
Nice2Predict and
JSNice

Presented by Kyra Busser, kfl2120

mailto:kfl2120@columbia.edu

Predicting Program Properties
from “Big Code”
Veselin Raychev

Martin Vechev

Andreas Krause

Department of Computer Science

ETH Zürich

POPL '15: Proceedings of the 42nd

Annual ACM SIGPLAN-SIGACT

Symposium on Principles of

Programming Languages

Communications of the ACM, March

2019, Vol. 62 No. 3

https://files.sri.inf.ethz.ch/website/papers/jsnice15.pdf
https://files.sri.inf.ethz.ch/website/papers/jsnice15.pdf
mailto:veselin.raychev@inf.ethz.ch
mailto:martin.vechev@inf.ethz.ch
mailto:andreas.krause@inf.ethz.ch
http://popl.mpi-sws.org/2015/
https://cacm.acm.org/magazines/2019/3/234932-predicting-program-properties-from-big-code/fulltext?mobile=false
https://cacm.acm.org/magazines/2019/3/234932-predicting-program-properties-from-big-code/fulltext?mobile=false

Background

Deobfuscating JavaScript

Variable renaming

Minimize file size

Obscure program intent

Syntactic

Type annotation

Types specified in JSDoc comments

Compare Closure compiler, Flow,

TypeScript, etc.

Semantic

Obfuscated

https://closure-compiler.appspot.com/

https://closure-compiler.appspot.com/home#code%3D%252F%252F%2520%253D%253DClosureCompiler%253D%253D%250A%252F%252F%2520%2540output_file_name%2520default.js%250A%252F%252F%2520%2540compilation_level%2520ADVANCED_OPTIMIZATIONS%250A%252F%252F%2520%253D%253D%252FClosureCompiler%253D%253D%250A%250A'use%2520strict'%253B%250A%252F**%250A%2520*%2520%2540param%2520%257Bstring%257D%2520bin%250A%2520*%2520%2540param%2520%257Bnumber%257D%2520size%250A%2520*%2520%2540return%2520%257B%253F%257D%250A%2520*%252F%250Awindow.chunkData%2520%253D%2520function%2520chunkData(bin%252C%2520size)%2520%257B%250A%2520%2520%252F**%2520%2540type%2520%257B!Array%257D%2520*%252F%250A%2520%2520var%2520results%2520%253D%2520%255B%255D%253B%250A%2520%2520var%2520length%2520%253D%2520bin.length%253B%250A%2520%2520%252F**%2520%2540type%2520%257Bnumber%257D%2520*%252F%250A%2520%2520var%2520i%2520%253D%25200%253B%250A%2520%2520for%2520(%253B%2520i%2520%253C%2520length%253B%2520i%2520%253D%2520i%2520%252B%2520size)%2520%257B%250A%2520%2520%2520%2520if%2520(i%2520%252B%2520size%2520%253C%2520length)%2520%257B%250A%2520%2520%2520%2520%2520%2520results.push(bin.substring(i%252C%2520i%2520%252B%2520size))%253B%250A%2520%2520%2520%2520%257D%2520else%2520%257B%250A%2520%2520%2520%2520%2520%2520results.push(bin.substring(i%252C%2520length))%253B%250A%2520%2520%2520%2520%257D%250A%2520%2520%257D%250A%2520%2520return%2520results%253B%250A%257D
https://closure-compiler.appspot.com/

Original:
commented,
annotated

'use strict';
/**
 * @param {string} bin
 * @param {number} size
 * @return {?}
 */
window.chunkData = function chunkData(bin, size) {
 /** @type {!Array} */
 var results = [];
 var length = bin.length;
 /** @type {number} */
 var i = 0;
 for (; i < length; i = i + size) {
 if (i + size < length) {
 results.push(bin.substring(i, i + size));
 } else {
 results.push(bin.substring(i, length));
 }
 }
 return results;
}

Approach

Structured Prediction for Programs

Dependency network

Input: Obfuscated Program
function chunkData(e, t) {

var n = [];
var r = e.length;
var i = 0;
for (; i < r; i += t) {

if (i + t < r) {
n.push(e.substring(i, i + t));

} else {
n.push(e.substring(i, r));

}
}
return n;

}

Extract properties and build dependency network

Extract properties

Extracting Names

Known

Constants

Object Properties

Methods and API Calls

Global Variables

Mostly treated as string constants

Unknown

Local variables

Different scopes -> different

properties

Keywords and naming conflicts not

allowed in the prediction space Ω
x

Extracting Types

Known

Any expression with known type or

any constant

Manually provided or built with

program analysis

Unknown

Variables with unknown type

Ω
x
= (JSTypes)n : no constraints on

predictions.

Type Lattice

JSTypes is the powerset of all types over this lattice

Build dependency
graph

AST Names Types

i + j < k

Grammar

Additional relations

ARG_TO_PM
Relates arguments of a function

invocation to parameters in the

function declaration.

ALIAS
Types only. If a and b are related with

r, and c is a variable that aliases b, we

add the edge (a, c, (r, ALIAS))

MAY_CALL
Names only. If a function variable f

may call function g, we add the edge

(f, g, MAY_CALL)

MAY_ACCESS
Names only. If in a function variable f,

there is an access to an object field

named foo, we add the edge (f, foo,

MAY_ACCESS)

Learning

Discriminative not Generative

Since predictions are all made given a specific observed
program x, we are only concerned with the conditional
probability Pr(y | x), not the joint probability Pr(y, x).

This means we don’t need to make any assumptions about the
prior probabilities of the observed properties.

CRF

CRF

Conditional Random Field

A model for the conditional probability
of labels y given observations x

Z(x) is just a normalization factor:

score

Sum of feature functions f associated
with weights w

Feature Functions

Can be anything that controls the
likelihood of a given assignment y.

In practice, this paper just uses the sum
of pairwise indicator feature functions
over the edges of the dependence
network

z = assignments for known properties

Pairwise Indicator
Feature Functions

Independent of the program being
queried; defined once for all predictions
of a given type (variable names or
types).

Preprocessed from all features in the
training set (plus an extra feature for
equality).

Predicted outputs will be chosen from
this same set of possible features.

∀

score

Substituting allows us to simplify the
score function. Since Z(x) does not
depend on y’, this has the same
maximum as the full CRF probability.

Learning w

Structured Support Vector
Machine (SSVM)*
Generalization of classical SVMs to predict many
interdependent labels at once.

Maximize Δ, the margin between y(j) and every other y’

[*] TSOCHANTARIDIS, I., JOACHIMS, T., HOFMANN, T., AND ALTUN, Y. Large margin
methods for structured and interdependent output variables. Journal of Machine Learning
Research 6, 2005, 1453–1484

Structured Hinge Loss

Stochastic Gradient Descent*

On every iteration:

● Pick a random program from the training set
● Compute the gradient of the loss function for this

program
● Take a step in the negative gradient direction, with step

size determined by the learning rate α
● Project back to the feasible region

[*] RATLIFF, N. D., BAGNELL, J. A., AND ZINKEVICH, M. (approximate) subgradient methods
for structured prediction. In AISTATS (2007), pp. 380–387.

Computing the gradient

Regularization

Enforces non-negativity

Minimizes overfitting

Operates on vector components independently

λ = 2.0 for names, 5.0 for types

Training

Initialize: w
i
= 1/2λ, α = 0.1

If the number of wrong labels does not decrease, halve α

Up to 24 iterations over the data

Parallelized across multiple threads*

[*] ZINKEVICH, M., WEIMER, M., LI, L., AND SMOLA, A. J. Parallelized stochastic gradient
descent. In NIPS (2010), pp. 2595–2603.

Training runtime

32-core machine with four 2.13GHz Xeon processors, running
Ubuntu 12.04 with 64-Bit OpenJDK Java 1.7.0_51.

● Training for name prediction: ~10 hours.
○ 57 minutes to compile the input code and generate networks for the

input programs

○ 23 minutes per SSVM (sub-) gradient descent optimization pass

● Training for type prediction
○ 57 minutes for compilation and network construction

○ 2 minutes and 16 seconds per SSVM (sub-)gradient descent

optimization pass

Model Sizes

Names

7,627,484 features

145.5MB

Dictionary of all names and types
16.8MB

Types

70,052 features

1.3MB

MAP inference

Prediction

scoreEdges()

Score the subset of the network adjacent to the current node

candidates()

Takes the s labels with the highest corresponding weights for
each edge

Beam size s controls precision vs. running time

 s = 64, experimentally determined (see Results section)

Decrease the beam size by a factor of 16 if a node has more
than 32 adjacent nodes

Optimize by edges (pairs) instead
of single nodes
“At almost no computation cost, we also perform
optimizations on pairs of nodes in addition to individual
nodes. In this case, for each edge in Gx , we use the s best
scoring features on the same type of edge in the training set
and attempt to set the labels of the two elements connected
by the edge to the values in each triple.”

Not clear how this fits with the algorithm pseudocode

Results

Datasets

Training

10,517 JavaScript projects from

GitHub

No overlap with eval set

324,501 files

Filtered minified and obfuscated files

Evaluation

50 JavaScript projects with the

highest number of commits from

BitBucket

2,710 files

381,243 LOC, Largest file 3,055

383.5 (109.5) arcs and 29.2 (12.6)

random variables for names (types)

on average in the eval set

Parameter selection

10-fold cross-validation

1% sample of the training data

λ = 2.0 for names, 5.0 for types

Margin Δ should be applied

Results

Beam size and prediction time

Typechecking

Demo!?

Discussion

A note on name inference

“We note that our name inference process is
independent of what the minified names are. In
particular, the process will return the same names
regardless of which minifier was used to obfuscate the
original program (provided these minifiers always
rename the same set of variables).”

However...

Other concerns

Function names treated as givens, might be over-weighted

Different behavior between Proprietary http://jsnice.org/ and
Open Source http://www.nice2predict.org/

http://jsnice.org/
http://www.nice2predict.org/

Future Work

http://apk-deguard.com/

“Similarly to JSNice, DeGuard is based on powerful
probabilistic graphical models learned from thousands of
open source programs. Using these models, DeGuard
recovers important information in Android APKs, including
method and class names as well as third-party libraries.
DeGuard can reveal string decoders and classes that handle
sensitive data in Android malware.”

https://www.sri.inf.ethz.ch/deguard

http://apk-deguard.com
https://www.sri.inf.ethz.ch/deguard

https://debin.ai/

“DEBIN is a novel system for predicting debug information in
stripped binaries. It is able to distinguish register-allocated
and memory-allocated variables with decision-tree-based
classification. Moreover, it is capable of predicting meaningful
names and types for variables and functions through
structured prediction with probabilistic graphical models.
These models are learned from thousands of non-stripped
binary in open source packages. The system can be further
used for malware inspection.”

https://github.com/eth-sri/debin

https://debin.ai/
https://github.com/eth-sri/debin

https://www.deepcode.ai/

https://www.deepcode.ai/

Beyond layout obfuscation

Can you start with a control flow graph instead of an AST?

Analyze code changes*

[*] Rumen Paletov, Petar Tsankov, Veselin Raychev, and Martin Vechev. 2018. Inferring
crypto API rules from code changes. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2018). ACM, New York, NY,
USA, 450-464. DOI: https://doi.org/10.1145/3192366.3192403

https://doi.org/10.1145/3192366.3192403

Questions?

The End

Thank you very much!

