
Reference	monitors	

Suman	Jana	
	

*Original	slides	from	Vitaly	Shma9kov	

	

Reference	Monitor	

•  Observes	execu9on	of	the	program/process	
– At	what	level?	Possibili9es:	hardware,	OS,	network	

•  Halts	or	confines	execu9on	if	the	program	is	
about	to	violate	the	security	policy	
– What’s	a	“security	policy”?	
– Which	system	events	are	relevant	to	the	policy?	

•  Instruc9ons,	memory	accesses,	system	calls,	network	
packets…	

•  Cannot	be	circumvented	by	the	monitored	
process	

Enforceable	Security	Policies	

•  Reference	monitors	can	only	enforce		
			safety	policies		[Schneider	‘98]	
–  Execu9on	of	a	process	is	a	sequence	of	states	
–  Safety	policy	is	a	predicate	on	a	prefix	of	the	sequence	

•  Policy	must	depend	only	on	the	past	of	a	par9cular	execu9on;	
once	it	becomes	false,	it’s	always	false	

•  Not	policies	that	require	knowledge	of	the	future	
–  “If	this	server	accepts	a	SYN	packet,	it	will	eventually	
send	a	response”	

•  Not	policies	that	deal	with	all	possible	execu9ons	
–  “This	program	should	never	reveal	a	secret”	

Reference	Monitor	Implementa9on	

•  Policies	can	depend	on	applica9on	seman9cs	
•  Enforcement	doesn’t	require	context	switches	in	the	kernel	
•  Lower	performance	overhead	

Program	

RM	
Kernel	

RM	
Program	

Kernel	

Program	

Kernel	

RM	

Kernelized	 Wrapper	 Modified	program	

Integrate	reference	monitor	into	
program	code	during	compila9on	or	
via	binary	rewri9ng	

What	Makes	a	Process	Safe?	

•  Memory	safety:	all	memory	accesses	are	
“correct”	
– Respect	array	bounds,	don’t	stomp	on	another	
process’s	memory,	don’t	execute	data	as	if	it	were	
code	

•  Control-flow	safety:	all	control	transfers	are	
envisioned	by	the	original	program	
– No	arbitrary	jumps,	no	calls	to	library	rou9nes	that	
the	original	program	did	not	call	

•  Type	safety:	all	func9on	calls	and	opera9ons	
have	arguments	of	correct	type	

OS	as	a	Reference	Monitor	

•  Collec9on	of	running	processes	and	files	
–  Processes	are	associated	with	users	
–  Files	have	access	control	lists	(ACLs)	saying	which	
users	can	read/write/execute	them		

•  OS	enforces	a	variety	of	safety	policies	
–  File	accesses	are	checked	against	file’s	ACL	
–  Process	cannot	write	into	memory	of	another	process	
–  Some	opera9ons	require	superuser	privileges	

•  But	may	need	to	switch	back	and	forth	(e.g.,	setuid	in	Unix)	
–  Enforce	CPU	sharing,	disk	quotas,	etc.	

•  Same	policy	for	all	processes	of	the	same	user	

Hardware	Mechanisms:	TLB	

•  TLB:	Transla9on	Lookaside	Buffer	
– Maps	virtual	to	physical	addresses	
–  Located	next	to	the	cache	
– Only	supervisor	process	can	manipulate	TLB	

•  But	if	OS	is	compromised,	malicious	code	can	abuse	TLB	to	
make	itself	invisible	in	virtual	memory	(Shadow	Walker)	

•  TLB	miss	raises	a	page	fault	excep9on	
–  Control	is	transferred	to	OS	(in	supervisor	mode)	
– OS	brings	the	missing	page	to	the	memory	

•  This	is	an	expensive	context	switch	

Time

calls	f=fopen(“foo”)	

User	Process	

library	executes	“break”	

Kernel	

trap saves	context,	flushes	TLB,	etc.	
checks	UID	against	ACL,	sets	up	IO		
buffers	&	file	context,	pushes	ptr	to		
context	on	user’s	stack,	etc.	
restores	context,	clears	supervisor	bit	

calls	fread(f,n,&buf)	
library	executes	“break”	 saves	context,	flushes	TLB,	etc.	

checks	f	is	a	valid	file	context,	does	
disk	access	into	local	buffer,	copies	
results	into	user’s	buffer,	etc.	
restores	context,	clears	supervisor	bit	

Steps	in	a	System	Call	
[Morrisett]

Midterm	grades	

Modern	Hardware	Meets	Security	

•  Modern	hardware:	large	number	of	registers,	big	
memory	pages	

•  Isola9on	⇒	each	process	should	live	in	its	own	
hardware	address	space	

•  …	but	the	performance	cost	of	inter-process	
communica9on	is	increasing	
–  Context	switches	are	very	expensive	
–  Trapping	into	OS	kernel	requires	flushing	TLB	and	
cache,	compu9ng	jump	des9na9on,	copying	memory	

•  Conflict:	isola9on	vs.	cheap	communica9on	

Sohware	Fault	Isola9on	(SFI)	

•  Processes	live	in	the	same	hardware	address	
space;	sohware	reference	monitor	isolates	
them	
– Each	process	is	assigned	a	logical	“fault	domain”	
– Check	all	memory	references	and	jumps	to	ensure	
they	don’t	leave	process’s	domain	

•  Tradeoff:	checking	vs.	communica9on	
– Pay	the	cost	of	execu9ng	checks	for	each	memory	
write	and	control	transfer	to	save	the	cost	of	
context	switching	when	trapping	into	the	kernel	

[Wahbe	et	al.		SOSP	‘93]	

Fault	Domains	

•  Process’s	code	and	data	in	one	memory	segment	
–  Iden9fied	by	a	unique	pajern	of	upper	bits	
–  Code	is	separate	from	data	(heap,	stack,	etc.)	
–  Think	of	a	fault	domain	as	a	“sandbox”	

•  Binary	modified	so	that	it	cannot	escape	domain	
– Addresses	are	masked	so	that	all	memory	writes	are	to	
addresses	within	the	segment	
•  Coarse-grained	memory	safety	(vs.	array	bounds	checking)	

–  Code	is	inserted	before	each	jump	to	ensure	that	the	
des9na9on	is	within	the	segment	

•  Does	this	help	much	against	buffer	overflows?	

Verifying	Jumps	and	Stores	

•  If	target	address	can	be	determined	sta9cally,	
mask	it	with	the	segment’s	upper	bits	
–  Crash,	but	won’t	stomp	on	another	process’s	memory	

•  If	address	unknown	un9l	run9me,	insert	checking	
code	before	the	instruc9on	

•  Ensure	that	code	can’t	jump	around	the	checks	
–  Target	address	held	in	a	dedicated	register	
–  Its	value	is	changed	only	by	inserted	code,	atomically,	
and	only	with	a	value	from	the	data	segment	

Simple	SFI	Example	

•  Fault	domain	=	from	0x1200	to	0x12FF	
•  Original	code:	write	x	
•  Naïve	SFI: 	x	:=	x	&	00FF	
																						 	x	:=	x	|	1200	
		 		 	 	write	x	
•  Bejer	SFI: 	tmp	:=	x	&	00FF	
		 	 	tmp	:=	tmp	|	1200	
		 	 	write	tmp	

convert	x	into	an	address	that	
lies	within	the	fault	domain	

What	if	the	code	jumps	right	here?	
…

Inline	Reference	Monitor	

•  Generalize	SFI	to	more	general	safety	policies	than	
just	memory	safety	
–  Policy	specified	in	some	formal	language	
–  Policy	deals	with	applica9on-level	concepts:	access	to	
system	resources,	network	events,	etc.	
•  “No	process	should	send	to	the	network	aher	reading	a	file”,	

“No	process	should	open	more	than	3	windows”,	…	

•  Policy	checks	are	integrated	into	the	binary	code	
–  Via	binary	rewri9ng	or	when	compiling	

•  Inserted	checks	should	be	uncircumventable	
–  Rely	on	SFI	for	basic	memory	safety	

Policy	Specifica9on	in	SASI	

SASI	policies	are	finite-state	automata	
•  Can	express	any	safety	policy	
•  Easy	to	analyze,	emulate,	compile	
•  Wrijen	in	SAL	language	(textual	version	of	diagrams)	

No	division	by	zero	

 ¬ (op = “div”
arg2 = 0) ∧

read¬ send¬

read

No	network	send	aher	file	read	

[Cornell project]

Policy	Enforcement	

•  Checking	before	every	instruc9on	is	an	overkill	
–  Check	“No	division	by	zero”	only	before	DIV	

•  SASI	uses	par9al	evalua9on	
–  Insert	policy	checks	before	every	instruc9on,	then	rely	
on	sta9c	analysis	to	eliminate	unnecessary	checks	

•  There	is	a	“seman9c	gap”	between	individual	
instruc9ons	and	policy-level	events	
– Applica9ons	use	abstrac9ons	such	as	strings,	types,	
files,	func9on	calls,	etc.	

–  Reference	monitor	must	synthesize	these	abstrac9ons	
from	low-level	assembly	code	

M.	Abadi,	M.	Budiu,	U.	Erlingsson,	J.	Ligaq	
	

Control-Flow	Integrity:	
Principles,	Implementa9ons,	and	Applica9ons	

	
(CCS	2005)	

•  Main	idea:	pre-determine	control	flow	graph	
(CFG)	of	an	applica9on	
– Sta9c	analysis	of	source	code	
– Sta9c	binary	analysis			←	CFI	
– Execu9on	profiling	
– Explicit	specifica9on	of	security	policy	

•  Execu9on	must	follow	the	pre-determined	
control	flow	graph	

CFI:	Control-Flow	Integrity	
[Abadi	et	al.]	

•  Use	binary	rewri9ng	to	instrument	code	with	
run9me	checks	(similar	to	SFI)	

•  Inserted	checks	ensure	that	the	execu9on	always	
stays	within	the	sta9cally	determined	CFG	
– Whenever	an	instruc9on	transfers	control,	des9na9on	
must	be	valid	according	to	the	CFG	

•  Goal:	prevent	injec9on	of	arbitrary	code	and	
invalid	control	transfers	(e.g.,	return-oriented-
programming)	
–  Secure	even	if	the	ajacker	has	complete	control	over	
the	thread’s	address	space	

CFI:	Binary	Instrumenta9on	

CFG	Example	

•  For	each	control	transfer,	determine	sta9cally	its	
possible	des9na9on(s)	

•  Insert	a	unique	bit	pajern	at	every	des9na9on	
–  Two	des9na9ons	are	equivalent	if	CFG	contains	edges	
to	each	from	the	same	source	
•  This	is	imprecise	(why?)	

– Use	same	bit	pajern	for	equivalent	des9na9ons	

•  Insert	binary	code	that	at	run9me	will	check	
whether	the	bit	pajern	of	the	target	instruc9on	
matches	the	pajern	of	possible	des9na9ons	

CFI:	Control	Flow	Enforcement	

CFI:	Example	of	Instrumenta9on	

Original	code	

Instrumented	code	

Abuse	an	x86	assembly	instruc9on	to	
insert	“12345678”	tag	into	the	binary	Jump	to	the	des9na9on	only	if	

the	tag	is	equal	to	“12345678”	

•  Unique	IDs	
–  Bit	pajerns	chosen	as	des9na9on	IDs	must	not	appear	
anywhere	else	in	the	code	memory	except	ID	checks	

•  Non-writable	code	
–  Program	should	not	modify	code	memory	at	run9me	

•  What	about	run-9me	code	genera9on	and	self-modifica9on?	

•  Non-executable	data	
–  Program	should	not	execute	data	as	if	it	were	code	

•  Enforcement:	hardware	support	+	prohibit	system	
calls	that	change	protec9on	state	+	verifica9on	at	
load-9me	

CFI:	Preven9ng	Circumven9on	

•  Suppose	a	call	from	A	goes	to	C,	and	a	call	from	B	
goes	to	either	C,	or	D	(when	can	this	happen?)	
–  CFI	will	use	the	same	tag	for	C	and	D,	but	this	allows	an	

“invalid”	call	from	A	to	D	
–  Possible	solu9on:	duplicate	code	or	inline	
–  Possible	solu9on:	mul9ple	tags	

•  Func9on	F	is	called	first	from	A,	then	from	B;	
what’s	a	valid	des9na9on	for	its	return?	
–  CFI	will	use	the	same	tag	for	both	call	sites,	but	this	
allows	F	to	return	to	B	aher	being	called	from	A	

–  Solu9on:	shadow	call	stack	

Improving	CFI	Precision	

CFI:	Security	Guarantees	

•  Effec9ve	against	ajacks	based	on	illegi9mate	
control-flow	transfer	
– Stack-based	buffer	overflow,	return-to-libc	
exploits,	pointer	subterfuge	

•  Does	not	protect	against	ajacks	that	do	not	
violate	the	program’s	original	CFG	
–  Incorrect	arguments	to	system	calls	
– Subs9tu9on	of	file	names	
– Other	data-only	ajacks	

Possible	Execu9on	of	Memory	
[Erlingsson]

Next	Step:	XFI	

•  Inline	reference	monitor	added	via	binary	
rewri9ng	
– Can	be	applied	to	some	legacy	code	

•  CFI	to	prevent	circumven9on	
•  Fine-grained	access	control	policies	for	
memory	regions	
– More	than	simple	memory	safety	(cf.	SFI)	

•  Relies	in	part	on	load-9me	verifica9on	
– Similar	to	“proof-carrying	code”	

[Erlingsson et al. OSDI ‘06]

Two	Stacks	
•  XFI	maintains	a	separate	“scoped	stack” with	
return	addresses	and	some	local	variables	
–  Keeps	track	of	func9on	calls,	returns	and	excep9ons	

•  Secure	storage	area	for	func9on-local	informa9on	
–  Cannot	be	overflown,	accessed	via	a	computed	
reference	or	pointer,	etc.	

–  Stack	integrity	ensured	by	sohware	guards	
–  Presence	of	guards	is	determined	by	sta9c	verifica9on	
when	program	is	loaded	

•  Separate	“alloca9on	stack”	for	arrays	and	local	
variables	whose	address	can	be	passed	around	

XFI:	Memory	Access	Control	

•  Module	has	access	to	its	own	memory	
– With	restric9ons	(e.g.,	shouldn’t	be	able	to	corrupt	its	
own	scoped	stack)	

•  Host	can	also	grant	access	to	other	con9guous	
memory	regions	
–  Fine-grained:	can	restrict	access	to	a	single	byte	
– Access	to	constant	addresses	and	scoped	stack	verified	
sta9cally	

–  Inline	memory	guards	verify	other	accesses	at	run9me	
•  Fast	inline	verifica9on	for	a	certain	address	range;	if	fails,	call	
special	rou9nes	that	check	access	control	data	structures	

XFI:	Preven9ng	Circumven9on	

•  Integrity	of	the	XFI	protec9on	environment	
– Basic	control-flow	integrity	
– “Scoped	stack”	prevents	out-of-order	execu9on	
paths	even	if	they	match	control-flow	graph	

– Dangerous	instruc9ons	are	never	executed	or	their	
execu9on	is	restricted	
•  For	example,	privileged	instruc9ons	that	change	
protec9on	state,	modify	x86	flags,	etc.	

•  Therefore,	XFI	modules	can	even	run	in	kernel	

