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Overview

• Motivating use-case: Present an extreme summarization of source 
code snippets into short, descriptive function name. 

• Architecture: Attention model over path-contexts

• Design Choices: Focus on syntax level 

• Evaluation: Dependent on variable naming

• Discuss Limitations: Tendency to pick up on coding convention over 
learned semantic meaning

• Online Demo: as time permits



Motivating Example: Sematic Method Naming

Try to predict attribute a meaningful name to methods based on the body
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General Task: Representation Learning

x=x+1;

0.21
1.01
0.01
0.05
0.37

Raw Data Feature
Generation

Feature
Representation

Model

Prior 
Knowledge

Learning Representations

Training Data

1, 0.5 
0, 0.1
0, 0.0
0, 0.2



History of Static Code Representation
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Comparison with inst2vec 

• ‘How far a syntactic-only approach can go’

•Purely syntactic 
• no control flow/data flow information

•Scales more effectively
• 1K method per second training on over 12M methods

•Can interpret how predictions are reached
• Using attention 



A naïve approach: N-gram model 



Path Context: Example – Contains function



Path Context: Parse into Abstract Syntax Tree



Path Context: representing the path

(elements, Name↑FieldAccess↑Foreach↓Block↓IfStmt↓Block↓Return↓BooleanExpr, true)



Path-context vector

(elements, Name↑FieldAccess↑Foreach↓Block↓IfStmt↓Block↓Return↓BooleanExpr, true)

One hot lookup table One hot lookup table One hot lookup tables

Concatenate

Fully Connected Layer

Path-context Vector:

D = 200



Neural Network Architecture





Design Choices

• Bag of contexts
• Existence not order

• Syntax-only
• Large corpus, 

simple model
• “95% of the paths 

in the test set were 
already seen in the 
training set”

• 1000 methods per 
second

• 1.5 days to 
completely train a 
model



Evaluation

• Prediction of names compared to recent approaches

• Compare with no attention or hard attention

• Evaluate the relative contribution from the components of the 
context vector

• Interpreting code vectors



Evaluation Metric

• Case-insensitive Sub-token Matching

• countLines == linesCount

• countLines vs count
• Full precision -> no false positives

• Low recall -> has false negatives

• countLines vs countBlankLines
• Low precision -> has false positives

• Full recall -> has no false negatives



Prediction evaluation

• Note exactly fair cause the CNN and LSTM only get to see a token 
stream.



Evaluation of Attention

• No-attention –
unweighted average

• Hard-attention – only use 
highest ranked context

• Train-soft, predict-hard –
only marginal 
improvement

• Element-wise soft 
attention – don’t 
compress with fully 
connected layer
• Better performance but 

hard to interpret



Data Ablation Study: evaluating components

• Note performance of ‘No-
value’ is significantly 
worse suggesting not 
robust with respect to 
changing variable names.

• The addition of “only-
values” and ”no-values” is 
less than ”Full” suggesting 
some kind of synergy 



Variable name change Variable Names

• Not that surprising given 
some of the examples of 
methods and the absence 
of semantic/execution 
information.
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• Not that surprising given 
some of the examples of 
methods and the absence 
of semantic/execution 
information.

• Biggest indicates 
dependency on names

• Completely obfuscated is 
basically hopeless

Variable Names



Interpretation: Analogies



Limitations

• Closed label vocabulary: 
• Even though the labels for prediction can be composed rare names can’t be 

predicted. 

• Eg: 
imageFormatExceptionShouldProduceNotSuccessOperationResultWithMessage

• Sparsity
• Variable names newArray and oldArray are treated as separate terminals.

• AST paths that differ by a single node are considered completely different.

• Dependency on Variable Names
• Potentially remedied by pipelining an upstream de-obfuscator tool



Questions?

• https://code2vec.org

https://code2vec.org/


Other prediction tasks:

A General Path-Based Representation for Predicting Program Properties PLDI’18, June 18–22, 2018, Philadelphia, PA, USA



Variable Name Prediction

A General Path-Based Representation for Predicting Program Properties PLDI’18, June 18–22, 2018, Philadelphia, PA, USA


