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Background



Deobfuscating JavaScript

Variable renaming

Minimize file size

Obscure program intent

Syntactic

Type annotation

Types specified in JSDoc comments

Compare Closure compiler, Flow, 

TypeScript, etc.

Semantic



Obfuscated

https://closure-compiler.appspot.com/

https://closure-compiler.appspot.com/home#code%3D%252F%252F%2520%253D%253DClosureCompiler%253D%253D%250A%252F%252F%2520%2540output_file_name%2520default.js%250A%252F%252F%2520%2540compilation_level%2520ADVANCED_OPTIMIZATIONS%250A%252F%252F%2520%253D%253D%252FClosureCompiler%253D%253D%250A%250A'use%2520strict'%253B%250A%252F**%250A%2520*%2520%2540param%2520%257Bstring%257D%2520bin%250A%2520*%2520%2540param%2520%257Bnumber%257D%2520size%250A%2520*%2520%2540return%2520%257B%253F%257D%250A%2520*%252F%250Awindow.chunkData%2520%253D%2520function%2520chunkData(bin%252C%2520size)%2520%257B%250A%2520%2520%252F**%2520%2540type%2520%257B!Array%257D%2520*%252F%250A%2520%2520var%2520results%2520%253D%2520%255B%255D%253B%250A%2520%2520var%2520length%2520%253D%2520bin.length%253B%250A%2520%2520%252F**%2520%2540type%2520%257Bnumber%257D%2520*%252F%250A%2520%2520var%2520i%2520%253D%25200%253B%250A%2520%2520for%2520(%253B%2520i%2520%253C%2520length%253B%2520i%2520%253D%2520i%2520%252B%2520size)%2520%257B%250A%2520%2520%2520%2520if%2520(i%2520%252B%2520size%2520%253C%2520length)%2520%257B%250A%2520%2520%2520%2520%2520%2520results.push(bin.substring(i%252C%2520i%2520%252B%2520size))%253B%250A%2520%2520%2520%2520%257D%2520else%2520%257B%250A%2520%2520%2520%2520%2520%2520results.push(bin.substring(i%252C%2520length))%253B%250A%2520%2520%2520%2520%257D%250A%2520%2520%257D%250A%2520%2520return%2520results%253B%250A%257D
https://closure-compiler.appspot.com/


Original: 
commented, 
annotated

'use strict';
/**
 * @param {string} bin
 * @param {number} size
 * @return {?}
 */
window.chunkData = function chunkData(bin, size) {
  /** @type {!Array} */
  var results = [];
  var length = bin.length;
  /** @type {number} */
  var i = 0;
  for (; i < length; i = i + size) {
    if (i + size < length) {
      results.push(bin.substring(i, i + size));
    } else {
      results.push(bin.substring(i, length));
    }
  }
  return results;
}



Approach



Structured Prediction for Programs



Dependency network



Input: Obfuscated Program
function chunkData(e, t) {

var n = [];
var r = e.length;
var i = 0;
for (; i < r; i += t) {

if (i + t < r) {
n.push(e.substring(i, i + t));

} else {
n.push(e.substring(i, r));

}
}
return n;

}



Extract properties and build dependency network



Extract properties



Extracting Names

Known

Constants

Object Properties

Methods and API Calls

Global Variables

Mostly treated as string constants

Unknown

Local variables

Different scopes -> different 

properties

Keywords and naming conflicts not 

allowed in the prediction space Ω
x



Extracting Types

Known

Any expression with known type or 

any constant

Manually provided or built with 

program analysis

Unknown

Variables with unknown type

Ω
x
=  (JSTypes)n :  no constraints on 

predictions.



Type Lattice

JSTypes is the powerset of all types over this lattice 



Build dependency 
graph



AST Names Types

i + j < k



Grammar



Additional relations

ARG_TO_PM
Relates arguments of a function 

invocation to parameters in the 

function declaration.

ALIAS
Types only. If a and b are related with 

r, and c is a variable that aliases b, we 

add the edge (a, c, (r, ALIAS))

MAY_CALL
Names only. If a function variable f 

may call function g, we add the edge 

(f, g, MAY_CALL)

MAY_ACCESS
Names only.  If in a function variable f, 

there is an access to an object field 

named foo, we add the edge (f, foo, 

MAY_ACCESS) 



Learning



Discriminative not Generative

Since predictions are all made given a specific observed 
program x, we are only concerned with the conditional 
probability Pr(y | x), not the joint probability Pr(y, x).

This means we don’t need to make any assumptions about the 
prior probabilities of the observed properties.



CRF



CRF

Conditional Random Field

A model for the conditional probability 
of labels y given observations x

Z(x) is just a normalization factor:



score

Sum of feature functions f associated 
with weights w



Feature Functions

Can be anything that controls the 
likelihood of a given assignment y.

In practice, this paper just uses the sum 
of pairwise indicator feature functions 
over the edges of the dependence 
network

z = assignments for known properties



Pairwise Indicator 
Feature Functions

Independent of the program being 
queried; defined once for all predictions 
of a given type (variable names or 
types).

Preprocessed from all features in the 
training set (plus an extra feature for 
equality).

Predicted outputs will be chosen from 
this same set of possible features.

∀



score

Substituting allows us to simplify the 
score function. Since Z(x) does not 
depend on y’, this has the same 
maximum as the full CRF probability.



Learning w



Structured Support Vector 
Machine (SSVM)*
Generalization of classical SVMs to predict many 
interdependent labels at once.

Maximize Δ, the margin between y(j) and every other y’

[*] TSOCHANTARIDIS, I., JOACHIMS, T., HOFMANN, T., AND ALTUN, Y. Large margin 
methods for structured and interdependent output variables. Journal of Machine Learning 
Research 6, 2005, 1453–1484



Structured Hinge Loss



Stochastic Gradient Descent*

On every iteration:

● Pick a random program from the training set
● Compute the gradient of the loss function for this 

program
● Take a step in the negative gradient direction, with step 

size determined by the learning rate α
● Project back to the feasible region

[*] RATLIFF, N. D., BAGNELL, J. A., AND ZINKEVICH, M. (approximate) subgradient methods 
for structured prediction. In AISTATS (2007), pp. 380–387.



Computing the gradient



Regularization

Enforces non-negativity

Minimizes overfitting

Operates on vector components independently

λ = 2.0 for names, 5.0 for types



Training

Initialize: w
i
= 1/2λ, α = 0.1

If the number of wrong labels does not decrease, halve α

Up to 24 iterations over the data

Parallelized across multiple threads*

[*] ZINKEVICH, M., WEIMER, M., LI, L., AND SMOLA, A. J. Parallelized stochastic gradient 
descent. In NIPS (2010), pp. 2595–2603.



Training runtime

32-core machine with four 2.13GHz Xeon processors, running 
Ubuntu 12.04 with 64-Bit OpenJDK Java 1.7.0_51.

● Training for name prediction: ~10 hours.
○ 57 minutes to compile the input code and generate networks for the 

input programs

○ 23 minutes per SSVM (sub-) gradient descent optimization pass

● Training for type prediction
○ 57 minutes for compilation and network construction

○ 2 minutes and 16 seconds per SSVM (sub-)gradient descent 

optimization pass



Model Sizes

Names

7,627,484 features

145.5MB

Dictionary of all names and types 
16.8MB

Types

70,052 features 

1.3MB



MAP inference



Prediction





scoreEdges()

Score the subset of the network adjacent to the current node



candidates()

Takes the s labels with the highest corresponding weights for 
each edge

Beam size s controls precision vs. running time

 s = 64, experimentally determined (see Results section)

Decrease the beam size by a factor of 16 if a node has more 
than 32 adjacent nodes



Optimize by edges (pairs) instead 
of single nodes
“At almost no computation cost, we also perform 
optimizations on pairs of nodes in addition to individual 
nodes. In this case, for each edge in Gx , we use the s best 
scoring features on the same type of edge in the training set 
and attempt to set the labels of the two elements connected 
by the edge to the values in each triple.”

Not clear how this fits with the algorithm pseudocode



Results



Datasets

Training

10,517 JavaScript projects from 

GitHub

No overlap with eval set

324,501 files

Filtered minified and obfuscated files

Evaluation

50 JavaScript projects with the 

highest number of commits from 

BitBucket

2,710 files

381,243 LOC, Largest file 3,055

383.5 (109.5) arcs and 29.2 (12.6) 

random variables for names (types) 

on average in the eval set



Parameter selection

10-fold cross-validation

1% sample of the training data

λ = 2.0 for names, 5.0 for types

Margin Δ should be applied



Results



Beam size and prediction time



Typechecking



Demo!?



Discussion



A note on name inference

“We note that our name inference process is 
independent of what the minified names are. In 
particular, the process will return the same names 
regardless of which minifier was used to obfuscate the 
original program (provided these minifiers always 
rename the same set of variables).”



However...



Other concerns

Function names treated as givens, might be over-weighted

Different behavior between Proprietary http://jsnice.org/ and 
Open Source http://www.nice2predict.org/

http://jsnice.org/
http://www.nice2predict.org/


Future Work



http://apk-deguard.com/ 

“Similarly to JSNice, DeGuard is based on powerful 
probabilistic graphical models learned from thousands of 
open source programs. Using these models, DeGuard 
recovers important information in Android APKs, including 
method and class names as well as third-party libraries. 
DeGuard can reveal string decoders and classes that handle 
sensitive data in Android malware.”

https://www.sri.inf.ethz.ch/deguard 

http://apk-deguard.com
https://www.sri.inf.ethz.ch/deguard


https://debin.ai/ 

“DEBIN is a novel system for predicting debug information in 
stripped binaries. It is able to distinguish register-allocated 
and memory-allocated variables with decision-tree-based 
classification. Moreover, it is capable of predicting meaningful 
names and types for variables and functions through 
structured prediction with probabilistic graphical models. 
These models are learned from thousands of non-stripped 
binary in open source packages. The system can be further 
used for malware inspection.”

https://github.com/eth-sri/debin 

https://debin.ai/
https://github.com/eth-sri/debin


https://www.deepcode.ai/ 

https://www.deepcode.ai/


Beyond layout obfuscation

Can you start with a control flow graph instead of an AST?

Analyze code changes*

[*]  Rumen Paletov, Petar Tsankov, Veselin Raychev, and Martin Vechev. 2018. Inferring 
crypto API rules from code changes. In Proceedings of the 39th ACM SIGPLAN Conference 
on Programming Language Design and Implementation (PLDI 2018). ACM, New York, NY, 
USA, 450-464. DOI: https://doi.org/10.1145/3192366.3192403 

https://doi.org/10.1145/3192366.3192403


Questions?



The End

Thank you very much!


