
DeepCoder: Learning to
Write Programs

ICLR conference paper by Balog et al., 2017

Presentation by Harry Smith

Background Work & Main Ideas

“A dream of artificial
intelligence is to build systems
that can write computer
programs”

Balog et al., 2017

Working up to AI-Written Computer Programs

2014 2017 2016

Program-like neural
network models

(Neural Turing Machines)

Solving Inductive Program
Synthesis

(DeepCoder: Learning to
Write Programs)

Generating source code
from unstructured text
descriptions

(Latent Predictor
Networks for Code
Generation)

Neural Turing
Machines:

Is it even possible to
have a machine
learning model
represent a program?

Graves, A., Wayne, G., & Danihelka, I.
(2014). Neural Turing Machines.
https://doi.org/10.3389/neuro.12.00

6.2007

Algorithm RNN output

Tape Addressable Memory
(e.g. RAM)

Working up to AI-Written Computer Programs

2014 20172016

Program-like neural
network models

(Neural Turing Machines)

Solving Inductive Program
Synthesis

(DeepCoder: Learning to
Write Programs)

Generating source code
from unstructured text
descriptions

(Latent Predictor
Networks for Code
Generation)

Latent Predictor Networks for Code Generation

Ling, W., Grefenstette, E., Hermann, K. M., Kočiský, T., Senior, A., Wang, F., & Blunsom, P. (2016).
Latent Predictor Networks for Code Generation. https://doi.org/10.1039/c0cc04507a

Latent Predictor Networks for Code Generation

Ling, W.,
Grefenstette, E.,
Hermann, K. M.,
Kočiský, T.,
Senior, A.,
Wang, F., &
Blunsom, P.
(2016). Latent
Predictor
Networks for
Code
Generation.
https://doi.org/10
.1039/c0cc0450
7a

Working up to AI-Written Computer Programs

2014 2017 2016

Program-like neural
network models

(Neural Turing Machines)

Solving Inductive Program
Synthesis

(DeepCoder: Learning to
Write Programs)

Generating source code
from unstructured text
descriptions

(Latent Predictor
Networks for Code
Generation)

Main Ideas

Main Ideas

● Learn to induce programs
○ Formulated as a big data problem:

going from input-output pairs to code

○ Learn strategies that generalize across

problems

IN: [3, 4, -9]
OUT: [4, 3, -9]

IN: [-1, 1, -2, 2]
OUT: [2, 1, -1, -2]

IN: [0, 1]
OUT: [1, 0]

IN: [3, 4, 9]
OUT: [3, 4, 9]

def rev_sort(in):
return reversed(sorted(in))

The Traditional Differential Interpreter
Approach

input/output
pairs

RNN Program

What is a potential problem with this
approach?

Main Ideas

● Integrate NN architectures with
search-based techniques

○ No need to replace search!

○ Use the power of differential
interpreters for multiple synthesis
problems!

input/output
pairs

RNN

Program
Attributes

S
earch

Program

Main Ideas

● Learn to induce programs
○ Formulated as a big data problem
○ Learn strategies that generalize across

problems

● Integrate NN architectures with
search-based techniques

○ No need to replace search!

○ Use the power of differential

interpreters

Inductive Program Synthesis (IPS)

The Basics of IPS

● How do we find consistent programs? ● How do we choose the best programs when

there are multiple options?

IPS is the problem of taking input-output examples and producing a program that has behavior
consistent with the examples.

The Basics of IPS

● How do we find consistent programs?
○ Requires a well defined set of acceptable

programs that creates the search space
○ We also need an intelligent search

procedure to move through this space

● How do we choose the best programs when

there are multiple options?
○ Choose the shortest program?
○ Choose the first program found, with simple

normalizations made?

IPS is the problem of taking input-output examples and producing a program that has behavior
consistent with the examples.

Formulating an
Approach to
IPS: DSLs

Need to choose a Domain Specific Language (DSL) in which to
synthesize problems

● Language should be useful in a certain domain;
otherwise, the synthesis is useless.

● Language should be restricted to limit the search space

○ Can’t search over all C++ programs!

○ Features like loops or ifs make more solutions consistent

Formulating an
Approach to
IPS: DSLs

DeepCoder’s solution: an SQL-like query language

● Includes ints, int arrays, and booleans* as types

● Program is a sequence of function calls storing results
in new variable names

● 34 functions are available, including first-order,
higher-order, and lambda functions

○ No explicit control flow

○ The permissible lambdas are finite and enumerated, e.g.
(<0) and (*4)

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., &
Tarlow, D. (2016). DeepCoder: Learning to Write
Programs. Retrieved from
http://arxiv.org/abs/1611.01989

Examples of programs written in the DSL, with the natural language descriptions.
Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., & Tarlow, D. (2016). DeepCoder: Learning to Write Programs.
Retrieved from http://arxiv.org/abs/1611.01989

Formulating an
Approach to
IPS: Search
Strategy

Need to solve the problem of how to find the code that
satisfies the examples

● The goal of DeepCoder is to interface with an existing
solver, using predicted attributes as a guide for search

○ More on this in a moment...
● Once a method of predicting attributes of a program is

fixed, DeepCoder can interface with the following:
○ DFS: Try all programs up to a certain length, and add the

estimated most likely function at each step

○ “Sort and add”: Try all programs with the estimated most
likely k functions, then on failure try again with the k + 1
most likely, etc.

○ Sketch: an SMT-based tool, which can incorporate
program attributes into its own “sort and add” strategy

○ λ2: a tool that enumerates the search space, using
deductive pruning. Designed for small functional
programs on data structures! Also leverages “sort and
add” from predicted attributes.

Search

Program
Attributes

A <- SORT(X)
B <- REVERSE(A)
C <- ???

A <- SORT(X)
B <- REVERSE(A)
C <- MAP (+ 1) B

A word on Sketch and SMT solvers...

Recall that Satisfiability Modulo Theories (SMT) solvers are SAT solvers with theories like “algebra” or

“inequalities”

X < Y; Y < -100

For example, an arbitrary search strategy over all integers might take quite some time to find a satisfying

X, Y pair.

An SMT solver with algebra and inequality solves this almost instantly.

A word on Sketch and SMT solvers...

Sketch models an IPS problem as a hole in a code base that needs to be filled in using a set of available

functions. Each function is transformed from its original definition to a mapping from constraints:

def plus_one(a):
return a + 1

plus_one(a_min, a_max, start_inclusive, end_inclusive):
return a_min + 1, a_max + 1, start_inclusive, end_inclusive

Pyth
on defin

iti
on

of (
+1) la

m
bda

Constraint
mapping

List o
f o

utp
ut

constra
in

ts
 given

in
put c

onstra
in

ts

A word on Sketch and SMT solvers...

plus_one(a_min, a_max, start_inclusive, end_inclusive):
return a_min + 1, a_max + 1, start_inclusive, end_inclusive

minus_one(a_min, a_max, start_inclusive, end_inclusive):
return a_min - 1, a_max - 1, start_inclusive, end_inclusive

times_two(a_min, a_max, start_inclusive, end_inclusive):
return a_min *2, a_max *2, start_inclusive, end_inclusive

Function Library“Constraintified” Sample Program with hole in it

A <- int array all of A in [-10, 10]
B <- ?????? ?????????
C <- map (+1) B all of C in [-19, 21]

Find the function that takes the constraints in step A to the constraints after step C...

Formulating an
Approach to
IPS: Ranking

Need to pick the “best solution” of those which are
discovered in search

IN: [-10, 3, 10]
OUT: 10

IN: [7, 18, 10]
OUT: 18

IN: [1, 4, 0, 3]
OUT: 4

Formulating an
Approach to
IPS: Ranking

Need to pick the “best solution” of those which are
discovered in search

IN: [4, 3, 10]
OUT: 10

IN: [7, 18, 10]
OUT: 18

IN: [1, 4, 0, 3]
OUT: 4

def f(arr): return max(arr)

def f(arr): return 1 + 1 + 1 + 1 + min(arr) + min(arr)

def f(arr): return 4 + min(arr) * 2

Formulating an
Approach to
IPS: Ranking

DeepCoder focuses on the search aspect of IPS, and does not
define their ranking strategy.

● Possible candidates:

○ Shortest is best

○ Max-margin prediction

■ Assign scores so that ground-truth programs are

always scored higher than induced examples.

○ Others?

Learning Inductive Program
Synthesis (LIPS)

Turning
Programs into
Attributes

Recall that we need to link machine learning and search to

efficiently synthesize programs.

How do we determine program attributes?

Search

Program
Attributes

A <- SORT(X)
B <- REVERSE(A)
C <- ???

A <- SORT(X)
B <- REVERSE(A)
C <- MAP (+ 1) B

Turning
Programs into
Attributes

How do we determine program attributes?

From the input-output pairs!

Formally, we want to define an attribute function A which

maps programs A into finite attribute vectors a:

P
A <- …
B <- …

...

A

0.1 0.4 0.9 0.8 0 0.2 0.4a

Turning
Programs into
Attributes

How do we determine program attributes?

From the input-output pairs!

This way, given a set of input-output examples E, we can

compute a distribution q(a | E). Then, we search over

programs P ordered by q(A(P) | E).

Turning
Programs into
Attributes

Given a set of input-output examples E, we can compute a

distribution q(a | E). Then, we search over programs P ordered

by q(A(P) | E).

P

P’

P’’

q(a = A(P’) | E)
q(a = A(P’’) | E) q(a = A(P) | E)

q(a | E)

Turning
Programs into
Attributes

So what are these attributes?

● The identity function: A(P) = P?
● Control Flow Templates?

○ # of loops
○ # of conditionals

● Presence or absence of high-level functions?
○ Does program P ever use “SORT”?
○ Does program P end with a call to “MAP”?

Turning
Programs into
Attributes:
Data
Generation

How do we formulate this as a big data problem?

● Data Generation procedure:
○ Enumerate programs in the DSL

■ Prune those with redundant variables/instructions
○ Generate valid inputs for a program

■ Enforce constraints on the output value(s)
■ Propagate constraints backwards up to input

○ Select inputs from the valid range and execute the
program to get outputs.

■ If the input set is empty, discard the program
○ Read off the attribute vector from the program itself

Example of Data Generation: Rejecting an example program

A <- int array all of A in []
B <- map (+1) A all of B in []
C <- map (*4) B all of C in []
D <- C all of D in [1, 3]

Example of Data Generation: Rejecting an example program

A <- int array all of A in [-2, 2]
B <- filter (>0) A all of B in [-2, 2]
C <- map (*4) B all of C in [-2, 2]
D <- C all of D in [-10, 10]

A <- [1, 1, 0, 2] [1, 1, 0, 2]
B <- filter (>0) A [1, 1, 2]
C <- map (*4) B [4, 4, 8]
D <- C output = [4, 4, 8]

<has_filter : 1, has_map : 1, has_>0 : 1, has_*4 : 1>

Turning
Programs into
Attributes: the
learning model

How are the attributes learned?

● A feed-forward neural network learns the mapping

from input-output examples to attributes.

● The FF-NN contains two fundamental components
○ An encoder: a differential mapping from M input-output

examples to a latent, real-valued vector
○ A decoder: a differential mapping from the latent vector to

predictions on the ground truth’s attributes

The Encoder

1. Represent the input/output types (singleton or array) as one-hot vectors
○ // E.g. <{0,1}, {1,0}> for a function that takes in an array and outputs an integer.

2. Pad all inputs and outputs to a maximum length L with null value
○ // The array [4, 3] becomes [4, 3, X, X, X] when L = 5

3. Map all integers to an E = 20 dimensional embedding
○ // If the input to a problem is a length L array, the dimensionality of the input becomes E*L

4. For each input-output example…
○ ...concatenate the embeddings of input types, output types, inputs, and outputs into a single vector
○ …pass this vector through H = 3 hidden layers of K = 256 sigmoid units each

5. Take the arithmetic mean of all output vectors (one for each input-output pair) as the output of the

encoder
○ // note that this output vector has dimensionality K

Embedding of integers
● No justification is given for the choice

of E = 20 as the dimension for the

embedding of the integers…
○ This is less than the total number of

functions available
○ This is four times larger than the

length of the programs on which
they ran their experiments

○ Perhaps the break between 20 and
21 is where the NN was “no longer
simple to train”

● Balog et al. initially experimented

with values of E = 2 for programs of

length T = 1 and found the result at

right:
Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., & Tarlow, D. (2016).
DeepCoder: Learning to Write Programs. Retrieved from
http://arxiv.org/abs/1611.01989

The Decoder

1. Pre-multiply the averaged vector (K x 1) by a final “decoding” matrix of dimension C x K, where C =
34, the number of functions in the DSL

2. Interpret the C x 1 resulting vector as the log-unnormalized probabilities of each function

appearing in the source code.

The full architecture

Decoder

Encoder

The full architecture (dimensionality tracked in orange)

Decoder

Encoder

L

E*L

K

K

C

C

Turning
Programs into
Attributes: the
learning model

How are the attributes learned?

● The NN is trained using negative cross entropy loss

● The outcome is the joint distribution P(a | E) of all

attributes given the input-output examples
○ The distribution is only over single function presence or

absence
○ Likely some power lost by ignoring the correlations

among the functions

Experimental Results

Experiment #1.1

1. Train the neural network on programs of length T = 3.

2. Create a test set of P = 500 programs, each of length T.
a. For each generated program, create 5 input-output examples
b. Ensure that each program in the test set is semantically distinct from all other examples

3. Produce attribute vectors for each program using the input-output pairs.

4. Use the attribute vectors with different search strategies to induce programs
a. Time the search process
b. Timeout after 10^4 seconds
c. Search space ~10^6

5. Compare the speeds of the attribute-guided searches to a baseline
a. Baseline strategy is considering the probability of each function appearing to be the overall probability of

that function appearing in the dataset

Experiment #1.1

If the time taken for four programs is 3s, 2s, 1s, 3s, then the timeout needed to solve 50% of problems is 2s.

Experiment #1.2

1. Train the neural network on programs of length T = 4.

2. Create a test set of P = 100 programs, each of length T = 5.
a. For each generated program, create 5 input-output examples
b. Ensure that each program in the test set is semantically distinct from all other examples

3. Produce attribute vectors for each program using the input-output pairs.

4. Use the attribute vectors with different search strategies to induce programs
a. Time the search process
b. Timeout after 10^4 seconds
c. Search space ~10^6

5. Compare the speeds of the attribute-guided searches to a baseline
a. Baseline strategy is considering the probability of each function appearing to be the overall probability of

that function appearing in the dataset

Experiment #1.1

Experiment #1 Takeaways

● Enumeration enjoys a better speedup than DFS
○ Hypothesized that the attribute vectors are more useful for a sort-and-add strategy than DFS anyway
○ The authors cite other research to suggest that sort-and-add does not lose much or any power from ignoring

correlations/positional dependence
○ DFS is penalized quite heavily by making the wrong choice at the beginning, so it matters a lot more which

function actually comes first

● The choice of a simple decoder (learned matrix) provides better results than an RNN decoder
○ Authors acknowledge that their strategy for training the RNN was somewhat unsuccessful

Performance of
network

“Intuitively, the i-th row of this matrix
shows how the presence of attribute i
confuses the network into incorrectly
predicting each other attribute j.”

Experiment #2

1. Train the neural network on programs of lengths T = 1 … 4.

2. Test the network on test sets where all programs are of length 1 … 5
a. N.b. the above two steps lead to 20 train/test pairs

3. Run the sort-and-add enumerative search with all combinations of training and testing data until

20% of programs are solved
a. Compare the search with the learned attributes against the baseline priors as before

Experiment #2

Experiment #2 Takeaway

● Neural networks are able to generalize beyond programs of the same length that they were

trained on
○ This is a result of having a search on top of attribute learning: the search can correct for the bad assumptions

of the network.

Further Research

More explicit guiding for LIPS

● Menon et al. (2013) takes a similar approach to this paper, but incorporates explicitly defined

“clues” that can be gleaned from input-output examples
○ E.g. input is a permutation of the output
○ Clues cause a reweighting of probabilities

● Domains are slightly off:
○ Smaller training/testing corpus
○ DSL that they chose lends itself towards these clues much more directly

Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler W Lampson, and Adam Kalai. A machine learning framework for
programming by example. In Proceedings of the International Conference on Machine Learning (ICML), 2013.

Improving the data structures in the DSL

● Li et al. (2016) attempt to predict logical features of the program
○ Instead of presence/absence of certain functions alone
○ Employs a GNN instead of the simpler feed-forward architecture

● Allows the learning to focus on data structure shape and growth instead of simply tracking data

changes.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence neu- ral networks. In Proceedings of the 4th
International Conference on Learning Representations (ICLR), 2016.

