
Taint	tracking	

Suman	Jana	
	



Dynamic	Taint	Analysis	
•  Track	informa6on	flow	through	a	program	at	
run6me	

•  Iden6fy	sources	of	taint	–	“TaintSeed”	
– What	are	you	tracking?	

•  Untrusted	input	
•  Sensi6ve	data	

•  Taint	Policy	–	“TaintTracker”	
–  Propaga6on	of	taint	

•  Iden6fy	taint	sinks	–	“TaintAssert”	
–  Taint	checking	

•  Special	calls:	Jump	statements,	Format	strings,	etc.	
•  Outside	network	



TaintCheck	(Newsome	et	al.)	
•  Performed	on	x86	binary	
– No	need	for	source	

•  Implemented	using	Valgrind	skin	
–  X86	->	Valgrind’s	Ucode	
–  Taint	instrumenta6on	added	
– Ucode	->	x86	

•  Sources	->	TaintSeed	
•  Taint	Policy	->	TaintTracker	
•  Sinks	->	TaintAssert	
•  Add	on	“Exploit	Analyzer”	



TaintCheck	(Newsome	et	al.)	

• 	TaintSeed:	Mark	untrusted	data	as	tainted	
• 	TaintTracker:	Track	each	instruc6on,	propagate	taint	
• 	TaintAssert:	Check	is	tainted	data	is	used	dangerously	



TaintSeed	

•  Marks	any	data	from	untrusted	sources	as	
“tainted”	
– Each	byte	of	memory	has	a	four-byte	shadow	
memory	that	stores	a	pointer	to	a	Taint	data	
structure	if	that	loca6on	is	tainted	

– Else	store	a	NULL	pointer	



TaintTracker	

•  Tracks	each	instruc6on	that	manipulates	data	
in	order	to	determine	whether	the	result	is	
tainted.	
– When	the	result	of	an	instruc6on	is	tainted	by	one	
of	the	operands,	TaintTracker	sets	the	shadow	
memory	of	the	result	to	point	to	the	same	Taint	
data	structure	as	the	tainted	operand.	



TaintAssert	&	Exploit	Analyzer	

•  TaintAssert	
– Checks	whether	tainted	data	is	used	in	ways	that	
its	policy	defines	as	illegi6mate	

•  Exploit	Analyzer	
– Backtrace	chain	of	taint	structures:	provides	
useful	informa6on	about	how	the	exploit	
happened,	and	what	the	exploit	a^empts	to	do	

– Useful	to	generate	exploit	fingerprints	
– Transfer	control	to	sandbox	for	analysis	

	



Automa6c	Signature	Genera6on	
•  Find	value	used	to	override	return	address	–	typically	fixed	value	in	

the	exploit	code	



 
 

Taint	Analysis	in	Ac6on	



x		=	get_input(										)	
y		=					x			+					42		
…	
goto							y				

Input	is	tainted	

untainted	tainted	

x	 7

Δ	
Var	 Val	

T	x	

Tainted	Var	
τ	

Input	 t	=	IsUntrusted(src)	
get_input(src)↓	t	

TaintSeed	



x		=	get_input(										)	
y		=					x			+					42		
…	
goto							y				

Data	derived	from	
user	input	is	tainted	

untainted	tainted	

y	 49	

Δ	
Var	 Val	

x	 7

T	y	

Tainted	

T	

Var	

x	

τ	

BinOp	 t1	=	τ[x1]	,	t2	=	τ[x2]	
x1	+	x2	↓	t1	v	t2	

TaintTracker	



Pgoto(ta)		=	¬	ta	
(Must	be	true	to	execute)	

	

Policy	Viola6on	
Detected	

x		=	get_input(										)	
y		=					x			+					42		
…	
goto							y				

untainted	tainted	 Δ	
Var	 Val	

x	 7
y	 49	

Tainted	

T	
T	

Var	

x	
y	

τ	
TaintAssert	



x		=	get_input(										)	
y		=	…	
…	
goto							y				

…	
strcpy(buffer,argv[1])	;	
…	
return	;	

Jumping	to	
overwri^en	

return	address	



Policy Considerations? 



Memory	Load	

Variables	 Memory	

Δ	
Var	 Val	

x	 7

Tainted	

T	

Var	

x	

τ	

μ	
Addr	 Val	

7 42	

Tainted	

F/T?	

Addr	

7

τμ	



Problem:	Memory	Addresses	

x			=	get_input(											)	
y			=	load(		x	)	
…								
goto			y	

All	values	derived	
from	user	input	
are	tainted??	

7 42	
μ	 Addr	 Val	

Tainted
?	

F	

Addr	

7
τμ	

x	 7
Δ	

Var	 Val	



μ	 Addr	 Val	

x			=	get_input(											)	
y			=	load(				x			)	
…								
goto				y	

Jump	target	could	
be	any	untainted	
memory	cell	value	

Policy	1:	

Load	v	=	Δ[x]	,	t	=	τμ[v]	
load(x)	↓	t	

Taint	depends	only	on	the	memory	cell	

Taint	Propaga6on	

7 42	

Tainted	

F	

Addr	

7
τμ	

x	 7
Δ	

Var	 Val	

Undertain6ng	
	Failing	to	iden6fy	tainted	values	
					-	e.g.,	missing	exploits	



jmp_table	

Policy	Viola6on?	

x			=	get_input(											)	
y			=	load(jmp_table	+				x					%		2	)	
…	
goto			y	

Policy	2:	

Memory	

printa	
printb	

Address	
expression	
is	tainted	

Load	v	=	Δ[x]	,	t	=	τμ[v],	ta	=	τ[x]	
load(x)	↓	t	v	ta	

If	either	the	address	or	the	memory	
cell	is	tainted,	then	the	value	is	tainted	

Taint	Propaga6on	

Overtain6ng	
	Unaffected	values	are	tainted	
					-	e.g.,	exploits	on	safe	inputs	



General	Challenge:	
State-of-the-Art	is	not	perfect	for	all	

programs	

Undertain6ng:	
Policy	may	miss	taint	

Overtain6ng:	
Policy	may	wrongly	

detect	taint	



TaintCheck	Evalua6on	



Effec6veness	of	TaintCheck	
•  False	Nega6ves	
–  Use	control	flow	to	change	value	without	gathering	taint	

•  Example:	if	(x	==	0)	y=0;	else	if	(x	==	1)	y=1;	
–  Equivalent	to	x=y;	

–  Tainted	index	into	a	hardcoded	table	
•  Policy	–	value	transla6on	is	not	tainted	

–  Enumera6ng	all	sources	of	taint	
	

•  False	Posi6ves	
– Vulnerable	code?	
–  Sanity	Checks	not	removing	taint	

•  Requires	fine-tuning	
•  Taint	sani6za6on	problem	



Effec6veness	of	TaintCheck	
•  Does	TaintCheck	raise	false	alerts	for	exis6ng	code?		
–  	network	programs:	apache,	ATPh^pd,	bwpd,	cfingerd,	and	
named		
–  client	programs:	ssh	and	firebird	
–  non-network	programs:	gcc,	ls,	bzip2,	make,	latex,	vim,	
emacs,	and	bash	

•  Networked	programs:	158K+	DNS	queries	
–  No	false	+ves	

•  All	client	and	non-network	programs	(tainted	data	is	
stdin):	
–  Only	vim	and	firebird	caused	false	+ves	(data	from	config	
files	used	as	offset	to	jump	address)	



TaintCheck	-	A^ack	Detec6on	

•  Synthe6c	Exploits	
– Buffer	overflow	->	func6on	pointer	
– Buffer	overflow	->	format	string	
– Format	string	->	info	leak	
	

•  Actual	Exploits	
– 3	real	world	examples	



TaintCheck	Performance	

Performance	overhead	for	Apache	


