
Advancements in Neural Program Synthesis

Yufan Zhuang (yz3453)1 Saikat Chakraborty (sc4537)1

1Columbia University

April 4, 2019

(Columbia) Neural Program Synthesis April 4, 2019 1 / 39

Overview

1 Problem Overview

2 Grammar and RL based NPS
Overview
Model Architecture
Evaluation

3 NPS with Inferred execution trace
Overview
Model Details
Evaluation

4 Summary & Observations

(Columbia) Neural Program Synthesis April 4, 2019 2 / 39

Problem Overview (contd.)

The Goal

Given a set of Inputs generate the corresponding Outputs.
2 ways to address this:

Program Induction : Model the relation between Input and Output
by a neural network.

Difficult to model due to the discrete nature (often) of the I/O.
Also because of non-differentiability of I/O relation.

Program Synthesis : Generate (or synthesize) a program that takes
in the Input and generate Output

Do not have to model the input output behavior.
Often some complex relations between I/O are implemented as
functionality of code elements.

(Columbia) Neural Program Synthesis April 4, 2019 3 / 39

Problem Overview

Given set of inputs and outputs, the model is asked to give the correct
program.

Existed Major Approaches and Corresponding Drawbacks

Neural-guided Search (Exponential Search Space)

Direct Synthesis (Could be Syntactically Wrong)

Differentiable Program with Gradient Methods (Difficult to Model)

(Columbia) Neural Program Synthesis April 4, 2019 4 / 39

Shortcomings of Current Direct Synthesis Methods

The model is typically a Neural Machine Translation Model
(Inputs/Outputs -> Programs)

Two primary drawbacks

May not be a program: syntax correctness cannot be guaranteed
(BLEU evaluation for NLP problems)

Program Aliasing: multiple programs can be semantically correct,
but the supervised model would just go for the ground truth

(Columbia) Neural Program Synthesis April 4, 2019 5 / 39

Domain: Karel

Note that it has control flows but no data flows

(Columbia) Neural Program Synthesis April 4, 2019 6 / 39

Leveraging Grammar and Reinforcement Learning for
Neural Program Synthesis

Rudy Bunel1, Matthew Hausknecht2, Jacob Devlin3, Rishabh Singh2,
Pushmeet Kohli4

1University of Oxford

2Microsoft Research

3Google

4Deepmind

April 4, 2019

Bunel et al. (Oxford) RL Synthesis April 4, 2019 7 / 39

Goal of this Paper

Deep Learning Model to Generate Tokens Directly

Set up an Reinforcement Learning Framework to Overcome the
Program Aliasing Problem

Introduce a syntax checker to prune the space of possible programs

Bunel et al. (Oxford) RL Synthesis April 4, 2019 8 / 39

Problem Formulation

At training time, assumed to have access to N training samples, each with
K input/output states and a ground truth program λ.

D = {({IOk
i }k=1...K , λi}i=1...N , s.t. λi (I

k
i) = Ok

i , ∀i ∈ 1...N, ∀k ∈ 1...K

The goal is to learn a synthesizer σ : {IOk
i }k=1...K −→ λ̂

At testing time, the test data is consisted of both specification examples
and held-out examples.

Dtest = {{IOkspec
j }kspec=1...K , {IOktest

j }ktest=K+1...K ′}j=1...Ntest

In testing the output program λ̂ is based on the specification sets, then
evaluated on the entire test set

Bunel et al. (Oxford) RL Synthesis April 4, 2019 9 / 39

Model Architecture

Each program is represented by a sequence of tokens

λ = [s1, s2, ..., sL]

where each token belongs to an alphabet Σ (dictionary).

The form of the model:

pθ(λi |{IOk
i }k=1...K) =

Li∏
t=1

pθ(st |s1, s2, ..., st−1, {IOk
i }k=1...K)

Bunel et al. (Oxford) RL Synthesis April 4, 2019 10 / 39

Model Architecture

Bunel et al. (Oxford) RL Synthesis April 4, 2019 11 / 39

Model Architecture

1 Each pair of IO is embedded jointly by a CNN (share wights)

2 One LSTM is run for each example (share wights)

3 At each time step, the IO pair embedding and the previous token is
fed into the LSTM

4 The output of the LSTMs goes through a maxpool layer and a linear
layer to generate the next prediction after softmax

5 The syntax checker produces a mask on the output of the linear layer
to filter out those have incorrect syntax

Bunel et al. (Oxford) RL Synthesis April 4, 2019 12 / 39

Objective Function

Maximum Likelihood Estimation The default solution is to do MLE,
since this is a supervised learning problem.

θ∗ = argmaxθ
∏
i

pθ(λi |{IOk
i }k=1...K)

Drawbacks

Still has the programming aliasing problem
Exposure bias (the model won’t explore enough sample paths, since it
only sees the data distribution)

Bunel et al. (Oxford) RL Synthesis April 4, 2019 13 / 39

Objective Function

Reinforcement Learning A potentially better objective is to optimize
over the ecpectations

θ∗ = argmaxθLR(θ), where LR(θ) =
∑
i

(
∑
λ

pθ(λ|{IOk
i }k=1...K)Ri (λ))

where Ri (λ) denotes the reward for sampled programs. If a simulator is
accessible, R can be designed to optimize for generalization and for
preventing over-fitting. Other things like conciseness can also be taken
account in R.

Bunel et al. (Oxford) RL Synthesis April 4, 2019 14 / 39

Objective Function

REINFORCE Trick/score function estimator Notice that the sum over
all possible λ is intractable.

θ∗ = argmaxθLR(θ), where LR(θ) =
∑
i

(
∑
λ

pθ(λ|{IOk
i }k=1...K)Ri (λ))

We can only use monte-carlo methods to sample gradient, but how?

∇θLR(θ) =
∑
i

∑
λ

∇θpθ(λ|{IOk
i }k=1...K)Ri (λ)

=
∑
i

∑
λ

∇θ log(pθ(λ|{IOk
i }k=1...K))Ri (λ)pθ(λ|{IOk

i }k=1...K)

≈
∑
i

S∑
r=1

1

S
∇θ log(pθ(λr |{IOk

i }k=1...K))Ri (λ)

where λr ∼ pθ(λ|{IOk
i }k=1...K)

Bunel et al. (Oxford) RL Synthesis April 4, 2019 15 / 39

Objective Function

Approximate pθ with qθ Since the domain is discrete with small amount
of training data per program, it is difficult to sample different programs
according to the learned distribution. Thus, the model wouldn’t explore
much, and this is not desirable.

At every time step, S most likely samples returned by a Beam Search are
used to construct the approximate distribution qθ.

qθ(λr |{IOk
i }k=1...K) =

pθ(λr |{IOk
i }k=1...K)∑

λr∈BS(pθ,S) pθ(λr |{IOk
i }k=1...K)

, otherwise 0

Bunel et al. (Oxford) RL Synthesis April 4, 2019 16 / 39

Objective Function

Approximate pθ with qθ Then the objective becomes tractable

LR(θ) ≈
∑
i

(
∑
λ

qθ(λ|{IOk
i }k=1...K)Ri (λ))

qθ approximates pθ at modes

Bunel et al. (Oxford) RL Synthesis April 4, 2019 17 / 39

Objective Function

Approximate pθ with qθ Using qθ, the objective function can be more
complicated for a better exploration. Instead of optimizing over the
expected reward, a bag of C programs can be sampled and the best one is
kept. By doing this, probability mass would be assigned to several
candidate programs, thus resulting a higher diversity of outputs.

θ∗ = argmaxθ
∑
i

(
∑

λ∈BS(pθ,S)C
[max
j∈{1,..,C}

Ri (λj)](
∏

r∈1,...,C
qθ(λr |{IOk

i }k=1...K))

Bunel et al. (Oxford) RL Synthesis April 4, 2019 18 / 39

Syntax Checker

Condition on the syntax If there is an syntax checker (serves like IDE
auto-complete). Include the syntax checker in the likelihood, denote stx as
the event that the sampled program is syntactically correct.

p(λ|{IOk
i }k=1...K , stx) =

p(stx |λ, {IOk
i }k=1...K) · p(λ|{IOk

i }k=1...K)

p(stx |{IOk
i }k=1...K)

∝ p(stx |λ, {IOk
i }k=1...K) · p(λ|{IOk

i }k=1...K)

∝ p(stx |λ) · p(λ|{IOk
i }k=1...K)

At the token level, it is the same

p(st |s1, ..., st−1, {IOk
i }k=1...K , stx1,...,t) ∝ p(stx1,...,t |s1, ..., st)

· p(st |s1, ..., st−1, {IOk
i }k=1...K)

Bunel et al. (Oxford) RL Synthesis April 4, 2019 19 / 39

Syntax Checker

Jointly Learned Syntax If there isn’t syntax checker, we can train a
network to learn that. Denote the checker network as syntaxLSTM gφ. Its
activation is x −→ − exp(x)

In training, one additional loss term is added:

Lsyntax = −
∑
i

∑
t

gφ(s it |s i1, ..., s it−1), where λi = [s i1, s
i
2, ..., s

i
L]

To penalize negative output (− exp gφ) for valid syntax.

Bunel et al. (Oxford) RL Synthesis April 4, 2019 20 / 39

Evaluation

Dataset: Synthetic dataset from sampling programs and sampling IO
pairs. In the testing phase, 5000 programs are left out with 6 IO pairs split
into a specification (5 pairs) and a held-out pair.

Top-1 Generalization Accuracy: the accuracy of the most likely program
synthesized having the correct behaviour across all input-output examples.

Exact Match Accuracy: the accuracy of the most likely program
synthesized is exactly the same as the reference program.

Bunel et al. (Oxford) RL Synthesis April 4, 2019 21 / 39

Experiment Results

Full dataset denotes the 1 million program dataset, small dataset contains
only 10,000 examples. RL beam div employs the richer objective function.
RL beam div opt adds penalty for long programs on top of RL beam div.

Bunel et al. (Oxford) RL Synthesis April 4, 2019 22 / 39

Experiment Results

Top-k accuracy

MLE shows greater relative accuracy increases as k increases than RL.
Methods employing beam search and diversity objectives reduce this
accuracy gap by encouraging diversity in the beam of partial programs.

Bunel et al. (Oxford) RL Synthesis April 4, 2019 23 / 39

Experiment Results

Impact of Syntax

MLE leaned denotes the usage of syntaxLSTM, MLE handwritten denotes
the usage of a handwritten syntax checker, MLE large simply increases the
size of parameters to the same number as MLE leaned.

Just get a larger network

Bunel et al. (Oxford) RL Synthesis April 4, 2019 24 / 39

Experiment Results

Learned Syntax (Program A)
Black indicates valid, white indicates
invalid. Blue indicates the
syntaxLSTM predicts a valid token
to be invalid, red indicates the
syntaxLSTM predicts a invalid token
to be valid.

Bunel et al. (Oxford) RL Synthesis April 4, 2019 25 / 39

Improving Neural Program Synthesis with Inferred
Execution Trace

Richard Shin1, Illia Polosukhin2, Dawn Song1

1UC Berkley

2NEAR Protocol

April 4, 2019

Shin et al. (Berkley, NEAR) NPS with Execution trace April 4, 2019 26 / 39

Motivation

How to human thinks about problem solving

Given an Input and corresponding output, we think of sequence of
steps.

Shin et al. (Berkley, NEAR) NPS with Execution trace April 4, 2019 27 / 39

Motivation Contd.

turnRight

turnRight

move

Shin et al. (Berkley, NEAR) NPS with Execution trace April 4, 2019 28 / 39

Motivation Contd.

Given the sequence of actions (i .e. execution trace), it is much easier
to reason about the program.

For instance,

Given, < turnRight, turnRight,move >
It is much easier to reason about the actual program
The actual program is
repeat(2) { turnRight() } move()

Shin et al. (Berkley, NEAR) NPS with Execution trace April 4, 2019 29 / 39

Overview of the Method

Figure: Traditional Program Synthesis approach

Figure: Program Synthesis With Inferred Execution Trace

Shin et al. (Berkley, NEAR) NPS with Execution trace April 4, 2019 30 / 39

Step 1: Trace Inference

Figure: Inference of the Execution Trace from Each of the Examples

Shin et al. (Berkley, NEAR) NPS with Execution trace April 4, 2019 31 / 39

Step 1: Trace Inference (Contd.)

For Each IO pair, a trace sequence is generated.

Convolution network is used for encoding the state and
Intermediate States.

LSTM is used for generating sequence of actions.

Ideally, LSTM should mimic the change in state, but experiment
shows, if the actual state after every action is provided as auxiliary
input, it performs better.

Shin et al. (Berkley, NEAR) NPS with Execution trace April 4, 2019 32 / 39

Step 2: Code Synthesis

Figure: Synthesis of the actual code from the IO and also the inferred trace.

Shin et al. (Berkley, NEAR) NPS with Execution trace April 4, 2019 33 / 39

Step 2: Code Synthesis (Contd.)

LSTM is used to generated final for as a token sequence.

Inputs to the LSTM are:
1 Previously generated code token.
2 Attention context over inferred action sequence.
3 Embedding of the IO pair through a convolution network.

Output of LSTM at time i corresponding to j ’th IO is ôi ,j

Final token is generated as softmax(W .MaxPool(ôi ,1, ôi ,2, ..., ôi ,N))
where N is the number of IO pair.

Shin et al. (Berkley, NEAR) NPS with Execution trace April 4, 2019 34 / 39

Evaluation : Overall performance

Exact match is most stringent metric.

Gen. (generalization) is when the generated program passes all the
test cases, i.e. generates expected output.

Guided search is generation of K code sequence using guided beam
search with the softmax probabilities from previous step. (very similar
to DeepCoder[Balog et.al. ICLR 2017])

Shin et al. (Berkley, NEAR) NPS with Execution trace April 4, 2019 35 / 39

Evaluation : On different data stripe

Observations:

In no control flow, there is not branch, loop etc. hence code is
sequencetial, sequential models(i.e. LSTM) used in Step 1 and 2
generates 100% correct code.

For programs with branches (and also loops), other models (Tree
based, graph based:Allamanis et.al ICLR’18) are worth looking.

For Longer code sequences (30+ tokens), LSTM loses information
due to long term dependency. Self attention models (Vaswani et.al.
NIPS’17) can be worth looking here.

Shin et al. (Berkley, NEAR) NPS with Execution trace April 4, 2019 36 / 39

Neural Program Synthesis : Summary

Neural Program Synthesis is and interesting field that is gaining focus
in past few years.

In last few years there are tons of papers published in different
prestigious conferences (i.e. NeurIPS, ICLR, ICML, POPL etc.)

Shin et al. (Berkley, NEAR) NPS with Execution trace April 4, 2019 37 / 39

Neural Program Synthesis : Summary

Caveats:

The dataset this papers are on has no concept of variables.

All the programs are data dependent on a global state, and hence no
sophisticated data dependency.

Synthesizing code for general purpose programming languages (i.e.
Java, Python) with complex syntactic and semantic structure is an
open challenge as of now.

Opinion

For generating general purpose programs, some form of concrete
program analysis technique is needed to augment ML based
techniques.

The well-defined grammars and structural information in general
programs should be utilized

Shin et al. (Berkley, NEAR) NPS with Execution trace April 4, 2019 38 / 39

The End

Shin et al. (Berkley, NEAR) NPS with Execution trace April 4, 2019 39 / 39

	Problem Overview
	Grammar and RL based NPS
	Overview
	Model Architecture
	Evaluation

	NPS with Inferred execution trace
	Overview
	Model Details
	Evaluation

	Summary & Observations

