
*Slides borrowed from Vitaly Shmatikov

How crypto fails in practice?
CSS and WEP

slide 2

Stream Ciphers

◆ One-time pad:
 Ciphertext(Key,Message)=Message⊕Key

•  Key must be a random bit sequence as long as message

◆ Idea: replace “random” with “pseudo-random”
•  Use a pseudo-random number generator (PRNG)
•  PRNG takes a short, truly random secret seed and

expands it into a long “random-looking” sequence
–  E.g., 128-bit seed into a 106-bit
 pseudo-random sequence

◆ Ciphertext(Key,Msg)=IV, Msg⊕PRNG(IV,Key)
•  Message processed bit by bit (unlike block cipher)

No efficient algorithm can tell
this sequence from truly random

slide 3

Stream Cipher Terminology

◆ The seed of a pseudo-random generator typically
consists of initialization vector (IV) and key
•  The key is a secret known only to the sender and the

recipient, not sent with the ciphertext
•  IV is usually sent with the ciphertext

◆ The pseudo-random bit stream produced by
PRNG(IV,key) is referred to as the keystream

◆ Encrypt message by XORing with keystream
•  ciphertext = message ⊕ keystream

slide 4

Properties of Stream Ciphers

◆ Usually very fast (faster than block ciphers)
•  Used where speed is important: WiFi, DVD, RFID, VoIP

◆ Unlike one-time pad, stream ciphers do not provide
perfect secrecy
•  Only as secure as the underlying PRNG
•  If used properly, can be as secure as block ciphers

◆ PRNG must be cryptographically secure

slide 5

Using Stream Ciphers

◆ No integrity
•  Associativity & commutativity:
 (M1⊕PRNG(seed)) ⊕ M2 = (M1⊕M2) ⊕ PRNG(seed)
•  Need an additional integrity protection mechanism

◆ Known-plaintext attack is very dangerous if
keystream is ever repeated
•  Self-cancellation property of XOR: X⊕X=0
•  (M1⊕PRNG(seed)) ⊕ (M2⊕PRNG(seed)) = M1⊕M2
•  If attacker knows M1, then easily recovers M2 …
 also, most plaintexts contain enough redundancy that

can recover parts of both messages from M1⊕M2

slide 6

How Random is “Random”?

slide 7

Cryptographically Secure PRNG

◆ Next-bit test: given N bits of the pseudo-random
sequence, predict (N+1)st bit
•  Probability of correct prediction should be very close to

1/2 for any efficient adversarial algorithm
 (means what?)

◆ PRNG state compromise
•  Even if the attacker learns the complete or partial state

of the PRNG, he should not be able to reproduce the
previously generated sequence

– … or future sequence, if there’ll be future random seed(s)

◆ Common PRNGs are not cryptographically secure

slide 8

LFSR: Linear Feedback Shift Register

b0

Example:
4-bit LFSR b1 b2 b3

⊕

◆ For example, if the seed is 1001, the generated
sequence is 1001101011110001001…

◆ Repeats after 15 bits (24-1)

add to pseudo-random sequence

slide 9

Each DVD is encrypted with
a disk-specific 40-bit DISK KEY

Each player has its own PLAYER KEY
(409 player manufacturers,
each has its player key)

Content Scrambling System (CSS)

◆ DVD encryption scheme from Matsushita and Toshiba

KEY DATA BLOCK contains disk key encrypted
with 409 different player keys:
•  EncryptDiskKey(DiskKey)
•  EncryptPlayerKey1(DiskKey) … EncryptPlayerKey409(DiskKey)

This helps attacker
verify his guess of disk key

What happens if even a single
player key is compromised?

slide 10

Attack on CSS Decryption Scheme

� Given known 40-bit plaintext, repeat the following 5 times (once for each plaintext byte):
 guess the byte output by the sum of the two LFSRs; use known ciphertext to verify
 – this takes O(28)
� For each guessed output byte, guess 16 bits contained in LFSR-17 – this takes O(216)
� Clock out 24 bits out of LFSR-17, use subtraction to determine the corresponding
 output bits of LFSR-25 – this reveals all of LFSR-25 except the highest bit
� “Roll back” 24 bits, try both possibilities – this takes O(2)
� Clock out 16 more bits out of both LFSRs, verify the key

…

…

LFSR-17

disk key

LFSR-25
24 key bits

16 key bits

“1” seeded in 4th bit

“1” seeded in 1st bit

invert

+mod 256

carry

Encrypted title key
Table-based
“mangling”

Decrypted title key ⊕ �
�

�

�

EncryptDiskKey(DiskKey)
stored on disk �

This attack takes O(225)

[Frank Stevenson]

slide 11

DeCSS

◆ In CSS, disk key is encrypted under hundreds of
different player keys… including Xing, a
software DVD player

◆ Reverse engineering the object code of Xing
revealed its player key
•  Every CSS disk contains the master disk key

encrypted under Xing’s key
•  One bad player ⇒ entire system is broken!

◆ Easy-to-use DeCSS software

slide 12

DeCSS Aftermath

◆ DVD CCA sued Jon Lech Johansen
 (“DVD Jon”), one of DeCSS authors -
 eventually dropped
◆ Publishing DeCSS code violates copyright

•  Underground distribution as haikus and T-shirts
•  “Court to address DeCSS T-Shirt: When can a T-shirt

become a trade secret? When it tells you how to copy
a DVD.” - Wired News

slide 13

RC4

◆ Designed by Ron Rivest for RSA in 1987
◆ Simple, fast, widely used

•  SSL/TLS for Web security, WEP for wireless

Byte array S[256] contains a permutation of numbers from 0 to 255
i = j := 0

loop

 i := (i+1) mod 256

 j := (j+S[i]) mod 256

 swap(S[i],S[j])
 output (S[i]+S[j]) mod 256

end loop

slide 14

RC4 Initialization

Divide key K into L bytes

for i = 0 to 255 do
 S[i] := i

j := 0

for i = 0 to 255 do

 j := (j+S[i]+K[i mod L]) mod 256

 swap(S[i],S[j])

Key can be any length
up to 2048 bits

Generate initial permutation
from key K

◆  To use RC4, usually prepend initialization vector (IV) to the key
•  IV can be random or a counter

◆  RC4 is not random enough… First byte of generated sequence depends
only on 3 cells of state array S - this can be used to extract the key!
•  To use RC4 securely, RSA suggests discarding first 256 bytes Fluhrer-Mantin-

Shamir attack

slide 15

802.11b Overview

◆ Standard for wireless networks (IEEE 1999)
◆ Two modes: infrastructure and ad hoc

IBSS (ad hoc) mode BSS (infrastructure) mode

slide 16

Access Point SSID

◆ Service Set Identifier (SSID) is the “name” of the
access point
•  By default, access point broadcasts its SSID in

plaintext “beacon frames” every few seconds

◆ Default SSIDs are easily guessable
•  Manufacturer’s defaults: “linksys”, “tsunami”, etc.
•  This gives away the fact that access point is active

◆ Access point settings can be changed to prevent
it from announcing its presence in beacon frames
and from using an easily guessable SSID
•  But then every user must know SSID in advance

slide 17

WEP: Wired Equivalent Privacy

◆ Special-purpose protocol for 802.11b
◆ Goals: confidentiality, integrity, authentication

•  Intended to make wireless as secure as wired network

◆ Assumes that a secret key is shared between
access point and client

◆ Uses RC4 stream cipher seeded with 24-bit
initialization vector and 40-bit key
•  Terrible design choice for wireless environment

slide 18

Shared-Key Authentication

beacon

Prior to communicating data, access point may require client to authenticate

Access Point Client

association
request

association
response

probe request
OR

challenge

IV, challenge⊕RC4(IV,K)

unauthenticated &
unassociated

authenticated &
unassociated

authenticated &
associated

Passive eavesdropper recovers RC4(IV,K),
can respond to any subsequent challenge
without knowing K

slide 19

How WEP Works

24 bits 40 bits

(IV, shared key) used as RC4 seed
•  Must never be repeated (why?)
•  There is no key update protocol, so
 security relies on never repeating IV

IV sent in the clear
Worse: changing IV with
each packet is optional!

CRC-32 checksum is linear in ⊕:
if attacker flips some plaintext bits, he knows which
bits of CRC to flip to produce the same checksum

no integrity!

slide 20

RC4 Is a Bad Choice for Wireless

◆ Stream ciphers require sender and receiver to be
at the same place in the keystream
•  Not suitable when packet losses are common

◆ WEP solution: a separate keystream for each
packet (requires a separate seed for each packet)
•  Can decrypt a packet even if a previous packet was lost

◆ But there aren’t enough possible seeds!
•  RC4 seed = 24-bit initialization vector + fixed key
•  Assuming 1500-byte packets at 11 Mbps,
 224 possible IVs will be exhausted in about 5 hours

◆ Seed reuse is deadly for stream ciphers

slide 21

Recovering the Keystream

◆ Get access point to encrypt a known plaintext
•  Send spam, access point will encrypt and forward it
•  Get victim to send an email with known content

◆ With known plaintext, easy to recover keystream
•  C ⊕ M = (M⊕RC4(IV,key)) ⊕ M = RC4(IV,key)

◆ Even without knowing the plaintext, can exploit
plaintext regularities to recover partial keystream
•  Plaintexts are not random: for example, IP packet

structure is very regular

◆ Not a problem if the keystream is not re-used

slide 22

Keystream Will Be Re-Used

◆ In WEP, repeated IV means repeated keystream
◆ Busy network will repeat IVs often

•  Many cards reset IV to 0 when re-booted, then
increment by 1 ⇒ expect re-use of low-value IVs

•  If IVs are chosen randomly, expect repetition in O(212)
due to birthday paradox

◆ Recover keystream for each IV, store in a table
•  (KnownM ⊕ RC4(IV,key)) ⊕ KnownM = RC4(IV,key)

◆ Wait for IV to repeat, decrypt, enjoy plaintext
•  (M’ ⊕ RC4(IV,key)) ⊕ RC4(IV,key) = M’

slide 23

It Gets Worse

◆ Misuse of RC4 in WEP is a design flaw with no fix
•  Longer keys do not help!

–  The problem is re-use of IVs, their size is fixed (24 bits)

•  Attacks are passive and very difficult to detect

◆ Perfect target for the Fluhrer et al. attack on RC4
•  Attack requires known IVs of a special form
•  WEP sends IVs in plaintext
•  Generating IVs as counters or random numbers will

produce enough “special” IVs in a matter of hours

◆ This results in key recovery (not just keystream)
•  Can decrypt even ciphertexts whose IV is unique

slide 24

Fixing the Problem

◆ Extensible Authentication Protocol (EAP)
•  Developers can choose their own authentication method

–  Passwords (Cisco EAP-LEAP), public-key certificates (Microsoft
EAP-TLS), passwords OR certificates (PEAP), etc.

◆ 802.11i standard fixes 802.11b problems
•  Patch (TKIP): still RC4, but encrypts IVs and establishes

new shared keys for every 10 KBytes transmitted
–  Use same network card, only upgrade firmware
–  Deprecated by the Wi-Fi alliance

•  Long-term: AES in CCMP mode, 128-bit keys, 48-bit IVs
–  Block cipher in a stream cipher-like mode

