# Recognizing Functions in Binaries with Neural Networks

Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi UC Berkeley

#### Key Contribution

 Recurrent Neural Networks (RNNs) can solve the function identification problem more efficiently and accurately than previous state-of-the-art ML and traditional methods

## Outline

- The problem: function identification in stripped binaries
- Previous solutions and their inadequacies; why RNN?
- Network architecture and design decisions
- Evaluation and limitations
- Key takeaways

## Ultra quick refresher on stripped binaries

• Source code to execution:

```
Preprocessing -> Compiling -> Assembly -> Linking -> Loading
Compilation
```

• Symbol table:

Data structure used during compilation that maps identifiers from the source code to their type info and memory addresses

• A stripped binary is an executable whose symbol table is removed

#### Function Identification

• Given a stripped binary executable, we want to identify the start and end bytes of each function in the binary



## Why do we care?

- Malware analysis
- Debugging
- Decompiling
- Retrofitting control-flow integrity
- Binary rewriting

## Why is this difficult?

- During compilation the assembler strips away function symbols, so we must make deductions based on incomplete information
- Different compilers and optimization settings generate different code
- Disassembly is hard because x86 uses varying length instructions

#### Compiler generated code can vary

```
1 #include <stdio.h>
 2
 3 int add(int x, int y) { return x + y; }
 5 int main(int argc, char **argv)
 6 {
 7
       int x = 3;
 8
       int y = 5;
 9
       int z = add(x, y);
10
11
12
       printf("%d\n", z);
13
       return 0;
14 }
```

## Compiler generated code can vary

int add(int x, int y) { return x + y; }

Source code





Compiled with gcc -O3 -S -fno-asynchronous-unwind-tables

Compiled with gcc -OO -S -fno-asynchronous-unwind-tables

#### Disassembly is hard

- x86 uses varying length instructions; depending on which byte disassembly begins at the instructions can be interpreted differently
- Data is often mixed in code, e.g. jump tables
- Adversaries can use many anti-disassembly techniques to throw off disassemblers

#### Disassembly is hard

Anti-disassembly example: Jumping over a rogue byte

(not important to remainder of presentation, feel free to ignore)





#### Notation

The input is code C, a sequence of bytes C[0], C[1], ..., C[l] where  $C[i] \in \mathbb{Z}_{256}$  is the  $i^{th}$  byte in the sequence

The *n* functions in the code are denoted  $f_1, f_2, ..., f_n$ , and the bytes belonging to function  $f_i$  are denoted  $f_{i,1}, f_{i,2}, ..., f_{i,l_i}$  where  $l_i$  is the total number of bytes in  $f_i$ 

### Formal Task Definition

• Function boundary identification:

Given *C*, find {
$$(f_{1,1}, f_{1,l_1}), (f_{2,1}, f_{2,l_2}), \dots, (f_{n,1}, f_{n,l_n})$$
}

• Easier subtasks- function start/end identification:

Given *C*, find 
$$\{f_{1,1}, f_{2,1}, \dots, f_{n,1}\}$$
  
Given *C*, find  $\{f_{1,l_1}, f_{2,l_2}, \dots, f_{n,l_n}\}$ 

## Outline

- The problem: function identification in stripped binaries
- Previous solutions and their inadequacies; why RNN?
- Network architecture and design decisions
- Evaluation and limitations
- Key takeaways

### Traditional approach

- Disassemble machine code into assembly, then identify functions with code references and pattern matching against manually curated function prologue/epilogue signatures
- Used by popular commercial tools: IDA Pro/Hex-Rays, Phoenix, Boomerang etc.
- Fast but inaccurate: Bao et al. showed that the even most accurate tool, IDA Pro, had a 41.81% true positives, 21.38% false negatives and 36.81% false positives on a test set of ~1 million functions

## Machine learning approach: ByteWeight

- Machine Learning based approach, uses weighted prefix trees to learn function prologues from data
- Requires preprocessing by disassembler; works on assembly code
- Good accuracy but at the cost of efficiency: 92%+ F1 score on Windows and Linux binaries, but 587 hours to train on a training set of 2,200 binaries

### Review of RNNs

- Good for processing sequence data, widely used in NLP
- Maintains state while iterating through sequence elements



### Why RNNs are a good fit

 Essentially, our task can be formulated as iterating through a sequence of bytes, and identifying the bytes that represent the start or end of a function



## Outline

- The problem: function identification in stripped binaries
- Previous solutions and their inadequacies; why RNN?
- Network architecture and design decisions
- Evaluation and limitations
- Key takeaways

#### Dataset

- 2200 Linux/Windows binaries compiled with GCC, ICC, and Visual Studio under 4 different optimization levels
- Same dataset as ByteWeight; enables direct comparison

|                         | ELF x86     | ELF x86-64  | PE x86     | PE x86-64  |
|-------------------------|-------------|-------------|------------|------------|
| Number of binaries      | 1,032       | 1,032       | 68         | 68         |
| Number of bytes         | 138,547,936 | 145,544,012 | 29,093,888 | 33,351,168 |
| Number of functions     | 303,238     | 295,121     | 93,288     | 94,548     |
| Average function length | 448.84      | 499.54      | 292.85     | 330.03     |

#### Data Preparation

- Ignore all binary data except for the .text section which contains the actual machine code instructions
- Extract 100,000 1000-byte chunks from the 2200 binaries to build training set
- Encode each byte with one-hot encoding to an  $\mathbb{R}^{256}$  vector
- No disassembly required!
- Authors mention code references could be used to increase accuracy, but did not attempt this due to complexity

### **Bi-directional RNNs**

- Uni-directional RNNs don't take advantage of sequence elements that are later in the sequence than the current element
- As a result, the network must make its classification while only looking at bytes that come before the current byte
- This restriction is necessary for many sequence data classification tasks, but not for function identification- complete sequences are always available

#### **Bi-directional RNNs**



### Architecture and Hyperparameters

- Bi-directional RNN
- One hidden layer with 16 bi-directional RNN nodes
- Softmax layer: function start; function end; neither
- Mini-batch gradient descent using RMSprop, batch size 32

### Architecture and Hyperparameters

• 10-fold cross validation with 10% of training set to tune hyperparameters

|               | Function start identification |            |        | Function end identification |         |            |        |           |
|---------------|-------------------------------|------------|--------|-----------------------------|---------|------------|--------|-----------|
|               | ELF x86                       | ELF x86-64 | PE x86 | PE x86-64                   | ELF x86 | ELF x86-64 | PE x86 | PE x86-64 |
| Separate      |                               |            |        |                             |         |            |        |           |
| h = 8, l = 1  | 98.88%                        | 96.07%     | 98.04% | 99.42%                      | 95.93%  | 92.94%     | 97.98% | 99.25%    |
| h = 8, l = 2  | 99.03%                        | 97.69%     | 98.00% | 99.43%                      | 97.71%  | 94.49%     | 98.30% | 99.19%    |
| h = 16, l = 1 | 99.24%                        | 98.13%     | 98.33% | 99.50%                      | 98.09%  | 95.74%     | 98.56% | 99.24%    |
| Shared        |                               |            |        |                             |         |            |        |           |
| h = 8, l = 1  | 97.79%                        | 95.28%     | 97.30% | 99.23%                      | 95.86%  | 91.94%     | 97.08% | 98.90%    |
| h = 8, l = 2  | 98.60%                        | 96.67%     | 97.96% | 99.45%                      | 97.41%  | 94.92%     | 97.58% | 99.12%    |
| h = 16, l = 1 | 98.29%                        | 97.41%     | 98.42% | 99.47%                      | 97.20%  | 95.51%     | 98.32% | 99.38%    |

## Outline

- The problem: function identification in stripped binaries
- Previous solutions and their inadequacies; why RNN?
- Network architecture and design decisions
- Evaluation and limitations
- Key takeaways

#### **Evaluation Metrics**

• Network performance: precision, recall, F1 score (harmonic mean of precision and recall)

$$\begin{aligned} \text{Precision} &= \frac{\text{TP}}{\text{TP} + \text{FP}} \\ \text{Recall} &= \frac{\text{TP}}{\text{TP} + \text{FN}} \\ \text{F1} &= \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} \end{aligned}$$

• Efficiency: computational power consumed by training

## Evaluation: Start/End Identification

|                                                      | ELF x86               |                                 |                        | ELF x86-64            |                                    |                        |  |
|------------------------------------------------------|-----------------------|---------------------------------|------------------------|-----------------------|------------------------------------|------------------------|--|
|                                                      | Р                     | R                               | F1                     | Р                     | R                                  | F1                     |  |
| ByteWeight (func. start)                             | 98.41%                | 97.94%                          | 98.17%                 | 99.14%                | 98.47%                             | 98.80%                 |  |
| Our models (func. start)                             | 99.56%                | 99.06%                          | 99.31%                 | 98.80%                | 97.80%                             | 98.30%                 |  |
| Our models (func. end)                               | 98.69%                | 97.87%                          | 98.28%                 | 97.45%                | 95.03%                             | 96.22%                 |  |
|                                                      |                       |                                 |                        |                       |                                    |                        |  |
|                                                      |                       | PE x86                          |                        |                       | PE x86-64                          |                        |  |
|                                                      | P                     | PE x86<br>R                     | F1                     | Р                     | PE x86-64<br>R                     | F1                     |  |
| ByteWeight (func. start)                             | P<br>93.78%           | PE x86<br>R<br>95.37%           | F1<br>94.57%           | P<br>97.88%           | PE x86-64<br>R<br>97.98%           | F1<br>97.93%           |  |
| ByteWeight (func. start)<br>Our models (func. start) | P<br>93.78%<br>99.01% | PE x86<br>R<br>95.37%<br>98.46% | F1<br>94.57%<br>98.74% | P<br>97.88%<br>99.52% | PE x86-64<br>R<br>97.98%<br>99.09% | F1<br>97.93%<br>99.31% |  |

### Evaluation: Boundary Identification

|            | ELF x86     |                       |              | ELF x86-64  |                          |              |  |
|------------|-------------|-----------------------|--------------|-------------|--------------------------|--------------|--|
|            | Р           | R                     | F1           | Р           | R                        | F1           |  |
| ByteWeight | 92.78%      | 92.29%                | 92.53%       | 93.22%      | 92.52%                   | 92.87%       |  |
| Our models | 97.75%      | 95.34%                | 96.53%       | 94.85%      | 89.91%                   | 92.32%       |  |
|            | PE x86      |                       |              |             |                          |              |  |
|            |             | PE x86                |              |             | PE x86-64                |              |  |
|            | Р           | PE x86<br>R           | F1           | Р           | PE x86-64<br>R           | F1           |  |
| ByteWeight | P<br>92.30% | PE x86<br>R<br>93.91% | F1<br>93.10% | P<br>93.04% | PE x86-64<br>R<br>93.13% | F1<br>93.08% |  |

## Evaluation: Training Time

- 7x speed up in training time
- Total training time of ByteWeight: 587 hours
- Total training time of Bi-directional RNN: 80 hours

|                                       | ELF x86     | ELF x86-64  | PE x86     | PE x86-64  |
|---------------------------------------|-------------|-------------|------------|------------|
| Our models (func. boundary)           | 1061.76 s   | 1017.90 s   | 236.93 s   | 264.50 s   |
| ByteWeight (func. start only)         | 3296.98 s   | 5718.84 s   | 10269.19 s | 11904.06 s |
| ByteWeight (func. boundary)           | 367018.53 s | 412223.55 s | 54482.30 s | 87661.01 s |
| ByteWeight (func. boundary with RFCR) | 457997.09 s | 593169.73 s | 84602.56 s | 97627.44 s |

#### Limitations

- Does not account for adversarial inputs that come from a different distribution than benign training set
- Identification for GCC binaries on x86-64 architecture is less accurate
- ICC will generate functions with multiple entry points as an optimization technique; this causes many false negatives

## Key Takeaways

- Function identification in stripped binaries is a binary analysis problem critical to many security domains
- Bi-directional RNNs can solve the function identification problem more efficiently and accurately than previous state-of-the-art ML and traditional methods
- More research needs to be done to increase robustness of function identification against adversarial inputs, which are common for security tasks