong, encrypted error message is
sent before authentication

e Opens the door to card-only guessing attacks (chosen-
plaintext, chosen-ciphertext) — why?

o Wireless-only attack

® Recover secret key from the card in seconds
e Result: full cloning of the card
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