

Automated Black-Box Detection of Side-Channel Vulnerabilities in Web Applications

CCS '11 October 19, 2011 Peter Chapman David Evans University of Virginia http://www.cs.virginia.edu/sca/

Side-Channel Leaks in Web Apps

HTTPS over WPA2

Goc

Chen⁺, Oakland 2010

bir

AHOO!

Modern Web Apps

Dynamic and Responsive Browsing Experience

Traffic is now closely associated with the demanded content.

Motivation: Detect Vulnerabilities

Motivation: Evaluate Defenses

Approach

State Transitions (Collection of Network Traces)

A Black-Box Approach

Similar to Real Attack Scenario

Applicable to Most Web Applications

Full Browser Analysis

Black-Box Web Application Crawling

Crawljax

http://crawljax.com/

Approach

Threat Models and Assumptions

Both: Victim begins at root of application

WiFi No disruptive traffic Distinguish incoming and outgoing

Nearest-Centroid Classifier

FSM of Web Application

Given an unknown network trace, we want to determine to which state transition it belongs

Classify unknown trace as one with the closest centroid

State Transitions (Collection of Network Traces)

Distance Metrics

between two traces		Size-Weighted-Edit-Distance	
		Convert to string, weighted edit	t
	•	distance hased on size	
Edit-Distance	tion	(2.14.204 -> 192.108.1 b2 DVTes	
Unweighted edit	e of \$746851 ->	> 72.14.204 281 bytes > 72.14.204 62 bytes > 72.14,204 62 bytes > 72.14,204 62 bytes	5
distance	72.14.204 -> n each ₆ party	> 192.168.1 62 bytes 192.168.1 52 bytes 72.14.204 294 bytes 72.14,204 482 bytes 72.14,204 482 bytes 72.14,204 482 bytes	,
	72.14.204 -> 192.168.1 -> 72.14.204 ->	<pre>> 192.168.1 693 bytes > 192.168.1 693 bytes > 72.14.204 453 bytes > 72.14.204 62 bytes > 72.14.204 62 bytes > 192.168.1 62 bytes > 192.168.1 62 bytes</pre>	5
	192.168.1 ->	> 72.14.204 281 bytes A 281 bytes	
	72.14.204 ->	> 192.168.1 1860 bytes B 1860 bytes	5
	192.168.1 ->	> 72.14.204 294 bytes A 294 bytes	
	72.14.204 ->	> 192.168.1 296 bytes B 296 bytes	
	192.168.1 ->	> 72.14.204 453 bytes A 453 bytes	
	72.14.204 ->	> 192.168.1 2828 bytes B 2828 bytes	5

Classifier Performance – Google Search

dangerous ideas dangerous ideas dangerous ideas **book**

dangerous ideas festival

darwin's dangerous ideas most dangerous ideas in defense of dangerous ideas

the world's most dangerous ideas

First character typed, ISP threat model

Quantifying Leaks

Leak quantification should be independent of a specific classifier implementation

Entropy Measurements

Entropy measurements are a function of the average size of an attacker's uncertainty set given a network trace

Traditional Entropy Measurement

Determining Indistinguishability

At what point are two classes indistinguishable (same uncertainty sets)?

Determining Indistinguishability

Compare points to centroids?

Same issue with individual points.

In practice the area can be very large due to high variance in network conditions

Entropy Distinguishability Threshold

Threshold of 75%

Google Search Entropy Calculations

	Threshold		
	100%	75%	50%
Desired	4.70	4.70	4.70
Total-Source- Destination	2.95	2.40	0.44
Size- Weighted- Edit-Distance	1.13	0.56	0.44
Edit-Distance	4.70	4.70	4.70

(measured in bits of entropy)

We'd rather not use something with an arbitrary parameter

[11] Ronald A. Fisher. The Use of Multiple Measurements in Taxonomic Problems. *Annals of Eugenics*, 1936.

Marred Arthur Guinness' daughter, secret wedding (she was 17) in 1917

Ronald Fisher (1890-1962)

Developed many statistical tools as a part of his prominent role in the eugenics community

Arthur Guinness (1835-1910)

Like all good stories, this one starts with a Guinness.

Arthur Guinness (1725-1803)

"Guinness is Good for You"

Google Search Fisher Calculations

Fisher Criterion Calculations

Total-Source- Destination	4.13
Size-Weighted-Edit- Distance	41.7
Edit-Distance	0.00

Entropy Calculations

	100%	75%	50%
Desired	4.70	4.70	4.70
Total-Source- Destination	2.95	2.40	0.44
Size- Weighted- Edit-Distance	1.13	0.56	0.44
Edit-Distance	4.70	4.70	4.70

Other Applications

Bing Search Suggestions

Other Applications

NHS Symptom Checker

Evaluating Defenses

With black-box approach, evaluating defenses is easy!

HTTPOS: Sealing Information Leaks with Browser-side Obfuscation of Encrypted Flows

Xiapu Luo^{§*}, Peng Zhou[§], Edmond W. W. Chan[§], Wenke Lee[†], Rocky K. C. Chang[§], Roberto Perdisci[‡] The Hong Kong Polytechnic University[§], Georgia Institute of Technology[†], University of Georgia[‡] {csxluo,cspzhouroc,cswwchan,csrchang}@comp.polyu.edu.hk,wenke@cc.gatech.edu,perdisci@cs.uga.edu

Abstract

Leakage of private information from web applications even when the traffic is encrypted—is a major security threat to many applications that use HTTP for data delivbe profiled from traffic features [29]. A common approach to preventing leaks is to obfuscate the encrypted traffic by changing the statistical features of t packet size and packet timing inform NDSS 2011

Existing methods for defending against information

HTTPOS Search Suggestions

Before HTTPOS	(matches)		
	1	10	
Random	2.9%	35.6%	
Total-Source- Destination	46.1%	100%	
Size-Weighted- Edit-Distance	46.1%	100%	
Edit-Distance	3.8%	39.5%	

(matches)

		1	10
	Random	2.9%	35.6%
After HTTPOS	Total-Source- Destination	3.4%	38.0%
	Size-Weighted- Edit-Distance	3.8%	38.0%
	Edit-Distance	3.4%	35.5%

HTTPOS Search Suggestions

Before HTTPOS

After HTTPOS

Fisher Criterion Calculations		Fisher Criterion Calculations	
Total-Source- Destination	4.13	Total-Source- Destination	0.28
Size-Weighted-Edit- Distance	41.7	Size-Weighted-Edit- Distance	0.43
Edit-Distance	0.00	Edit-Distance	0.14

HTTPOS works well with search suggestions

HTTPOS Google Instant

Before HTT	POS] (ma	(matches)		
		1	10		
Random		2.9%	35.6%		
Total-Source Destinatior	e- 1	47.5%	88.3%		
Size-Weighte Edit-Distanc	ed- ce	7.3%	52.6%		
Edit-Distance 7.7%		56.0%	(mat	(matches)	
			1	10	
			Random	2.9%	35.6%
After HTTPOS		Total-Source- Destination	43.7%	87.6%	
			Size-Weighted- Edit-Distance	8.2%	51.4%
			Edit-Distance	8.7%	55.0%

HTTPOS Google Instant

Before HTTPOS

After HTTPOS

Fisher Criterion Calculations		Fisher Criterion Calculations	
Total-Source- Destination	1.13	Total-Source- Destination	0.60
Size-Weighted- Edit-Distance	0.34	Size-Weighted- Edit-Distance	0.55
Edit-Distance	0.22	Edit-Distance	0.47

No training phase, so HTTPOS works well with search suggestions, but not entire pages

Summary

Evaluated real web apps and a proposed defense system

Developed Fisher Criterion as an alternative measurement for information leaks in this domain

