
Recognizing Functions in
Binaries with Neural Networks

Eui Chul Richard Shin, Dawn Song, and RezaMoazzezi
UC Berkeley

Key Contribution

• Recurrent Neural Networks (RNNs) can solve the function
identification problem more efficiently and accurately than previous
state-of-the-art ML and traditional methods

Outline

• The problem: function identification in stripped binaries
• Previous solutions and their inadequacies; why RNN?
• Network architecture and design decisions
• Evaluation and limitations
• Key takeaways

Ultra quick refresher on stripped binaries

• Source code to execution:
Preprocessing -> Compiling -> Assembly -> Linking -> Loading

• Symbol table:
Data structure used during compilation that maps identifiers
from the source code to their type info and memory addresses

• A stripped binary is an executable whose symbol table is removed

Compilation

Function Identification

• Given a stripped binary executable, we want to identify the start and
end bytes of each function in the binary

Why do we care?

• Malware analysis
• Debugging
• Decompiling
• Retrofitting control-flow integrity
• Binary rewriting

Why is this difficult?

• During compilation the assembler strips away function symbols, so
we must make deductions based on incomplete information
• Different compilers and optimization settings generate different code
• Disassembly is hard because x86 uses varying length instructions

Compiler generated code can vary

Compiler generated code can vary

Compiled with gcc -O0 -S -fno-asynchronous-unwind-tables

Compiled with gcc -O3 -S -fno-asynchronous-unwind-tables

Source code

Disassembly is hard

• x86 uses varying length instructions; depending on which byte
disassembly begins at the instructions can be interpreted differently
• Data is often mixed in code, e.g. jump tables
• Adversaries can use many anti-disassembly techniques to throw off
disassemblers

Disassembly is hard

Anti-disassembly
example: Jumping over
a rogue byte

(not important to remainder of
presentation, feel free to ignore)

Notation

The input is code !, a sequence of bytes ! 0 , ! 1 ,… , ! & where ! ' ∈
ℤ*+, is the '-. byte in the sequence

The / functions in the code are denoted 01, 0* ,… , 02, and the bytes
belonging to function 03 are denoted 03,1, 03,* ,… , 03,45 where &3 is the total
number of bytes in 03

Formal Task Definition

• Function boundary identification:

Given !, find {($%,%, $%,'(), ($*,%, $*,'+), … , ($,,%, $,,'-)}

• Easier subtasks- function start/end identification:

Given !, find {$%,%, $*,%, … , $,,%}
Given !, find {$%,'(, $*,'+, … , $,,'-}

Outline

• The problem: function identification in stripped binaries
• Previous solutions and their inadequacies; why RNN?
• Network architecture and design decisions
• Evaluation and limitations
• Key takeaways

Traditional approach

• Disassemble machine code into assembly, then identify functions
with code references and pattern matching against manually curated
function prologue/epilogue signatures
• Used by popular commercial tools: IDA Pro/Hex-Rays, Phoenix,

Boomerang etc.
• Fast but inaccurate: Bao et al. showed that the even most accurate

tool, IDA Pro, had a 41.81% true positives, 21.38% false negatives and
36.81% false positives on a test set of ~1 million functions

Machine learning approach: ByteWeight

• Machine Learning based approach, uses weighted prefix trees to
learn function prologues from data
• Requires preprocessing by disassembler; works on assembly code
• Good accuracy but at the cost of efficiency: 92%+ F1 score on

Windows and Linux binaries, but 587 hours to train on a training set
of 2,200 binaries

Review of RNNs

• Good for processing sequence data, widely used in NLP
• Maintains state while iterating through sequence elements

Why RNNs are a good fit

• Essentially, our task can be formulated as iterating through a
sequence of bytes, and identifying the bytes that represent the start
or end of a function

Outline

• The problem: function identification in stripped binaries
• Previous solutions and their inadequacies; why RNN?
• Network architecture and design decisions
• Evaluation and limitations
• Key takeaways

Dataset

• 2200 Linux/Windows binaries compiled with GCC, ICC, and Visual
Studio under 4 different optimization levels
• Same dataset as ByteWeight; enables direct comparison

Data Preparation

• Ignore all binary data except for the .text section which contains the
actual machine code instructions
• Extract 100,000 1000-byte chunks from the 2200 binaries to build

training set
• Encode each byte with one-hot encoding to an ℝ"#$ vector
• No disassembly required!
• Authors mention code references could be used to increase accuracy,

but did not attempt this due to complexity

Bi-directional RNNs

• Uni-directional RNNs don’t take advantage of sequence elements that
are later in the sequence than the current element
• As a result, the network must make its classification while only

looking at bytes that come before the current byte
• This restriction is necessary for many sequence data classification

tasks, but not for function identification- complete sequences are
always available

Bi-directional RNNs

Architecture and Hyperparameters
• Bi-directional RNN
• One hidden layer with 16 bi-directional RNN nodes
• Softmax layer: function start; function end; neither
• Mini-batch gradient descent using RMSprop, batch size 32

Architecture and Hyperparameters

• 10-fold cross validation with 10% of training set to tune
hyperparameters

Outline

• The problem: function identification in stripped binaries
• Previous solutions and their inadequacies; why RNN?
• Network architecture and design decisions
• Evaluation and limitations
• Key takeaways

Evaluation Metrics

• Network performance: precision, recall, F1 score (harmonic mean of
precision and recall)

• Efficiency: computational power consumed by training

Evaluation: Start/End Identification

Evaluation: Boundary Identification

Evaluation: Training Time

• 7x speed up in training time
• Total training time of ByteWeight: 587 hours
• Total training time of Bi-directional RNN: 80 hours

Limitations

• Does not account for adversarial inputs that come from a different
distribution than benign training set
• Identification for GCC binaries on x86-64 architecture is less accurate
• ICC will generate functions with multiple entry points as an

optimization technique; this causes many false negatives

Key Takeaways

• Function identification in stripped binaries is a binary analysis
problem critical to many security domains
• Bi-directional RNNs can solve the function identification problem

more efficiently and accurately than previous state-of-the-art ML and
traditional methods
• More research needs to be done to increase robustness of function

identification against adversarial inputs, which are common for
security tasks

