
Isola&on	

The	confinement	
principle	

Original	slides	were	created	by	Prof.	Dan	Boneh	
1	

Running untrusted code
We often need to run buggy/unstrusted code:

–  programs from untrusted Internet sites:
•  apps, extensions, plug-ins, codecs for media player

–  exposed applications: pdf viewers, outlook

–  legacy daemons: sendmail, bind

–  honeypots

Goal: if application “misbehaves” ⇒ kill it 2	

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

•  Can be implemented at many levels:

–  Hardware: run application on isolated hw (air gap)

 ⇒ difficult to manage, expensive

air	gap	 network	1	Network	2	

app	1	 app	2	

3	

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

•  Can be implemented at many levels:
–  Virtual machines: isolate OS’s on a single machine

Virtual	Machine	Monitor		(VMM)	

OS1	
	

OS2	
	

app1	 app2	

What	are	some	of	the	drawbacks	of	this	approach?	

4	

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

•  Can be implemented at many levels:
–  Process: System Call Interposition

 Isolate a process in a single operating system

Opera&ng	System	

process	2	

process	1	

5	

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

•  Can be implemented at many levels:

–  Threads: Software Fault Isolation (SFI)
•  Isolating threads sharing same address space

–  Application: e.g. browser-based confinement

6	

Implementing confinement
Key component: reference monitor
–  Mediates requests from applications

•  Implements protection policy
•  Enforces isolation and confinement

–  Must always be invoked:
•  Every application request must be mediated

–  Tamperproof:
•  Reference monitor cannot be killed
•  … or if killed, then monitored process is killed too

–  Small enough to be analyzed and validated
7	

A old example: chroot
•  Often used for “guest” accounts on ftp sites

•  To use do: (must be root)

 chroot /tmp/guest root dir “/” is now “/tmp/guest”
 su guest EUID set to “guest”

•  Now		“/tmp/guest”		is	added	to	file	system	accesses	for	applica&ons	in	jail	

 open(“/etc/passwd”, “r”) ⇒
 open(“/tmp/guest/etc/passwd” , “r”)

⇒  application cannot access files outside of jail 8	

Jailkit
Problem: all utility progs (ls, ps, vi) must live inside jail

•  jailkit project: auto builds files, libs, and dirs needed in jail env

•  jk_init: creates jail environment
•  jk_check: checks jail env for security problems

•  checks for any modified programs,
•  checks for world writable directories, etc.

•  jk_lsh: restricted shell to be used inside jail

•  note: simple chroot jail does not limit network access
9	

Escaping from jails
Early escapes: relative paths

 open(“../../etc/passwd”, “r”) ⇒
 open(“/tmp/guest/../../etc/passwd”, “r”)

chroot should only be executable by root.
–  otherwise jailed app can do:
•  create dummy file “/aaa/etc/passwd”
•  run chroot “/aaa”
•  run su root to become root

(bug in Ultrix 4.0) 10	

Many ways to escape jail as root

•  Create device that lets you access raw disk

•  Send signals to non chrooted process

•  Reboot system

•  Bind to privileged ports
 11	

Freebsd jail
Stronger mechanism than simple chroot

To run: jail jail-path hostname IP-addr cmd

–  calls hardened chroot (no “../../” escape)

–  can only bind to sockets with specified IP address
and authorized ports

–  can only communicate with processes inside jail

–  root is limited, e.g. cannot load kernel modules 12	

Not	all	programs	can	run	in	a	jail	
Programs	that	can	run	in	jail:							
•  audio	player	
•  web	server	
	
Programs	that	cannot:					
•  web	browser	
•  mail	client	

13	

Problems with chroot and jail
Coarse policies:
–  All or nothing access to parts of file system
–  Inappropriate for apps like a web browser

•  Needs read access to files outside jail
 (e.g. for sending attachments in Gmail)

Does not prevent malicious apps from:
–  Accessing network and messing with other machines
–  Trying to crash host OS

14	

Isola&on	

System	Call	
Interposi&on	

15	

System call interposition
Observation: to damage host system (e.g. persistent changes)
app must make system calls:

–  To delete/overwrite files: unlink, open, write
–  To do network attacks: socket, bind, connect, send

Idea: monitor app’s system calls and block unauthorized calls

Implementation options:
–  Completely kernel space (e.g. GSWTK)
–  Completely user space (e.g. program shepherding)
–  Hybrid (e.g. Systrace) 16	

Initial implementation (Janus) [GWTB’96]

Linux ptrace: process tracing
 process calls: ptrace (… , pid_t pid , …)
 and wakes up when pid makes sys call.

Monitor kills application if request is disallowed

OS	Kernel	

monitored	
applica1on	
(browser)	

monitor	

user space

open(“/etc/passwd”, “r”)

17	

Complications
•  If app forks, monitor must also fork
–  forked monitor monitors forked app

•  If monitor crashes, app must be killed

•  Monitor must maintain all OS state associated with app

–  current-working-dir (CWD), UID, EUID, GID

–  When app does “cd path” monitor must update its CWD
•  otherwise: relative path requests interpreted incorrectly

cd(“/tmp”)	
open(“passwd”,		“r”)	
	

cd(“/etc”)	
open(“passwd”,		“r”)	
	
	

18	

Problems with ptrace
Ptrace is not well suited for this application:
–  Trace all system calls or none

inefficient: no need to trace “close” system call
–  Monitor cannot abort sys-call without killing app

Security problems: race conditions
–  Example: symlink: me ⟶ mydata.dat

 proc 1: open(“me”)
 monitor checks and authorizes
 proc 2: me ⟶ /etc/passwd
 OS executes open(“me”)

Classic TOCTOU bug: time-of-check / time-of-use

tim
e

not atomic

19	

Alternate design: systrace [P’02]

•  systrace only forwards monitored sys-calls to monitor (efficiency)

•  systrace resolves sym-links and replaces sys-call
path arguments by full path to target

•  When app calls execve, monitor loads new policy file

OS	Kernel	

monitored	
applica1on	
(browser)	

monitor	

user space

open(“etc/passwd”, “r”)

sys-call	
gateway	

systrace	
permit/deny

policy file
for app

20	

Os&a:		a	delega&on	architecture				[GPR’04]	
Previous	designs	use	filtering:	
•  Filter	examines	sys-calls	and	decides	whether	to	block	
•  Difficulty	with	syncing	state	between	app	and	monitor		(CWD,		UID,		..)	

–  Incorrect	syncing	results	in	security	vulnerabili&es	(e.g.	disallowed	file	opened)	

A	delega&on	architecture:	

OS	Kernel	

monitored	
applica1on	 agent	

user space

policy file
for app open(“etc/passwd”, “r”)

21	

Os&a:		a	delega&on	architecture				[GPR’04]	
•  Monitored	app	disallowed	from	making	monitored	sys	calls	

–  Minimal	kernel	change					(…	but	app	can	call	close()	itself)	

•  Sys-call	delegated	to	an	agent	that	decides	if	call	is	allowed	
–  Can	be	done	without	changing	app	

	 	(requires	an	emula&on	layer	in	monitored	process)	

•  Incorrect	state	syncing	will	not	result	in	policy	viola&on	

•  What	should	agent	do	when	app	calls	execve?	
–  Process	can	make	the	call	directly.			Agent	loads	new	policy	file.	

22	

Policy
Sample policy file:

 path allow /tmp/*
 path deny /etc/passwd
 network deny all

Manually specifying policy for an app can be difficult:

–  Systrace can auto-generate policy by learning how app
behaves on “good” inputs

–  If policy does not cover a specific sys-call, ask user
… but user has no way to decide

Difficulty with choosing policy for specific apps (e.g. browser) is
the main reason this approach is not widely used 23	

NaCl: a modern day example

•  game: untrusted x86 code

•  Two sandboxes:

–  outer sandbox: restricts capabilities using system call interposition

–  Inner sandbox: uses x86 memory segmentation to isolate
 application memory among apps

Browser	
	

HTML	
JavaScript	

NPAPI

NaCl	run&me	

game	

24	

Isola&on	

Isola&on	via	
Virtual	Machines	

25	

Virtual Machines

Virtual Machine Monitor (VMM)
Guest OS 2

Apps

Guest OS 1

Apps

Hardware
Host OS

VM2 VM1

Example: NSA NetTop

single HW platform used for both classified and unclassified data
26	

Why so popular now?
VMs in the 1960’s:
–  Few computers, lots of users
–  VMs allow many users to shares a single computer

VMs 1970’s – 2000: non-existent

VMs since 2000:
–  Too many computers, too few users

•  Print server, Mail server, Web server, File server, Database , …

–  Wasteful to run each service on different hardware
–  More generally: VMs heavily used in cloud computing

27	

VMM security assumption
VMM Security assumption:
–  Malware can infect guest OS and guest apps
–  But malware cannot escape from the infected VM
•  Cannot infect host OS
•  Cannot infect other VMs on the same hardware

Requires that VMM protect itself and is not buggy
–  VMM is much simpler than full OS
 … but device drivers run in Host OS

28	

Problem: covert channels
•  Covert channel: unintended communication channel

between isolated components
–  Can be used to leak classified data from secure

component to public component

Classified	VM	 Public	VM	

secret	
doc	

m
alw

are	

listener	
covert

channel

VMM	
29	

An example covert channel
Both VMs use the same underlying hardware

To send a bit b ∈ {0,1} malware does:
–  b= 1: at 1:00am do CPU intensive calculation

–  b= 0: at 1:00am do nothing

At 1:00am listener does CPU intensive calc. and measures completion time

 b = 1 ⇔ completion-time > threshold

Many covert channels exist in running system:
–  File lock status, cache contents, interrupts, …
–  Difficult to eliminate all 30	

Suppose	the	system	in	ques&on	has	two	CPUs:		the	classified	VM		
runs	on	one	and	the	public	VM	runs	on	the	other.	

Can	there	be	a	covert	channel	between	the	VMs?	

There	can	be	covert	channels,	for	example,	based	on	the		
&me	needed	to	read	from	main	memory	

VMM Introspection: [GR’03]

 protecting the anti-virus system

32	

Intrusion Detection / Anti-virus
Runs as part of OS kernel and user space process

–  Kernel root kit can shutdown protection system
–  Common practice for modern malware

Standard solution: run IDS system in the network
–  Problem: insufficient visibility into user’s machine

Better: run IDS as part of VMM (protected from malware)
–  VMM can monitor virtual hardware for anomalies
–  VMI: Virtual Machine Introspection

•  Allows VMM to check Guest OS internals
33	

Infected	VM	m
alw

are	

VMM	

Guest	OS	

Hardware	

IDS	

34	

Sample checks
Stealth root-kit malware:

–  Creates processes that are invisible to “ps”
–  Opens sockets that are invisible to “netstat”

1. Lie detector check
–  Goal: detect stealth malware that hides processes

and network activity
–  Method:

•  VMM lists processes running in GuestOS

•  VMM requests GuestOS to list processes (e.g. ps)

•  If mismatch: kill VM 35	

Sample checks
2. Application code integrity detector

–  VMM computes hash of user app code running in VM
–  Compare to whitelist of hashes

•  Kills VM if unknown program appears

3. Ensure GuestOS kernel integrity
–  example: detect changes to sys_call_table

4. Virus signature detector
–  Run virus signature detector on GuestOS memory

36	

Isola&on	

Subvir&ng	VM	
Isola&on	

37	

Subvirt [King et al. 2006]

Virus idea:
–  Once on victim machine, install a malicious VMM
–  Virus hides in VMM
–  Invisible to virus detector running inside VM

HW
OS

⇒

HW

OS
VMM and virus

anti-virus

anti-virus

38	

The MATRIX

39	

40	

VM Based Malware (blue pill virus)
•  VMBR: a virus that installs a malicious VMM (hypervisor)

•  Microsoft Security Bulletin: (Oct, 2006)

–  Suggests disabling hardware virtualization features

by default for client-side systems

•  But VMBRs are easy to defeat
–  A guest OS can detect that it is running on top of VMM

41	

VMM Detection
Can an OS detect it is running on top of a VMM?

Applications:

–  Virus detector can detect VMBR

–  Normal virus (non-VMBR) can detect VMM
•  refuse to run to avoid reverse engineering

–  Software that binds to hardware (e.g. MS Windows) can
refuse to run on top of VMM

–  DRM systems may refuse to run on top of VMM 42	

VMM detection (red pill techniques)
•  VM platforms often emulate simple hardware

–  VMWare emulates an ancient i440bx chipset
 … but report 8GB RAM, dual CPUs, etc.

•  VMM introduces time latency variances
–  Memory cache behavior differs in presence of VMM
–  Results in relative time variations for any two operations

•  VMM shares the TLB with GuestOS
–  GuestOS can detect reduced TLB size

•  … and many more methods [GAWF’07] 43	

VMM Detection
Bottom line: The perfect VMM does not exist

VMMs today (e.g. VMWare) focus on:

Compatibility: ensure off the shelf software works

Performance: minimize virtualization overhead

•  VMMs do not provide transparency

–  Anomalies reveal existence of VMM

44	

Isola&on	

Sohware	Fault	
Isola&on	

45	

Software Fault Isolation [Whabe et al., 1993]

Goal: confine apps running in same address space
–  Codec code should not interfere with media player
–  Device drivers should not corrupt kernel

Simple solution: runs apps in separate address spaces
–  Problem: slow if apps communicate frequently

•  requires context switch per message
 46	

Software Fault Isolation
SFI approach:

–  Partition process memory into segments

•  Locate unsafe instructions: jmp, load, store
–  At compile time, add guards before unsafe instructions
–  When loading code, ensure all guards are present

code	
segment	

data	
segment	

code	
segment	

data	
segment	

app #1 app #2

47	

Segment matching technique
•  Designed for MIPS processor. Many registers available.

•  dr1, dr2: dedicated registers not used by binary
–  compiler pretends these registers don’t exist
–  dr2 contains segment ID

•  Indirect load instruction R12 ← [R34] becomes:

 dr1 ← R34
 scratch-reg ← (dr1 >> 20) : get segment ID
 compare scratch-reg and dr2 : validate seg. ID
 trap if not equal
 R12 ← [dr1] : do load

Guard	ensures	code	does	not		

load	data	from	another	segment	

48	

Address sandboxing technique
•  dr2: holds segment ID

•  Indirect load instruction R12 ← [R34] becomes:

 dr1 ← R34 & segment-mask : zero out seg bits
 dr1 ← dr1 | dr2 : set valid seg ID
 R12 ← [dr1] : do load

•  Fewer instructions than segment matching

… but does not catch offending instructions
•  Similar guards places on all unsafe instructions

49	

Problem:			what	if				jmp	[addr]				jumps	directly	into	indirect	load?	

	 	(bypassing	guard)					

Solu1on:	

jmp	guard	must	ensure	[addr]	does	not	bypass	load	guard	

Cross domain calls
caller

domain
callee

domain

call draw call stub draw:

return

br	addr	
br	addr	
br	addr	

ret stub

•  Only stubs allowed to make cross-domain jumps
•  Jump table contains allowed exit points

–  Addresses are hard coded, read-only segment

br	addr	
br	addr	
br	addr	

51	

SFI Summary
•  Shared memory: use virtual memory hardware

–  map same physical page to two segments in addr space

•  Performance
–  Usually good: mpeg_play, 4% slowdown

•  Limitations of SFI: harder to implement on x86 :
–  variable length instructions: unclear where to put guards
–  few registers: can’t dedicate three to SFI
–  many instructions affect memory: more guards needed 52	

Isolation: summary
•  Many sandboxing techniques:

 Physical air gap, Virtual air gap (VMMs),
 System call interposition, Software Fault isolation
 Application specific (e.g. Javascript in browser)

•  Often complete isolation is inappropriate
–  Apps need to communicate through regulated interfaces

•  Hardest aspects of sandboxing:
–  Specifying policy: what can apps do and not do
–  Preventing covert channels 53	

THE		END	

54	

