
Neural Code Comprehension:
A Learnable Representation

of Code Semantics

Example Task: Algorithm Classification

Try to identify what algorithm the following code implements.

Example Task: Algorithm Classification

Try to identify what algorithm the following code implements.

void a(int*b,int c){int d,e,f;for(d=0;d<c-1;d++)for(e=0;e<c-d-
1;e++)if(*(b+e)>*(b+e+1)){f=*(b+e);*(b+e)=*(b+e+1);*(b+e+1)=f;}}

Example Task: Algorithm Classification

Try to identify what algorithm the following code implements.

void a(int*b,int c){int d,e,f;for(d=0;d<c-1;d++)for(e=0;e<c-d-
1;e++)if(*(b+e)>*(b+e+1)){f=*(b+e);*(b+e)=*(b+e+1);*(b+e+1)=f;}}

This is what code looks like to an untrained model.

Example Task: Algorithm Classification

Try to identify what algorithm the following code implements.

Same code with semantically meaningful tokens & syntax:

void bubbleSort(int arr[], int n) {
int i, j, tmp;
for (i = 0; i < n-1; i++)

for (j = 0; j < n-i-1; j++)
if (arr[j] > arr[j+1]) {

tmp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = tmp;

}
}

General Task: Representation Learning

x=x+1;

0.21
1.01
0.01
0.05
0.37

Raw Data Feature
Generation

Feature
Representation

Model

Prior
Knowledge

Activations/Predictions

0.98
0.05
0.03
0.02

bubblesort
quicksort
mergesort
radixsort

General Task: Representation Learning

0.21
1.01
0.01
0.05
0.37

Raw Data Feature
Generation

Feature
Representation

Model Activations/Predictions

0.98
0.05
0.03
0.02

bubblesort
quicksort
mergesort
radixsort

x=x+1;

General Task: Representation Learning

x=x+1;

0.21
1.01
0.01
0.05
0.37

Raw Data Feature
Generation

Feature
Representation

Model

Prior
Knowledge

Activations/Predictions

0.98
0.05
0.03
0.02

bubblesort
quicksort
mergesort
radixsort

General Task: Representation Learning

x=x+1;

0.21
1.01
0.01
0.05
0.37

Raw Data Feature
Generation

Feature
Representation

Model

Prior
Knowledge

Activations/Predictions

0.98
0.05
0.03
0.02

bubblesort
quicksort
mergesort
radixsort

General Task: Representation Learning

x=x+1;

0.21
1.01
0.01
0.05
0.37

Raw Data Feature
Generation

Feature
Representation

Model

Prior
Knowledge

Training Data

1, 0.5
0, 0.1
0, 0.0
0, 0.2

General Task: Representation Learning

x=x+1;

0.21
1.01
0.01
0.05
0.37

Raw Data Feature
Generation

Feature
Representation

Model

Prior
Knowledge

Learning Representations

Training Data

1, 0.5
0, 0.1
0, 0.0
0, 0.2

History of Static Code Representation

Exact
Representation

Constructed
Features

Deep Learning
Features

Static Rule Inference + Checking

Engler, Dawson, et al. "Bugs as deviant
behavior: A general approach to
inferring errors in systems code." ACM
SIGOPS Operating Systems Review. Vol.
35. No. 5. ACM, 2001.

Binary Feature Vectors, N-Grams

Bruch, Marcel, Martin Monperrus, and Mira
Mezini. "Learning from examples to improve
code completion systems." Proceedings of the
the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT
symposium on The foundations of software
engineering. ACM, 2009.

Alon, Uri, et al. "code2vec: Learning distributed
representations of code." Proceedings of the
ACM on Programming Languages 3.POPL
(2019): 40.

“Semantic Space” Vector Embeddings
(code2vec)

Formal Code Comprehension Task

• Generally based on linguistic Distributional Hypothesis: Statements
that occur in the same contexts tend to have similar semantics
• Statements: LLVM, each operation is unique & represents single

action, Static Single Assignment (SSA) makes analysis easier
• Context: Statements that have either Control Flow Dependencies or
Data Dependencies
• Similarity: Based on Alterations to System State

LLVM Intermediate Representation

Single statement:

LLVM Intermediate Representation

Source Code LLVM IR

LLVM Intermediate Representation
; Function Attrs: noinline nounwind optnone ssp uwtable
define void @bubbleSort(i32*, i32) #0 {

%3 = alloca i32*, align 8
%4 = alloca i32, align 4
%5 = alloca i32, align 4
%6 = alloca i32, align 4
%7 = alloca i32, align 4
store i32* %0, i32** %3, align 8
store i32 %1, i32* %4, align 4
store i32 0, i32* %5, align 4
br label %8

; <label>:8: ; preds = %61, %2
%9 = load i32, i32* %5, align 4
%10 = load i32, i32* %4, align 4
%11 = sub nsw i32 %10, 1
%12 = icmp slt i32 %9, %11
br i1 %12, label %13, label %64

; <label>:13: ; preds = %8
store i32 0, i32* %6, align 4
br label %14

; <label>:14: ; preds = %57, %13
%15 = load i32, i32* %6, align 4
%16 = load i32, i32* %4, align 4
%17 = load i32, i32* %5, align 4
%18 = sub nsw i32 %16, %17
%19 = sub nsw i32 %18, 1
%20 = icmp slt i32 %15, %19
br i1 %20, label %21, label %60

; <label>:21: ; preds = %14
%22 = load i32*, i32** %3, align 8
%23 = load i32, i32* %6, align 4
%24 = sext i32 %23 to i64
%25 = getelementptr inbounds i32, i32* %22, i64 %24
%26 = load i32, i32* %25, align 4
%27 = load i32*, i32** %3, align 8
%28 = load i32, i32* %6, align 4
%29 = add nsw i32 %28, 1
%30 = sext i32 %29 to i64
%31 = getelementptr inbounds i32, i32* %27, i64 %30
%32 = load i32, i32* %31, align 4
%33 = icmp sgt i32 %26, %32
br i1 %33, label %34, label %56

; <label>:34: ; preds = %21
%35 = load i32*, i32** %3, align 8

%36 = load i32, i32* %6, align 4
%37 = sext i32 %36 to i64
%38 = getelementptr inbounds i32, i32* %35, i64 %37
%39 = load i32, i32* %38, align 4
store i32 %39, i32* %7, align 4
%40 = load i32*, i32** %3, align 8
%41 = load i32, i32* %6, align 4
%42 = add nsw i32 %41, 1
%43 = sext i32 %42 to i64
%44 = getelementptr inbounds i32, i32* %40, i64 %43
%45 = load i32, i32* %44, align 4
%46 = load i32*, i32** %3, align 8
%47 = load i32, i32* %6, align 4
%48 = sext i32 %47 to i64
%49 = getelementptr inbounds i32, i32* %46, i64 %48
store i32 %45, i32* %49, align 4
%50 = load i32, i32* %7, align 4
%51 = load i32*, i32** %3, align 8
%52 = load i32, i32* %6, align 4
%53 = add nsw i32 %52, 1
%54 = sext i32 %53 to i64
%55 = getelementptr inbounds i32, i32* %51, i64 %54
store i32 %50, i32* %55, align 4
br label %56

; <label>:56: ; preds = %34, %21
br label %57

; <label>:57: ; preds = %56
%58 = load i32, i32* %6, align 4
%59 = add nsw i32 %58, 1
store i32 %59, i32* %6, align 4
br label %14

; <label>:60: ; preds = %14
br label %61

; <label>:61: ; preds = %60
%62 = load i32, i32* %5, align 4
%63 = add nsw i32 %62, 1
store i32 %63, i32* %5, align 4
br label %8

; <label>:64: ; preds = %8
ret void

}

Contextual Flow Graph (XFG not CFG)

• Nodes: variables or labels (functions or basic blocks)
• Edges: Data Dependence or Execution Dependence

Contextual Flow Graph (XFG not CFG)

• Nodes: variables or labels (functions or basic blocks)
• Edges: Data Dependence or Execution Dependence

Construction in 2 Passes O(n):
1. First Pass store all function names and return statements
2. Second pass construct graph as follows:

1. Direct data dependencies connected within basic block
2. Conditional Branches create data dependencies to labels
3. Merge Operations connect data dependencies and also connect through

label
4. Identifiers without parent connected to root function or label

Contextual Flow Graph (XFG not CFG)

• Nodes: variables or labels (functions or basic blocks)
• Edges: Data Dependence or Execution Dependence

Contextual Flow Graph (XFG not CFG)

• Nodes: variables or labels (functions or basic blocks)
• Edges: Data Dependence or Execution Dependence

(1) Internal Data
Dependencies

Contextual Flow Graph (XFG not CFG)

• Nodes: variables or labels (functions or basic blocks)
• Edges: Data Dependence or Execution Dependence

(2) Conditional
Branch
Dependencies

Contextual Flow Graph (XFG not CFG)

• Nodes: variables or labels (functions or basic blocks)
• Edges: Data Dependence or Execution Dependence

(3) Merge Op
Dependencies

Contextual Flow Graph (XFG not CFG)

• Nodes: variables or labels (functions or basic blocks)
• Edges: Data Dependence or Execution Dependence

(4) Control Flow
Orphans

Statement Embeddings: Skipgram model

Image from http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Statement Embeddings: Skipgram model

Image from http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Example: context size = 2

Statement Embeddings: Skipgram model

Example: context size = 2

Training Pairs for %cmp:

Statement Embeddings: Skipgram model

Example: context size = 2 (%cmp, %x)
(%cmp, %LT)
(%cmp, %RT)
(%cmp, %2)
(%cmp, %3)

Training Pairs for %cmp:

Data Preparation

• Preprocess put in generic ids and types:
• Id -> %ID
• Float literal -> FLOAT (same for ints)

Data Preparation

• Preprocess put in generic ids and types:
• Id -> %ID
• Float literal -> FLOAT (same for ints)

• Discard rare statements (<300)

Data Preparation

• Preprocess put in generic ids and types:
• Id -> %ID
• Float literal -> FLOAT (same for ints)

• Discard rare statements (<300)
• Subsample frequent pairs1 ! "# = Discard Probability

t = hyperparameter 10'(
)("#)= "# frequency

! "# = 1 − -
) "#

1. Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural
information processing systems. 2013.

Embedding Model

• Embedding Dimension = 200
• Implemented in Tensorflow
• Train for 5 epochs over given dataset
• Adam optimizer default params

Embedding Model

• Embedding Dimension = 200
• Implemented in Tensorflow
• Train for 5 epochs over given dataset
• Adam optimizer default params

Batch Size? Time & resources to train?

Embedding Data

Embedding Data

Half Synthetic?

Evaluation: Clustering

Evaluation: Clustering

Evaluation: 4 Experiments

• Analogies
• Algorithm Classification
• Compute Device Mapping
• Thread Coarsening

Evaluation: Analogies

• Generate test analogies from LLVM IR Syntax
• Analogy types:
• Same op different types
• Adding options to different ops
• Type conversions
• Data Structures

Evaluation: Analogies

Evaluation: Classification Model

• 2 Stacked LSTMs with 200 units
• Batchnorm
• Dense Layer with 32 Units
• Output Softmax Classifier with Crossentropy Loss

Evaluation: Classification Model

• 2 Stacked LSTMs with 200 units
• Batchnorm
• Dense Layer with 32 Units
• Output Softmax Classifier with Crossentropy Loss

Could another model do better?

Evaluation: Classification Model

Evaluation: Algorithm Classification

• Given Program, predict what algorithm it implements (identical input/output)
• POJ 104 Dataset: 104 algorithm classes written by 500 people

• https://github.com/ChrisCummins/paper-end2end-dl
• Compare with Tree based CNNs (previous best)

• Use precomputed inst2vec embedding (not trained on POJ 104)

https://github.com/ChrisCummins/paper-end2end-dl

Evaluation: Compute Device Mapping

• Predict whether program will run faster on CPU or GPU
• OpenCL Code Dataset (https://sites.google.com/site/treebasedcnn/)
• Use Data Input Size and Work Group Size (number threads) as

additional inputs
• Optionally incorporate immediate values (ie %x instead of %ID)

https://sites.google.com/site/treebasedcnn/

Evaluation: Compute Device Mapping

Evaluation: Compute Device Mapping

Immediate Value concatenation types:

Evaluation: Compute Device Mapping

Immediate Value concatenation results:

Evaluation: Thread Coarsening

• Predict optimal thread coarsening factor = reduce number of GPU
threads on OpenCL program

• Options are 1, 2, 4, 8, 16, 32

• Explain poorer performance with small dataset (17 programs) vs 680
per platform for device mapping

Evaluation: Thread Coarsening

Immediate Value concatenation results:

Related Work

• Token Sequences -> Embeddings -> LSTMs directly on source code
• Model context based on Lexigraphic Locality, Dataflow, Control Flow, ASTs,

Paths in ASTs

• Alternate Models: Conditional Random Fields
• XFG similar to Program Dependence Graph and Sea of Nodes but

more flexible since not used by compiler backend

Discussion Questions

• Are you convinced by this paper?
• Do XFG Skipgram Embeddings make sense?
• Are the evaluations fair?

Discussion Questions

• Are you convinced by this paper?
• Do XFG Skipgram Embeddings make sense?
• Are the evaluations fair?

• How could the method be improved?

Discussion Questions

• Are you convinced by this paper?
• Do XFG Skipgram Embeddings make sense?
• Are the evaluations fair?

• How could the method be improved?
• Use attention models, allow embedding to train in conjunction with model.
• Try graph based models on XFG (Graph embeddings)

Discussion Questions

• Are you convinced by this paper?
• Do XFG Skipgram Embeddings make sense?
• Are the evaluations fair?

• How could the method be improved?
• Use attention models, allow embedding to train in conjunction with model.
• Try graph based models on XFG (Graph embeddings)

• What are other applications XFG embeddings could be used for?

Discussion Questions

• Are you convinced by this paper?
• Do XFG Skipgram Embeddings make sense?
• Are the evaluations fair?

• How could the method be improved?
• Use attention models, allow embedding to train in conjunction with model.
• Try graph based models on XFG (Graph embeddings)

• What are other applications XFG embeddings could be used for?
• Code similarity
• Predict internal properties like loop invariants
• Code modeling (predict next symbol when typing)

Questions?

