Data Flow Analysis

Suman Jana

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

* Derives information about the dynamic 1 a:=0
behavior of a program by only 2 Ll: b :=a+1

examining the static code 3 c:=c+b
* Intraprocedural analysis 4 a :=Db * 2
* Flow-sensitive: sensitive to the control 5 if a < 9 goto L1
6 return c

flow in a function
« Examples How many registers do we need?
— Live variable analysis
— Constant propagation
— Common subexpression elimination
— Dead code detection

Easy bound: # of used variables (3)
Need better answer

Bl | a =10

A
B2 || if input() |»exit

Y
b
a

B3)

a
1

: finite program
: can have infinitely many paths

e Data flow analysis abstraction
* For each point in the program, combines information of all instances of the

same program point

Example 1: Liveness Analysis

Definition
—A variable is live at a particular point in the program if its value at that
point will be used in the future (dead, otherwise).

—To compute liveness at a given point, we need to look into the future

Motivation: Register Allocation
—A program contains an unbounded number of variables
— Must execute on a machine with a bounded number of registers

—Two variables can use the same register if they are never in use at the
same time (i.e, never simultaneously live).

—Register allocation uses liveness information

e Let’s consider CFG where nodes
contain program statement
instead of basic block.

e Example

a:=0
L1:b:=a+1
cc=c+b
a:=b*2

if a<9gotolLl
return c

o UsEWN R

No

6. return c

Yes

* Live range of b

e Variablebisreadinline4,sobis
live on 3->4 edge

* bisalsoreadinline 3,sobis live
on (2->3) edge
* Line 2 assigns b, so value of b on

edges (1->2) and (5->2) are not . L,
needed. So b is dead along those a7
edges.
) 1. . 5. ax?9
* b’s live range is (2->3->4) No Yes

6. return c

Liveness by Example

* Live range of a
e (1->2) and (4->5->2)
* aisdead on (2->3->4)

6. return c

Yes

* Flow graph terms

* A CFG node has out-edges that lead
to successor nodes and in-edges that
come from predecessor nodes

e pred[n]is the set of all predecessors
of node n

e succ[n] is the set of all successors of
node n

Examples
— QOut-edges of node 5: (5-6) and (5-2)
— succ[5] = {2,6}

— pred[5] = {4
— Bred 2] = 11,}5}

1. a=0

2. b=a+1l

3. c¢c=c+b

4, a=b*2

5. ax<9
No

6. return c

Yes

Def (or definition)
—An assignment of a value to a variable
—def[v] = set of CFG nodes that define variable v
—def[n] = set of variables that are defined at node n

Use
—A read of a variable’s value

—use[v] = set of CFG nodes that use variable v a<2?y9
—use[n] = set of variables that are used at node n

More precise definition of liveness

v live
— A variable v is live on a CFG edge if \/

(1)3 a directed path from that edge to a use of v 2 & def[v]
(node in use[v]), and

(2)that path does not go through any def of v (no € use[v]
nodes in def[v])

e Data-flow
* Liveness of variables is a property
that flows through the edges of
the CFG

e Direction of Flow

* Liveness flows backwards through
the CFG, because the behavior at
future nodes determines liveness
at a given node

6. return c

Yes

Liveness at Nodes

1 Just before computation

a=290
1 Just after computation

Two More Definitions
— A variable is live-out at a node if it is live on any
out edges

— Avariable is live-in at a node if it is live on any in edges |

1. a=0

2 b=al1

3 c=;;b
4. a=b*2
5 a<9

6. return c

Yes

 G@Generate liveness: If a variable is in use[n], itis live-in at node n

 Push liveness across edges:
 If avariableis live-in at a node n
 thenitis live-out at all nodes in pred[n]

e Push liveness across nodes:

* |f a variable is live-out at node n and not in def[n]
* then the variable is also live-in at n

* Data flow Equation: ininl=usen] U (outin] - defin])

out[n]= U in[s]
s € succ[n]

for each node nin CFG
in[n] - o out[n] _ Initialize solutions
repeat
for each node n in CFG
in’[n] =in[n]
out’[n] = out[n]
in[n] = use[n] U (out[n] — def[n])
out[n] = U in]s]
s € succ[n]
until in’[n]=in[n] and out’[n]=out[n] for all n Test for convergence

Save current results

Solve data-flow equation

Computing Liveness Example

Ist 2nd 3rd 4th 5th 6th 7th
n%ie use def| in out | in out |in out [in out | in out | in out | in out
1 a a ac | cac| cac| c ac
2 a a a bc |ac bc |ac be|ac befac be|ac be
3 bc be bc b |bc b |bc b |bec b [bc be|be be
4 Db b b a|b a |b ac|bc ac|bc ac|bc ac
5 a a a |a acfac ac|ac ac|ac ac|ac ac|ac ac
6 ¢ C c C c C c C

\ 4

a<o

V

6. return c

Yes

'terating Backwards: Converges Faster

st 2nd 3rd
no#le use def |out in |out in |out in
6 ¢ C C C
5 a ¢ ac| ac aclac ac
4 b ac bc| ac befac Dbce
3 bc bc be| be belbe be
2 a bc ac| be ac| be ac
1 ac clac c |ac ¢

6. return c

Yes

Liveness Example: Roundl

R N W B 01O

A variable is live at a particular point in the program if its value l
at that point will be used in the future (dead, otherwise). 1 3=0
Algorithm '
2 =a+1l
for each node n in CFG b=a
in[n] = &; out[n] =& } [nitialize solutions |
repeat 3. c=c+b

for each node n in CFG in reverse topsort order

in’[n] = in[n] Save current results 4 a=b*2

out’[n] = out|n]
outjn]= U in|s]

s € suce|n]

} Solve data-flow equations Y
in[n] = use[n| U (out|n| — def|n])

until in’[n]=in[n] and out’[n]=out[n] for all n } Test for convergence V
o

6. return c

Yes

Liveness Example: Roundl

Algorithm

for each node n in CFG
in[n] =J; out[n] =9
repeat

} Initialize solutions

for each node n in CFG in reverse topsort order
in’[n] = in[n]
out’[n] = out[n]
out|n] = e lech[n] in|s]

in[n] = use[n] U (out[n] —
until in’[n]=in[n] and out’[n]=out|[n] for all n } Test for convergence

Save current results

} Solve data-flow equations
def]n])

6 C
5 a
4 b
. l 3 bc
in: c
a=0 2 a
out: ac
. A 1
in: ac
b=a+1 ‘
out: bc
v in: bc
c=c+b
out: bc
in: bc
a=b*2
out: ac
= in: ac
a<9
t:
NG out: ¢
in: c

6. return c

Yes

Liveness Example: Roundl

Algorithm

for each node n in CFG
in[n] =9; out[n] =2
repeat
for each node n in CFG in reverse topsort order
in’[n] = in[n]
out’[n] = out[n]
out|n] = e St.ch[n] in|s]
in[n] = use[n] U (out|n] —
until in’[n]=in[n] and out’[n]=out[n] for all n } Test for convergence

} Initialize solutions

Save current results

} Solve data-flow equations
def]n])

6 C
5 a
4 b
. l 3 bc
in: c
a=0 2 a
out: ac
. 4 1
in: ac
b=a+1 ‘
out: bc
v in: bc
c=c+b
out: bc
in: bc
a=b*2
out: ac
= in: ac
a<9
t:
NG out: ac
in: c

6. return c

Yes

Conservative Approximation

X Y Z

ll%fle use def||in out |in out|in out
1 a ¢ ac cd acd] c¢ ac
2 a b || ac bec |acd bed| ac b
3 bc ¢ || bc bec |bed bcj b b
4 b a || bc ac |becd acd| b ac
5 a ac ac |acd acd|ac ac
6 C C C C
Solution X:

- From the previous slide

6. return c

Yes

Conservative Approximation

X Y Z
n%gie use def|| in out |in out| in out
1 a c ac cd acd| ¢ ac
2 a b ac bc |acd bed| ac b
3 bc ¢ | bc bec |[bed bcc:| b b
4 b a || bc ac |bed acd| b ac
5 a ac ac |acd acd|ac ac
6 C C C C
Solution Y:

Carries variable d uselessly

— Does Y lead to a correct program?

1. a=0

2 b=al1

3 c=;;b

4. a=b*2

5. a<;
L

6. return c

Imprecise conservative solutions = sub-optimal but correct programs

Yes

Conservative Approximation

X Y y4 1
ngrﬂe use def| in out [in out |[in out 1. a=0

1 a Cc ac cd acd| c¢ ac !

2 a b [ac bc [acd bed| ac b 2 b=a+1 <

3 bc ¢ [bc bec |bedbed b b

4 b a || bc ac |bed accl' b ac .

5 a ac ac |acd acd|ac ac 3 c=ctb

6 C c c c

4, a=b*2

Solution Z: !
Does not identify c as live in all cases 5 a<9
— Does Z lead to a correct program? V Yes

6. return c

Non-conservative solutions = incorrect programs

Need for approximation

e Static vs. Dynamic Liveness: b*b is always non-negative, soc>=b is
always true and a’s value will never be used after node

lla :=b *Db _ . o
'# No compiler can statically identify all
infeasible paths
2flc :=a+bh
3l ¢ >= Db? .
No Yes

4| return a 5| return c

Liveness Analysis Example Summary

* Live range of a |
* (1->2) and (4->5->2) 1 a0
* Live range of b :
¢ (2->3->4) 2. b=a+1
* Live range of c 3. c=c+b
* Entry->1->2->3->4->5->2, 5->6
4, a=b*2
5 a<9

You need 2 registers Why? V Yes

6. return c

Example 2: Reaching Definition

Definition

< — | & def[v]

Uses of reaching definitions da| x 1= 5|
— Build use/def chains < Does this def of x reach n?
_ . . Can we replace n with £ (5) ?
Constant propagation ol £ (x)

— Loop mvariant code motion

a=. . ., 44— Reaching definitions of a and b
b = . .7 : ..
for To determine whether it’s legal to move statement 4

(.) { out of the loop. we need to ensure that there are no
x = a + b;< reaching definitions of a or b inside the loop

Oy U1k W N

* Assumption: At most one definition per node

* Gen[n]: Definitions that are generated by node n (at most one)
* Kill[n]: Definitions that are killed by node n

statement gen's Kills
X:=y {y} {x}
X:=p(y,z) {y,z} {x}
X:=*(y+i) {y,i} {x}
*(v+i)=x {x} {}

X =1y, ¥n) LYnayad XD

Data-flow equations for Reaching Definition

The in set
— A definition reaches the beginning of a node if it reaches the end of any of
the predecessors of that node e
Q out out > predin]
N ¥
n imn
The out set

— A definition reaches the end of a node if (1) the node itself generates the
definition or if (2) the definition reaches the beginning of the node and the
node does not Kill it

m

n Gen n ‘
-
out out

mfnj = ; Ek:red[n]OUt[P] (1) (2)

out[n] = gen[n] U (in[n] — kill[n])

* Data-flow Equation for liveness
in[n] = use[n] U (out[n] — def[n))

outln]= U in[s]

s & succ[n]

* Liveness equations in terms of Gen and Kill

in[n] = gen[n] U (out[n] — kill[n])

A use of a variable generates liveness

outfn]= U in[s] A def of a variable kills liveness
s & succ[n]

Gen: New information that’s added at a node
Kill: Old information that’s removed at a node

Can define almost any data-flow analysis in terms of Gen and Kill

Direction of Flow

Backward data-flow analysis

— Information at a node 1s based on what happens later in the flow graph
i.e., m[] 1s defined in terms of out[]

n L
in[n] =gen[n] U (out[n]— kill[n]) in :
_ U : £ liveness
out[n] = < & Saecfa] mn[s] ont

Forward data-flow analysis

— Information at a node 1s based on what happens earlier in the flow graph
i.e., out[] 1s defined in terms of 1n[]

n "
mn[n] - etﬁge d[n] out[p] | | li 1‘efichi.ng
out[n] =gen[n] U (in[n] —kill[n]) ol definitions

Up
Some problems need both forward and backward analysis
— e.g., Partial redundancy elimination (uncommeon)

Data-Flow Equation for reaching definition

Symmetry between reaching definitions and liveness

— Swap m[] and out[] and swap the directions of the arcs

Reaching Definitions

inn]= U

p € pred[n]

out[n] = gen[n] U (in[n] — kill[n])

Defofx

ouf[s]

entry

S

X=

Is x def’d along

this path?

Live Variables

out[n] =

@,

s € succ[n]

mn[s]

in[n] = gen[n] U (out[n] — kill[n])

Use of x

entry

S

Is x def’d along

=X

this path?

* An expression, x+y, is available at node n if every path from the entry
node to n evaluates x+y, and there are no definitions of x or y after
the last evaluation.

entry

L LX+HY ...

Sl

CX+Y ...

x and y not defined
along blue edges

Available Expression for CSE

e Common Subexpression eliminated
* If an expression is available at a point where it is evaluated, it need not be

recomputed
Example . J’
1 1 =7
. $ t =4 %1
=73 a :=t
a =4 * 1 /
.41/ 201 =1+ 1
2l =t t =4 % i
b i= 4 * i -
3le = 4 * 1 sle =
v ’

Must vs. May analysis

* May information: |dentifies possibilities
* Must information: Implies a guarantee

vy Must

Forward Reaching Definition Available Expression

Backward Live Variables Very Busy Expression

