
Data Flow Analysis

Suman	Jana	

Adopted	From	U	Penn	CIS	570:	Modern	Programming	Language	Implementa=on	(Autumn	2006)	
	

Data flow analysis

•  Derives	informa=on	about	the	dynamic	
behavior	of	a	program	by	only	
examining	the	sta*c	code	
•  Intraprocedural	analysis	
•  Flow-sensi=ve:		sensi=ve	to	the	control	
flow	in	a	func=on	

	
•  Examples	
– 	Live	variable	analysis		
– 	Constant	propaga=on		
– 	Common	subexpression	elimina=on	
– 	Dead	code	detec=on	

1 a := 0
2 L1: b := a + 1

3 c := c + b
4 a := b * 2
5 if a < 9 goto L1
6 return c

•  How	many	registers	do	we	need?	
•  Easy	bound:	#	of	used	variables	(3)	
•  Need	beTer	answer	

Data flow analysis

•  Sta=cally:	finite	program	
•  Dynamically:	can	have	infinitely	many	paths	
•  Data	flow	analysis	abstrac=on	

•  For	each	point	in	the	program,	combines	informa=on	of	all	instances	of	the	
same	program	point		

Example 1: Liveness Analysis

Liveness Analysis

Defini*on	
– A	variable	is	live	at	a	par=cular	point	in	the	program	if	its	value	at	that		
point	will	be	used	in	the	future	(dead,	otherwise).	

– To	compute	liveness	at	a	given	point,	we	need	to	look	into	the	future	
	
Mo*va*on:		Register	Alloca*on	
– A	program	contains	an	unbounded	number	of	variables	
– 	Must	execute	on	a	machine	with	a	bounded	number	of	registers	
– Two	variables	can	use	the	same	register	if	they	are	never	in	use	at	the	
same		=me	(i.e,	never	simultaneously	live).	

– Register	alloca=on	uses	liveness	informa=on	

Control Flow Graph

•  Let’s	consider	CFG	where	nodes	
contain	program	statement	
instead	of	basic	block.	
•  	Example	

1.  a	:=	0	
2.  L1:	b	:=	a	+	1	
3.  c:=	c	+	b	
4.  a	:=	b	*	2	
5.  if		a	<	9	goto	L1	
6.  return	c		

4.						a	=	b	*	2	

2.				b	=	a	+	1	

1.				a	=	0	

3.					c	=	c	+	b	

5.							a	<	9	

6.	return	c	

No	 Yes	

Liveness by Example

•  Live	range	of	b	
•  Variable	b	is	read	in	line	4,	so	b	is	
live	on	3->4	edge	
•  b	is	also	read	in	line	3,	so	b	is	live	
on	(2->3)	edge	
•  Line	2	assigns	b,	so	value	of	b	on	
edges	(1->2)	and	(5->2)	are	not	
needed.	So	b	is	dead	along	those	
edges.	

• b’s	live	range	is	(2->3->4)	

4.						a	=	b	*	2	

2.				b	=	a	+	1	

1.				a	=	0	

3.					c	=	c	+	b	

5.							a	<	9	

6.	return	c	

No	 Yes	

Liveness by Example

•  Live	range	of	a	
•  (1->2)	and	(4->5->2)	
•  a	is	dead	on	(2->3->4)	

4.						a	=	b	*	2	

2.				b	=	a	+	1	

1.				a	=	0	

3.					c	=	c	+	b	

5.							a	<	9	

6.	return	c	

No	 Yes	

Terminology

•  Flow	graph	terms	

•  A	CFG	node	has	out-edges	that	lead	
to	successor	nodes	and	in-edges	that		
come	from	predecessor	nodes	

•  pred[n]	is	the	set	of	all	predecessors	
of	node	n		

•  succ[n]	is	the	set	of	all	successors	of	
node	n	

	
4.						a	=	b	*	2	

2.				b	=	a	+	1	

1.				a	=	0	

3.					c	=	c	+	b	

5.							a	<	9	

6.	return	c	

No	 Yes	

Examples
– Out-edges	of	node	5:	(5→6)	and	(5→2)	

–		succ[5]	=		{2,6}	
–		pred[5]	=		{4}	
–		pred[2]	=		{1,5}	

Uses and Defs

Def	(or	defini*on)	
– An	assignment	of	a	value	to	a	variable	
– def[v]	=	set	of	CFG	nodes	that	define	variable	v	
– def[n]	=	set	of	variables	that	are	defined	at	node	n	

Use	
– A	read	of	a	variable’s	value	
– use[v]	=	set	of	CFG	nodes	that	use	variable	v	
– use[n]	=	set	of	variables	that	are	used	at	node	n	

More	precise	defini*on	of	liveness	
–		A	variable	v	is	live	on	a	CFG	edge	if	

(1) ∃ a	directed	path	from	that	edge	to	a	use	of	v	
(node	in	use[v]),	and	

(2) that	path	does	not	go	through	any	def	of	v	(no	
nodes	in	def[v])	

a = 0

a < 9

∉ def[v]

∈ use[v]

v live

The Flow of Liveness

•  Data-flow	
•  Liveness	of	variables	is	a	property	
that	flows		through	the	edges	of	
the	CFG	

•  Direc=on	of	Flow	
•  Liveness	flows	backwards	through	
the	CFG,		because	the	behavior	at	
future	nodes		determines	liveness	
at	a	given	node	

4.						a	=	b	*	2	

2.				b	=	a	+	1	

1.				a	=	0	

3.					c	=	c	+	b	

5.							a	<	9	

6.	return	c	

No	 Yes	

Liveness at Nodes

4.						a	=	b	*	2	

2.				b	=	a	+	1	

1.				a	=	0	

3.					c	=	c	+	b	

5.							a	<	9	

6.	return	c	

No	 Yes	

a = 0

Just	before	computa=on	

Just	amer	computa=on	

Two	More	Defini*ons	
–	A	variable	is	live-out	at	a	node	if	it	is	live	on	any	
out	edges	

–		A	variable	is	live-in	at	a	node	if	it	is	live	on	any	in	edges	

CompuEng Liveness

•  Generate	liveness:	If	a	variable	is	in	use[n],		it	is	live-in	at	node	n	
•  Push	liveness	across	edges:	

•  If	a	variable	is	live-in	at	a	node	n	
•  then	it	is	live-out	at	all	nodes	in	pred[n]	

•  		Push	liveness	across	nodes:	
•  If	a	variable	is	live-out	at	node	n	and	not	in	def[n]	
•  then	the	variable	is	also	live-in	at	n	

•  		Data	flow	Equa=on:	 in[n] = use[n] ∪ (out[n] – def[n])

out[n] = ∪ in[s]
s ∈ succ[n]

Solving Dataflow EquaEon

for	each	node	n	in	CFG	
																			in[n]	=	∅;	out[n]	=	∅	
repeat	
													for	each	node	n	in	CFG	
																								in’[n]	=	in[n]	
																								out’[n]	=	out[n]	
																									in[n]	=	use[n]	∪	(out[n]	–	def[n])	
																									out[n]	=	∪	in[s]		
																																			s	∈	succ[n]	
un*l	in’[n]=in[n]	and	out’[n]=out[n]	for	all	n	

Ini=alize	solu=ons	

Save	current	results	

Solve	data-flow	equa=on	

Test	for	convergence	

CompuEng Liveness Example

4.						a	=	b	*	2	

2.				b	=	a	+	1	

1.				a	=	0	

3.					c	=	c	+	b	

5.							a	<	9	

6.	return	c	

No	 Yes	

IteraEng Backwards: Converges Faster

4.						a	=	b	*	2	

2.				b	=	a	+	1	

1.				a	=	0	

3.					c	=	c	+	b	

5.							a	<	9	

6.	return	c	

No	 Yes	

Liveness Example: Round1

4.						a	=	b	*	2	

2.				b	=	a	+	1	

1.				a	=	0	

3.					c	=	c	+	b	

5.							a	<	9	

6.	return	c	

No	 Yes	

A variable is live at a particular point in the program if its value
at that point will be used in the future (dead, otherwise).	

Node	 use	 def	

6	 c	

5	 a	

4	 b	 a	

3	 bc	 c	

2	 a	 b	

1	 a	

Liveness Example: Round1

4.						a	=	b	*	2	

2.				b	=	a	+	1	

1.				a	=	0	

3.					c	=	c	+	b	

5.							a	<	9	

6.	return	c	

No	

Yes	

Node	 use	 def	

6	 c	

5	 a	

4	 b	 a	

3	 bc	 c	

2	 a	 b	

1	 a	

in:	c	

in:	ac	

out:	c	

in:	bc	

out:	ac	

in:	bc	

out:	bc	

in:	ac	

out:	bc	

in:	c	

out:	ac	

Liveness Example: Round1

4.						a	=	b	*	2	

2.				b	=	a	+	1	

1.				a	=	0	

3.					c	=	c	+	b	

5.							a	<	9	

6.	return	c	

No	

Yes	

Node	 use	 def	

6	 c	

5	 a	

4	 b	 a	

3	 bc	 c	

2	 a	 b	

1	 a	

in:	c	

in:	ac	

out:	ac	

in:	bc	

out:	ac	

in:	bc	

out:	bc	

in:	ac	

out:	bc	

in:	c	

out:	ac	

ConservaEve ApproximaEon

4.						a	=	b	*	2	

2.				b	=	a	+	1	

1.				a	=	0	

3.					c	=	c	+	b	

5.							a	<	9	

6.	return	c	

No	 Yes	Solu*on	X:	
-	From	the	previous	slide	

ConservaEve ApproximaEon

4.						a	=	b	*	2	

2.				b	=	a	+	1	

1.				a	=	0	

3.					c	=	c	+	b	

5.							a	<	9	

6.	return	c	

No	 Yes	

Solu*on	Y:	
Carries	variable	d	uselessly		
–	Does	Y	lead	to	a	correct	program?	

Imprecise	conserva*ve	solu*ons	⇒	sub-op*mal	but	correct	programs	

ConservaEve ApproximaEon

4.						a	=	b	*	2	

2.				b	=	a	+	1	

1.				a	=	0	

3.					c	=	c	+	b	

5.							a	<	9	

6.	return	c	

No	 Yes	

Solu*on	Z:	
Does	not	iden=fy	c	as	live	in	all	cases	
–	Does	Z	lead	to	a	correct	program?	

Non-conserva*ve	solu*ons	⇒	incorrect	programs	

Need for approximaEon

•  Sta=c	vs.	Dynamic	Liveness:	b*b	is	always	non-nega=ve,	so	c	>=	b	is	
always	true	and	a’s	value	will	never	be	used	amer	node		

No	compiler	can	sta*cally	iden*fy	all	
infeasible	paths	

Liveness Analysis Example Summary

•  Live	range	of	a	
•  (1->2)	and	(4->5->2)	

•  Live	range	of	b	
•  (2->3->4)		

•  Live	range	of	c	
•  Entry->1->2->3->4->5->2,	5->6		

	
	

You	need	2	registers	Why?	

4.						a	=	b	*	2	

2.				b	=	a	+	1	

1.				a	=	0	

3.					c	=	c	+	b	

5.							a	<	9	

6.	return	c	

No	 Yes	

Example 2: Reaching DefiniEon

CompuEng Reaching DefiniEon

• Assump=on:	At	most	one	defini=on	per	node	

• Gen[n]:	Defini=ons	that	are	generated	by	node	n	(at	most	one)	
• Kill[n]:	Defini=ons	that	are	killed	by	node	n	

{y,i}	

Data-flow equaEons for Reaching DefiniEon

Recall Liveness Analysis

• Data-flow	Equa=on	for	liveness	

	
•  Liveness	equa*ons	in	terms	of	Gen	and	Kill	

Gen:	New	informa=on	that’s	added	at	a	node	
Kill:	Old	informa=on	that’s	removed	at	a	node	
	
Can	define	almost	any	data-flow	analysis	in	terms	of	Gen	and	Kill	

DirecEon of Flow

Data-Flow EquaEon for reaching definiEon

Available Expression

• An	expression,	x+y,	is	available	at	node	n	if	every	path	from	the	entry	
node	to	n	evaluates	x+y,	and	there	are	no	defini=ons	of	x	or	y	amer	
the	last	evalua=on.	

Available Expression for CSE

• Common	Subexpression	eliminated	
•  If	an	expression	is	available	at	a	point	where	it	is	evaluated,	it	need	not	be	
recomputed	

Must vs. May analysis

• May	informa*on:		Iden=fies	possibili=es	
• Must	informa*on:	Implies	a	guarantee	

May	 Must	

Forward	 Reaching	Defini=on	 Available	Expression	

Backward	 Live	Variables	 Very	Busy	Expression	

