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Background Work & Main Ideas



“A dream of artificial
intelligence is to build systems
that can write computer
programs”
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Machines:

Algorithm Controller RNN output

Is it even possible to

have a machine /' / \
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| l

Addressable Memory
(e.g. RAM)

Graves, A, Wayne, G., & Danihelka, I.
(2014). Neural Turing Machines.
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Latent Predictor Networks for Code Generation

class DivineFavor (SpellCard) :
def _ _init__ (self):
super () .__init__ ("Divine Favor", 3,
CHARACTER_CLASS.PALADIN, CARD_RARITY.RARE)

def use(self, player, game):
super () .use (player, game)
difference = len(game.other_player.hand)
— len(player.hand)
for i in range (0, difference):
player.draw ()

Draw cards until you
i have as many in hand
as your opponent.

Ling, W., Grefenstette, E., Hermann, K. M., Koc€isky, T., Senior, A., Wang, F., & Blunsom, P. (2016).
Latent Predictor Networks for Code Generation. https://doi.org/10.1039/c0cc04507a



Latent Predictor Networks for Code Generation
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Figure 4: Generation process for the code init (‘Tirion Fordring’, 8, 6, 6) using LPNs. 7a
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Main Ideas



Main Ideas

e Learntoinduce programs

o

Formulated as a big data problem:
going from input-output pairs to code
Learn strategies that generalize across
problems

]
L]

def rev sort(in):
return reversed(sorted(in))



The Traditional Differential Interpreter
Approach

What is a potential problem with this
m o

U
N




Main Ideas

Integrate NN architectures with

search-based techniques
o Noneedtoreplace search!
o Use the power of differential
interpreters for multiple synthesis
problems!

>




Main Ideas

e Learntoinduce programs e Integrate NN architectures with
o  Formulated as a big data problem search-based techniques
o Learnstrategies that generalize across o No need to replace search!
problems o Usethe power of differential

interpreters



Inductive Program Synthesis (IPS)



The Basics of IPS

IPS is the problem of taking input-output examples and producing a program that has behavior
consistent with the examples.

e How do we find consistent programs? e Howdo we choose the best programs when
there are multiple options?



The Basics of IPS

IPS is the problem of taking input-output examples and producing a program that has behavior
consistent with the examples.

e How do we find consistent programs? e Howdo we choose the best programs when
o Requires awell defined set of acceptable there are multiple options?
programs that creates the search space o  Choose the shortest program?
o  Wealsoneedanintelligent search o Choose the first program found, with simple

procedure to move through this space normalizations made?



Formulating an
Approach to
IPS: DSLs

Need to choose a Domain Specific Language (DSL) in which to
synthesize problems

e Language should be useful in a certain domain;
otherwise, the synthesis is useless.

e Language should be restricted to limit the search space
o  Can'tsearchover all C++ programs!

o  Features like loops or ifs make more solutions consistent



DeepCoder’s solution: an SQL-like query language

Formulating an
Approach to

I PS' DS L e Programis asequence of function calls storing results
. S in new variable names

e Includesints,int arrays, and booleans™* as types

e 34 functions are available, including first-order,
higher-order, and lambda functions

o  Noexplicit control flow

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., &
Tarlow, D. (2016). DeepCoder: Learning to Write
Programs. Retrieved from

o  The permissible lambdas are finite and enumerated, e.g.

http:/arxiv.org/abs/1611.01989 (<0)and (*4)

a<+ [int] An input-output example:

b < FILTER (<0) a Input:

c+ MAP (¥4) b [=11; =3; 4 Alp Op =9; =9 13y B ©; =8 11]
d < SORT c Output:

e < REVERSE d =12, =20y =32, =36; =68]




Program 0: Input-output example: Description:
k ¢ int Input: A new shop near you is selling n paintings.
b+« [int] 2, [3 54 7 5] You have £ < n friends and you would
c < SORTDb Output: like to buy each of your friends a painting
d < TAKE k c [7] from the shop. Return the minimal amount
e+ SuMd of money you will need to spend.
Description:
Progrm 1: Input-output example: |~ .. leagues, match winners are
W [}nt] Input: awarded 3 points, losers 0 points, and both
R [6 2 % 7 3], teams get 1 point in the case of a tie. Com-
G §—MAR {434 W [5 S & L1 0] pute the number of points awarded to the
C#-ZIPWITH (3] 6L Qupes winner of a league given two arrays w,t of
e ¢+ MAXIMUM d 27

the same length, where w|i] (resp. t[i]) is
the number of times team ¢ won (resp. tied).

Program 2: Input-output example: Description:

a< [int] Input: Alice and Bob are comparing their results in

b+ [int] [6 2 4 7 9], a recent exam. Given their marks per ques-

c < ZIPWITH (-) ba [5 3 2 1 0] tion as two arrays a and b, count on how

d <~ COUNT (>0) c Output: many questions Alice got more points than
4 Bob.

Examples of programs written in the DSL, with the natural language descriptions.
Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., & Tarlow, D. (2016). DeepCoder: Learning to Write Programs.
Retrieved from http://arxiv.org/abs/1611.01989



Need to solve the problem of how to find the code that

Formulating an satisfies the examples
ApproaCh tO e The goal of DeepCoder is to interface with an existing

] solver, using predicted attributes as a guide for search
I PS . Sea rCh o  Moreon thisina moment...
e Once amethod of predicting attributes of a program is
Strategy fixed, DeepCoder can interface with the following:

o  DFS: Try all programs up to a certain length, and add the
estimated most likely function at each step

o  “Sortandadd”: Try all programs with the estimated most
likely k functions, then on failure try again withthe k + 1
most likely, etc.

o  Sketch: an SMT-based tool, which can incorporate
program attributes into its own “sort and add” strategy

o A% atool that enumerates the search space, using
deductive pruning. Designed for small functional
programs on data structures! Also leverages “sort and
add” from predicted attributes.




A word on Sketch and SMT solvers...

Recall that Satisfiability Modulo Theories (SMT) solvers are SAT solvers with theories like “algebra” or
“inequalities”

X<Y;Y<-100

For example, an arbitrary search strategy over all integers might take quite some time to find a satisfying
X, Y pair.

An SMT solver with algebra and inequality solves this almost instantly.



A word on Sketch and SMT solvers...

Sketch models an IPS problem as a hole in a code base that needs to be filled in using a set of available
functions. Each function is transformed from its original definition to a mapping from constraints:

def plus_one(a): plus_one(a_min, a_max, start_inclusive, end_inclusive):

return a + 1 gc:;sr')?:ént return a_min + 1, a_max + 1, start_inclusive, end_inclusive
(\
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A word on Sketch and SMT solvers...

“Constraintified” Sample Program with hole in it Function Library

A <- int array all of A in [-10, 10] /plus_one(a_min, a_max, start_inclusive, end_inclusive): \
B <- 2?2?2227 22227272777 return a_min + 1, a_max + 1, start_inclusive, end_inclusive
C<-map (+1)B all of Cin [-19, 21]

minus_one(a_min, a_mayx, start_inclusive, end_inclusive):
return a_min - 1, a_max - 1, start_inclusive, end_inclusive

times_two(a_min, a_max, start_inclusive, end_inclusive):
k return a_min *2, a_max *2, start_inclusive, end_inclusive

/

Find the function that takes the constraints in step A to the constraints after step C...



Need to pick the “best solution” of those which are

Form Ulati ng an discovered in search
Approach to

" 1 IN: [-10, 3, 10] IN: [7, 18, 10] IN: [1, 4, 0, 3]
IPS: Ranking
]
]




Need to pick the “best solution” of those which are

Form Ulati ng an discovered in search
Approach to

. 1 IN: [4, 3, 10] IN: [7, 18, 10] IN: [1, 4, 0, 3]
IPS' Ranklng OUT: 10 OUT: 18 OUT: 4
1]
1]
def f(arr): return max(arr)
def f(arr): return 4 + min(arr) * 2
def f(arr): return 1 + 1 + 1 + 1 + min(arr) + min(arr)




DeepCoder focuses on the search aspect of IPS, and does not

Form u'-ati ng an define their ranking strategy.
Approach to
IPS: Ranking

e Possible candidates:

o  Shortestis best
o Max-margin prediction
m  Assignscores so that ground-truth programs are
always scored higher than induced examples.

o  Others?




Learning Inductive Program
Synthesis (LIPS)



Recall that we need to link machine learning and search to
efficiently synthesize programs.

Turning
Programs into
Attributes

How do we determine program attributes?

A <- SORT(X) Program
B <- REVERSE(A) :
C <7272 Attributes

C<-MAP (+1)B

D
[ A <- SORT(X)
B <- REVERSE(A)




How do we determine program attributes?

Turning
Programs into
Attributes

From the input-output pairs!

Formally, we want to define an attribute function A which

maps programs A into finite attribute vectors a:
(@ D

P
A<-..
B<-..

¥

% 0104 09 080 02 04




How do we determine program attributes?

Turning
Programs into
Attributes

From the input-output pairs!

This way, given a set of input-output examples E, we can
compute a distribution g(a | E). Then, we search over
programs P ordered by q(A(P) | E).




T " Given a set of input-output examples E, we can compute a
urni ng distribution g(a | E). Then, we search over programs P ordered

Programs into by alAPIE)
Attributes J‘ = e e, )
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So what are these attributes?

Turning
Programs into
Attributes e Theidentity function: A(P) = P?

e Control Flow Templates?
o  #ofloops
o  #of conditionals
e Presence or absence of high-level functions?
o  Does program P ever use “SORT"?
o  Does program P end with a call to “MAP”?

a<+ [int] An input-output example:

b < FILTER (<0) a Input:

c < MAP (*x4) b [=11; =3; 43 Alp Oy =9 —9 13y & B85 —84
d < SORT c Output:

e < REVERSE d |=12; =20y =352, =36; =68]

11]



Turning
Programs into
Attributes:
Data

Generation

How do we formulate this as a big data problem?

e Data Generation procedure:
o  Enumerate programs in the DSL
m  Prunethose with redundant variables/instructions
o  Generate valid inputs for a program
m Enforce constraints on the output value(s)
m  Propagate constraints backwards up to input
o  Select inputs from the valid range and execute the
program to get outputs.
m Iftheinput setis empty, discard the program
o  Read off the attribute vector from the program itself



A <-int array all of Aiin []

B <-map (+1) A allof Bin ]
C<-map (*4)B allof Cin]
D<-C allof Din [1, 3]

Example of Data Generation: Rejecting an example program



A <-int array

B <-filter (>0) A
C<-map (*4)B
D<-C

all of A in [-2, 2]
all of B in [-2, 2]
all of C in [-2, 2]
all of D in [-10, 10]

A<-[1,1,0, 2]
B <- filter (>0) A
C<-map(*4)B
D<-C

[1,1,0, 2]

[1, 1, 2]

[4, 4, 8]

output = [4, 4, 8]

<has_filter: 1, has_map : 1, has_>0:1, has_*4: 1>

Example of Data Generation: Rejecting an example program



Turning
Programs into
Attributes: the
learning model

How are the attributes learned?

e Afeed-forward neural network learns the mapping
from input-output examples to attributes.

e The FF-NN contains two fundamental components
o Anencoder: a differential mapping from M input-output
examples to a latent, real-valued vector
o  Adecoder: a differential mapping from the latent vector to
predictions on the ground truth’s attributes



The Encoder

1.

Represent the input/output types (singleton or array) as one-hot vectors
o //E.g.<{0,1},{1,0}> for a function that takes in an array and outputs an integer.
Pad all inputs and outputs to a maximum length L with null value
o //Thearray[4, 3] becomes[4,3,X,X,X]whenlL=5
Map all integers to an E = 20 dimensional embedding
o //IftheinputtoaproblemisalengthL array, the dimensionality of the input becomes E*L
For each input-output example...

o ..concatenate the embeddings of input types, output types, inputs, and outputs into a single vector
o ...passthis vector through H = 3 hidden layers of K = 256 sigmoid units each

Take the arithmetic mean of all output vectors (one for each input-output pair) as the output of the

encoder
o //note that this output vector has dimensionality K




Embedding of integers

No justification is given for the choice
of E = 20 as the dimension for the

embedding of the integers...
o  Thisisless than the total number of
functions available
o  Thisis four times larger than the
length of the programs on which
they ran their experiments
o  Perhaps the break between 20 and
21 is where the NN was “no longer
simple to train”
Balog et al. initially experimented
with values of E = 2 for programs of
length T =1 and found the result at

right:

olull
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Figure 8: A learned embedding of integers {—256, —255, ..., —
intensity corresponds to the magnitude of the embedded integer.

1,0,

1,...,255} in R2. The color

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., & Tarlow, D. (2016).
DeepCoder: Learning to Write Programs. Retrieved from
http://arxiv.org/abs/1611.01989



The Decoder

1. Pre-multiply the averaged vector (K x 1) by a final “decoding” matrix of dimension C x K, where C =
34, the number of functions in the DSL

2. Interpret the C x 1 resulting vector as the log-unnormalized probabilities of each function
appearing in the source code.

S o s
-t O w > o =
Pl oo N N - : 2 2
—_ —_— o~ — T — w W ow g = =
S ~ =~ ~ 9 8 =~ A~ =~ ~ ®© &8 N & € 0 & FF x > w¥ O O < z X 2 zZ X =
- N N * O m T < S ° w < 2 w QO o = 49 0 = «
2 2 € 8 £ &8 £ 8 F % AN R YE 3T QB EEBE 2 RNB O+ «. = = 8 = = 3
o 0 1 0 0 0 o.o-.o o.o ) .o_.o 1 oo 0o 1 0 2 1 0 0 0 0

Figure 2: Neural network predicts the probability of each function appearing in the source code.



Attribute Predictions
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Figure 7: Schematic representation of our feed-forward encoder, and the decoder.
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Turning
Programs into
Attributes: the
learning model

How are the attributes learned?

e The NN istrained using negative cross entropy loss
e Theoutcomeis the joint distribution P(a | E) of all
attributes given the input-output examples

o  Thedistribution is only over single function presence or
absence

o  Likely some power lost by ignoring the correlations
among the functions



Experimental Results



Experiment #1.1

1. Trainthe neural network on programs of length T = 3.
2. Create atest set of P=500 programs, each of length T.
a. For each generated program, create 5 input-output examples
b.  Ensure that each program in the test set is semantically distinct from all other examples
Produce attribute vectors for each program using the input-output pairs.
4. Use the attribute vectors with different search strategies to induce programs
a. Time the search process
b.  Timeout after 10"4 seconds
c. Searchspace ~10"6
5.  Compare the speeds of the attribute-guided searches to a baseline

a. Baseline strategy is considering the probability of each function appearing to be the overall probability of
that function appearing in the dataset

w



Experiment #1.1

Table 1: Search speedups on programs of length 7" = 3 due to using neural network predictions.

Timeout needed DFS Enumeration A2 Sketch Beam
to solve 20% 40%  60% 20% 40%  60% 20% 40% 60% 20%  40% 20%
Baseline 41ms 126ms 314ms 80ms 335ms 861ms 18.95 49.6s 84.2s >10%s >103%s >10%s
DeepCoder 2.7ms 33ms 110ms 1.3ms 6.1ms 27ms 0.23s 0.52s 13.5s 2.13s  455s 292s
Speedup 15.2x 3.9x 2.9x 62.2x 54.6x 31.5x 80.4x 94.6x 6.2x >467x >2.2x >3.4x

If the time taken for four programs is 3s, 2s, 1s, 3s, then the timeout needed to solve 50% of problems is 2s.



Experiment #1.2

1. Trainthe neural network on programs of length T = 4.
2. Createatestset of P= 100 programs, each of length T = 5.
a. For each generated program, create 5 input-output examples
b.  Ensure that each program in the test set is semantically distinct from all other examples
Produce attribute vectors for each program using the input-output pairs.
4. Use the attribute vectors with different search strategies to induce programs
a. Time the search process
b.  Timeout after 10"4 seconds
c. Searchspace ~10"6
5.  Compare the speeds of the attribute-guided searches to a baseline

a. Baseline strategy is considering the probability of each function appearing to be the overall probability of
that function appearing in the dataset

w



Experiment #1.1

Timeout needed DFS Enumeration b

to solve 20% 40% 60% 20% 40% 60% 20%
Baseline 163s 2887s 6832s  8181s >10%*s >10%s 463s
DeepCoder 24s 514s 2654s 9s 264s 4640s 48s
Speedup 6.8x 5.6x 2.6X 907x >37x >2X 9.6 x




Programs solved
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Experiment #1 Takeaways

e Enumeration enjoys a better speedup than DFS
o  Hypothesized that the attribute vectors are more useful for a sort-and-add strategy than DFS anyway
o  Theauthors cite other research to suggest that sort-and-add does not lose much or any power from ignoring
correlations/positional dependence
o  DFSis penalized quite heavily by making the wrong choice at the beginning, so it matters a lot more which
function actually comes first
e The choice of a simple decoder (learned matrix) provides better results than an RNN decoder
o  Authors acknowledge that their strategy for training the RNN was somewhat unsuccessful



Performance of
network

“Intuitively, the i-th row of this matrix
shows how the presence of attribute i
confuses the network into incorrectly
predicting each other attribute j.”
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Experiment #2

1. Trainthe neural network on programs of lengths T=1... 4.
2. Test the network on test sets where all programs are of length 1...5
a.  N.b.the above two steps lead to 20 train/test pairs
3.  Runthesort-and-add enumerative search with all combinations of training and testing data until
20% of programs are solved
a. Compare the search with the learned attributes against the baseline priors as before
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Experiment #2 Takeaway

e Neural networks are able to generalize beyond programs of the same length that they were

trained on
o  Thisis aresult of having a search on top of attribute learning: the search can correct for the bad assumptions
of the network.



Further Research



More explicit guiding for LIPS

e Menonetal.(2013) takes a similar approach to this paper, but incorporates explicitly defined

“clues” that can be gleaned from input-output examples
o E.g.inputis a permutation of the output
o  Clues cause areweighting of probabilities
e Domains are slightly off:
o  Smaller training/testing corpus
o DSL that they chose lends itself towards these clues much more directly

Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler W Lampson, and Adam Kalai. A machine learning framework for
programming by example. In Proceedings of the International Conference on Machine Learning (ICML), 2013.



Improving the data structures in the DSL

e Lietal . (2016) attempt to predict logical features of the program
o Instead of presence/absence of certain functions alone
o Employs a GNN instead of the simpler feed-forward architecture

e Allows the learning to focus on data structure shape and growth instead of simply tracking data
changes.

Yuijia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence neu- ral networks. In Proceedings of the 4th
International Conference on Learning Representations (ICLR), 2016.



