Code2vec: Learning Distributed
Representations of Code

URI ALON, Technion, Israel
MEITAL ZILBERSTEIN, Technion, Israel
OMER LEVY, Facebook Al Research, USA

ERAN YAHAV, Technion, Israel

Source code at https://github.com/tech-srl/code2vec
Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 40. Publication date: January 2019. https://code2vec.org

Overview

* Motivating use-case: Present an extreme summarization of source
code snippets into short, descriptive function name.

e Architecture: Attention model over path-contexts
* Design Choices: Focus on syntax level
* Evaluation: Dependent on variable naming

 Discuss Limitations: Tendency to pick up on coding convention over
learned semantic meaning

* Online Demo: as time permits

Motivating Example: Sematic Method Naming

Try to predict attribute a meaningful name to methods based on the body

Motivating Example: Sematic Method Naming

Try to predict attribute a meaningful name to methods based on the body

String|] (final String([] array) {
final String[] newArray = new Stringl[array.length];
for (int index = 0; index < array.length; index++) ({
newArray|[array.length - index - 1] = array[index];

J

return newArray;

Motivating Example: Sematic Method Naming

Try to predict attribute a meaningful name to methods based on the body

Stringl[]

for

}

(final String[] array) {

final String[] newArray = new String[array.length];
(int index = 0; index < array.length; index++) {

newArray[array.length - index - 1]

return newArray;

= array[index];

- 18.18%

- 1.45%%

General Task: Representation Learning

f(x)

Prior /K
Knowledge) x
7
[\
| I N
: |
I 1 0.21 - 105 N
| I 1.01 e
! 1001 - 4 001 ¢
I .
I 0, 0.0
, I | 0.05 002 U
| ' 037 s
| I)
: |
Raw Data | Feature :Feature Model Training Data
| Generation ,Representation

Learning Representations

History of Static Code Representation

Exact

Representation

Constructed
Features

Deep Learning
Features

Static Rule Inference + Checking

3: void foo(} {

4 lock(l); £f Enter eritical section

B: a=a+b; ffMAT: a,b protected by 1

8: unleck(l); // Exit eritical section

T: be=b+ 1; // MUST: b not protectad by 1
B: }

Engler, Dawson, et al. "Bugs as deviant
behavior: A general approach to
inferring errors in systems code." ACM
SIGOPS Operating Systems Review. Vol.
35. No. 5. ACM, 2001.

Binary Feature Vectors, N-Grams

class h extends Fage|
Taxt t; -
vold createContents() | ——f
t = new Text();: |
t.setText{..):

Bruch, Marcel, Martin Monperrus, and Mira
Mezini. "Learning from examples to improve
code completion systems." Proceedings of the
the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT
symposium on The foundations of software
engineering. ACM, 2009.

“Semantic Space” Vector Embeddings

(code2vec)
af"E| attention
> 7 weights

fully-connected
layer

h 4

©69) ©09

O0ee0)

softmax L
Y prediction

(¢l

/ combined
context vectors

context
vectors

Alon, Uri, et al. "code2vec: Learning distributed
representations of code." Proceedings of the
ACM on Programming Languages 3.POPL
(2019): 40.

Comparison with inst2vec

* ‘How far a syntactic-only approach can go’

* Purely syntactic
* no control flow/data flow information

* Scales more effectively
* 1K method per second training on over 12M methods

* Can interpret how predictions are reached
* Using attention

A naive approach: N-gram

Variable:

D
(isDone R

ilf: ontext

T
Sp () = il.f,-(.ravn‘f:)cr';l:is’.liit:nne + b spone

Features:
boolean , in:MethodBody , final

I'bcolean T rin:MethodBody + Ifinal .

Reontexr = Z Iy +ﬁz Z Ckre‘,-_,_k

fEEr: il Vk:K:_:’|k|>{)

model

Contexts:

® Ccor+ Cr+ Oy + Oy

Path Context: Example — Contains function

boolean f (Object(target) ({

for (Object elem: this.elements) ({
if (elem.equals(target)) ({
return ctrue;

}

return false;

Path Context: Parse into Abstract Syntax Tree

@ yﬂ(ff\'k;hod[)\ecl 7 @

- & o S
Primitive Name Parameter 1 Block)

] ‘ivi ‘//,: \ ke \ pee
boolean ? | (Class VarDeclld /Fom { Return)
Object |target VarDeclExpr _BooleanExpr

@ (DI \"arDécl

Class

ThisExpr false

Object| VarDeclld > [this|[elements]| < MethodCall
'elem Name) | Namé Name Return
g 2 -

‘elem |equals| target| BooleanExpr

Path Context: representing the path

boolean f (Object(target) ({

for (Object elem: this.elements) | e
if (elem.equals(target)) { _ ThisExpr

I
g © S) 'this |elements| MethodCall >

Name) (Name Name)

}

return false;

elem |equals| target

(elements, Name M FieldAccessMForeach{ Block IfStmt, Block, Return, BooleanExpr, true)

Path-context vector

(elements, Name“ M FieldAccessMForeach{, BlockJ IfStmt, Block, Return, BooleanExpr, true)

One hot lookup table One hot lookup table One hot lookup tables

Concatenate

v

Fully Connected Layer

Path-context Vector:

D =200

Neural Network Architecture

attention

8 > : | weights .
O O
— @)
9 o
@) > O
.g softmax o
> prediction
code vector
fully-connected O
context 8 layer > combined O
vectors O context vectors

Code2vec Architecture

Program -

Bag of contexts

(token1, path, token2)

Decompose

©00] (009

\

[~

tanh(Wx) I

attention
weights

00000

code vector

<
7

Aggregate

softmax

target
vectors

prediction

Predict

=

Design Choices

e Bag of contexts
* Existence not order

e Syntax-only

* Large corpus,
simple model
e “95% of the paths
in the test set were

already seen in the
training set”

e 1000 methods per
second

 1.5days to
completely train a
model

Table 2. Size of data used in the experimental evaluation.

Number of methods Number of files Size (GB)
Training 12,636,998 1,712,819 30
Validation 371,364 50,000 0.9
Test 368,445 50,000 0.9
Sampled Test 7,454 1,000 0.04

Evaluation

* Prediction of names compared to recent approaches
 Compare with no attention or hard attention

e Evaluate the relative contribution from the components of the
context vector

* Interpreting code vectors

Evaluation Metric

* Case-insensitive Sub-token Matching
* countLines == linesCount

e countLines vs count

* Full precision -> no false positives
* Low recall -> has false negatives

e countLines vs countBlankLines

* Low precision -> has false positives
* Full recall -> has no false negatives

Prediction evaluation

* Note exactly fair cause the CNN and LSTM only get to see a token
stream.

Table 3. Evaluation comparison between our model and previous works.

Sampled Test Set Full Test Set prediction rate
Model Precision Recall F1 Precision Recall F1 (examples / sec)
CNN+Attention [Allamanis et al. 2016] 47.3 29.4 339 - - - 0.1
LSTM+Attention [Iyer et al. 2016] 27.5 21.5 24.1 337 22.0 266 5
Paths+CRFs [Alon et al. 2018] - - - 53.6 46.6 49.9 10

PathAttention (this work) 63.3 56.2 59.5 63.1 54.4 584 1000

Evaluation of Attention

No-attention —
unweighted average

Hard-attention — only use
highest ranked context

Train-soft, predict-hard —
only marginal
improvement

Element-wise soft
attention —don’t
compress with fully
connected layer

* Better performance but
hard to interpret

Table 4. Comparison of model designs.

Model Design Precision Recall F1

No-attention 544 45.3 49.4
Hard attention 42.1 35.4 38.5
Train-soft, predict-hard 52.7 45.9 49.1
Soft attention 63.1 54.4 58.4
Element-wise soft attention 63.7 55.4 59.3

Data Ablation Study: evaluating components

* Note performance of ‘No-
value’ is significantly
worse suggesting not
robust with respect to
changing variable names.

* The addition of “only-
values” and "no-values” is
less than “Full” suggesting
some kind of synergy

Path-context input Precision Recall F1

Full: (xs,p, xt) 63.1 544 584
Only-values: (xs,__,x;) 449 37.1 40.6
No-values: (__,ps_) 12.0 12.6 12.3
Value-path: (xs,ps) 315 30.1 30.7
One-value: (xs, _,) 106 10.4 10.7

void fO) { Variable Names

boolean done = false;
while (!done) {
if (remaining() <= 0) {

, e e * Not that surprising given
} some of the examples of
methods and the absence
of semantic/execution
information.

}

goToNext

current

void £O { Variable Names

boolean big = false;
while (!'big) {
if (remaining() <= @) {

, Do * Not that surprising given
} some of the examples of
}
methods and the absence
- testRemaining of semantic/execution

_ information.
fillBuffer

* Biggest indicates

o] t
e dependency on names

solve

void fO { Variable Names

boolean b = false;

while (!'b) {
if (a0) <= 0) { o .
, oo * Not that surprising given
! some of the examples of

methods and the absence
of semantic/execution
information.

iISEmpty

* Biggest indicates
dependency on names

toArray

successor * Completely obfuscated is

o basically hopeless

Interpretation: Analogies

Table 7. Semantic analogies between method names.

A: B C: D

open : connect close: disconnect
key : keys value : values

lower : toLowerCase upper : toUpperCase
down : onMouseDown up : onMouseUp
warning : getWarningCount || error: getErrorCount
value : containsValue key : containsKey
start : activate end : deactivate
receive: download send: upload

Limitations

* Closed label vocabulary:

* Even though the labels for prediction can be composed rare names can’t be
predicted.

* Eg:
imageFormatExceptionShouldProduceNotSuccessOperationResultWithMessage
* Sparsity
* Variable names newArray and oldArray are treated as separate terminals.
» AST paths that differ by a single node are considered completely different.

 Dependency on Variable Names
e Potentially remedied by pipelining an upstream de-obfuscator tool

Questions?

* https://code2vec.org

https://code2vec.org/

Other prediction tasks:

Table 2. Accuracy comparison for variable name prediction, method name prediction, and full type prediction using CRFs.

Task Previous works AST Paths (this work) Params (length/width)
Variable name prediction
JavaScript 24.9% (no-paths) 60.0% (Unuglify]S) 67.3% 7/3
Java 23.7% (rule-based) 50.1% (CRFs+4-grams) 58.2% 6/3
Python 35.2% (no-paths) 56.7% (top-7) 7/4
C# 56.1% 7/4

Method name prediction

JavaScript 44.1% (no-paths) 53.1% 12/4

Java 16.5%, F1: 33.9 (Allamanis et al. [7]) 47.3%, F1: 49.9 6/2

Python 41.6% (no-paths) 51.1% (top-7) 10/6
Full type prediction

Java 24.1% (naive baseline) 69.1% 4/1

A General Path-Based Representation for Predicting Program Properties PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Variable Name Prediction

Stripped Names

function f(a, b, ¢) {

b.open('GET', a,

b.send(c);

AST Paths + CRFs

false);

nice2predict.org

function f(url, request, callback) {

request. open('GET ', url,
request. send (callback) ;

}

false);

function f(source, req, n) {
req.open("GET", source, false);
req.send(n);

}

A General Path-Based Representation for Predicting Program Properties PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

