
Code2vec: Learning Distributed 
Representations of Code

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 40. Publication date: January 2019. https://code2vec.org

Source code at https://github.com/tech-srl/code2vec



Overview

• Motivating use-case: Present an extreme summarization of source 
code snippets into short, descriptive function name. 

• Architecture: Attention model over path-contexts

• Design Choices: Focus on syntax level 

• Evaluation: Dependent on variable naming

• Discuss Limitations: Tendency to pick up on coding convention over 
learned semantic meaning

• Online Demo: as time permits



Motivating Example: Sematic Method Naming

Try to predict attribute a meaningful name to methods based on the body



Motivating Example: Sematic Method Naming

Try to predict attribute a meaningful name to methods based on the body



Motivating Example: Sematic Method Naming

Try to predict attribute a meaningful name to methods based on the body



General Task: Representation Learning

x=x+1;

0.21
1.01
0.01
0.05
0.37

Raw Data Feature
Generation

Feature
Representation

Model

Prior 
Knowledge

Learning Representations

Training Data

1, 0.5 
0, 0.1
0, 0.0
0, 0.2



History of Static Code Representation

Exact 
Representation

Constructed 
Features

Deep Learning 
Features

Static Rule Inference + Checking

Engler, Dawson, et al. "Bugs as deviant 
behavior: A general approach to 
inferring errors in systems code." ACM 
SIGOPS Operating Systems Review. Vol. 
35. No. 5. ACM, 2001.

Binary Feature Vectors, N-Grams

Bruch, Marcel, Martin Monperrus, and Mira 
Mezini. "Learning from examples to improve 
code completion systems." Proceedings of the 
the 7th joint meeting of the European software 
engineering conference and the ACM SIGSOFT 
symposium on The foundations of software 
engineering. ACM, 2009.

Alon, Uri, et al. "code2vec: Learning distributed 
representations of code." Proceedings of the 
ACM on Programming Languages 3.POPL 
(2019): 40.

“Semantic Space” Vector Embeddings 
(code2vec)



Comparison with inst2vec 

• ‘How far a syntactic-only approach can go’

•Purely syntactic 
• no control flow/data flow information

•Scales more effectively
• 1K method per second training on over 12M methods

•Can interpret how predictions are reached
• Using attention 



A naïve approach: N-gram model 



Path Context: Example – Contains function



Path Context: Parse into Abstract Syntax Tree



Path Context: representing the path

(elements, Name↑FieldAccess↑Foreach↓Block↓IfStmt↓Block↓Return↓BooleanExpr, true)



Path-context vector

(elements, Name↑FieldAccess↑Foreach↓Block↓IfStmt↓Block↓Return↓BooleanExpr, true)

One hot lookup table One hot lookup table One hot lookup tables

Concatenate

Fully Connected Layer

Path-context Vector:

D = 200



Neural Network Architecture





Design Choices

• Bag of contexts
• Existence not order

• Syntax-only
• Large corpus, 

simple model
• “95% of the paths 

in the test set were 
already seen in the 
training set”

• 1000 methods per 
second

• 1.5 days to 
completely train a 
model



Evaluation

• Prediction of names compared to recent approaches

• Compare with no attention or hard attention

• Evaluate the relative contribution from the components of the 
context vector

• Interpreting code vectors



Evaluation Metric

• Case-insensitive Sub-token Matching

• countLines == linesCount

• countLines vs count
• Full precision -> no false positives

• Low recall -> has false negatives

• countLines vs countBlankLines
• Low precision -> has false positives

• Full recall -> has no false negatives



Prediction evaluation

• Note exactly fair cause the CNN and LSTM only get to see a token 
stream.



Evaluation of Attention

• No-attention –
unweighted average

• Hard-attention – only use 
highest ranked context

• Train-soft, predict-hard –
only marginal 
improvement

• Element-wise soft 
attention – don’t 
compress with fully 
connected layer
• Better performance but 

hard to interpret



Data Ablation Study: evaluating components

• Note performance of ‘No-
value’ is significantly 
worse suggesting not 
robust with respect to 
changing variable names.

• The addition of “only-
values” and ”no-values” is 
less than ”Full” suggesting 
some kind of synergy 



Variable name change Variable Names

• Not that surprising given 
some of the examples of 
methods and the absence 
of semantic/execution 
information.



• Not that surprising given 
some of the examples of 
methods and the absence 
of semantic/execution 
information.

• Biggest indicates 
dependency on names

Variable Names



• Not that surprising given 
some of the examples of 
methods and the absence 
of semantic/execution 
information.

• Biggest indicates 
dependency on names

• Completely obfuscated is 
basically hopeless

Variable Names



Interpretation: Analogies



Limitations

• Closed label vocabulary: 
• Even though the labels for prediction can be composed rare names can’t be 

predicted. 

• Eg: 
imageFormatExceptionShouldProduceNotSuccessOperationResultWithMessage

• Sparsity
• Variable names newArray and oldArray are treated as separate terminals.

• AST paths that differ by a single node are considered completely different.

• Dependency on Variable Names
• Potentially remedied by pipelining an upstream de-obfuscator tool



Questions?

• https://code2vec.org

https://code2vec.org/


Other prediction tasks:

A General Path-Based Representation for Predicting Program Properties PLDI’18, June 18–22, 2018, Philadelphia, PA, USA



Variable Name Prediction

A General Path-Based Representation for Predicting Program Properties PLDI’18, June 18–22, 2018, Philadelphia, PA, USA


