
TxBox: Building Secure,
Efficient Sandboxes with

System Transactions

 Suman Jana Vitaly Shmatikov

 The University of Texas at Austin

 Donald E. Porter

 Stony Brook University

Untrusted code is
everywhere !

Untrusted code is
everywhere !

Untrusted code is
everywhere !

Sandbox restricts untrusted code

Files it can read/write

System calls and arguments it can use

sandbox

Sandbox: restrict
untrusted code

Properties a sandbox
should have

Uncircumventability

Fidelity

Separation policy enforcement and policy
specification

Performance

completely understand
effects of untrusted

code on host

A quick survey of some
sandboxing techniques

Static Analysis

detect malicious code
using static-analysis

untrusted code

static-analysis
is imperfect:

false negatives

execute code

if benign

Incorrect mirroring of system state

Time of check to time of use (TOCTOU)
attacks

untrusted
code

system call
interposition

layer

System call interposition

syscall
args

ret code

syscall
args

ret
code

OS
system call

implementation

Building sandboxes with
VMs/emulators

sandbox

VM/emulator

execute copy of
untrusted code

execute
untrusted

code

if benign

Building sandboxes with
VMs/emulators

sandbox

VM/emulator

execute copy of
untrusted code

execute
untrusted

code

if benignif (inside VM/Emulator)
benign actions

else
malicious actions

split personality
attack

Fidelity: necessary for
uncircumventability

Understand behavior of untrusted code

Semantic gaps can lead to circumvention

Coherent view of all actions performed by
untrusted code

System calls and arguments

All affected files (read/write)

Sandbox policies

How should a sandbox decide which
actions to allow/deny ?

 least privilege model

Whitelist minimal set of operations needed for
correct functionality of untrusted code

Users only have partial information

Difficult to implement in practice

Overestimate: untrusted code can cause more
damage

Underestimate: crippled functionality

Least privilege model:
difficulties

untrusted
video codec

read ./input.avi

input.avi
allow read input.avi

sandbox

write ./out.mpg
allow write out.mpg

Least privilege model:
difficulties

untrusted
video codec

read ./input.avi

input.avi
allow read input.avi

sandbox

write ./out.mpg
allow write out.mpg

write ./tmp123

Least privilege model:
difficulties

untrusted
video codec

read ./input.avi

input.avi
allow read input.avi

sandbox

write ./out.mpg
allow write out.mpg

write ./tmp123

do not know the
name a priori

Least privilege model:
difficulties

untrusted
video codec

read ./input.avi

input.avi

sandbox

write ./out.mpg

write ./tmp123 allow access to
files in current

directory

not least privilege
anymore

Least privilege model:
difficulties

untrusted
video codec

read ./input.avi

input.avi

sandbox

write ~/bash.rc

write ./unrelated allow access to
files in current

directory

violation detected
and blocked

damage
already done

Recoverability

Once a sandboxed process is detected doing
anything bad, rollback all changes to be safe

Real sandboxes have imperfect policies

Sandboxes with perfect policies may not need
recoverability

can not always
enforce least privilege

only include a subset of
possible malicious actions

Recoverability can
increase parallelism

security checks
(e.g. virus scanning)

parallel

sandboxed code

Recoverability can
increase parallelism

security checks
(e.g. virus scanning)

parallel

sandboxed code

is sandboxed code
malicious ?

Recoverability can
increase parallelism

security checks
(e.g. virus scanning)

parallel

sandboxed code

is sandboxed code
malicious ? yes

Recoverability can
increase parallelism

security checks
(e.g. virus scanning)

parallel

sandboxed code

is sandboxed code
malicious ? yes recover

Properties a sandbox
should have

Uncircumventability

Separation policy enforcement and policy
specification

Performance

Recoverability

OS transactions
speculative execution

OS

file A file B

OS transactions
speculative execution

system call

OS

file A file B

OS transactions
speculative execution

system call

transactional
work-set

OS

file A file B

modified
file A

OS transactions
speculative execution

system call

transactional
work-set

OS

file A file B

modified
file B

modified
file A

OS transactions
speculative execution

system call

abort/
commit

transactional
work-set

OS

file A file B

modified
file B

modified
file A

OS transactions
speculative execution

commit

OS

file A file B

modified
file A

modified
file B

make changes visible
to other processes

OS transactions
speculative execution

commit

OS

file A file B

modified
file A

modified
file B

make changes visible
to other processes

Security needs
transactions

speculatively execute
untrusted code

transactional
work-set abort

commit
no

yes

policy
violation

?

Security needs
transactions

speculatively execute
untrusted code

transactional
work-set abort

commit
no

yes

policy
violation

?

performance
(no blocking)

uncircumventability

recoverability

OS support for
transactions

TxOS : Porter et al. SOSP 2009

Speculative execution support for 150+ system
calls

Provides ACID semantics

Originally done for handling concurrency

Insight: transactions are great match for
security

Execute untrusted code inside a transaction

Make security decisions by checking work-set

Parallelize security checks with program
execution

Abort transaction if anything malicious is
detected

TxBox

Insight: transactions are great match for
security

Execute untrusted code inside a transaction

Make security decisions by checking work-set

Parallelize security checks with program
execution

Abort transaction if anything malicious is
detected

TxBox

Evaluation

Can TxBox isolate large real-world programs?

FFmpeg : audio/video codec

SpiderMonkey : JavaScript engine

Vim : editor

How much performance/memory overhead
does TxBox incur ?

TxBox: performance
overhead

< 20 %

On average TxBox causes less than < 20% runtime
overhead compared to Linux

TxBox: memory overhead

2X

On average TxBox execution of a process takes 2x more
memory compared to regular Linux execution

TxBox: parallel antivirus
scanning

ClamAV “on-open”
scan

...

postmark

TxBox parallelization gain
 (ClamAV scanning)

230 %

host had
4 cores

 Conclusion: security
needs transactions

Speculatively execute untrusted code

Rollback if any malice is detected

Inspect all effects of the untrusted process at
the right level of abstraction

Prevent circumvention and evasion

 Conclusion: security
needs transactions

Speculatively execute untrusted code

Rollback if any malice is detected

Inspect all effects of the untrusted process at
the right level of abstraction

Prevent circumvention and evasion

suman@cs.utexas.edu

mailto:suman@cs.utexas.edu
mailto:suman@cs.utexas.edu

Recoverability: output
commit problem

How to maintain recoverability if an untrusted
process performs network i/o ?

Unsolvable in general, we do the next best thing

Always preserve local recoverability

Deny network i/o and continue

Execute network i/o outside of transaction
and continue

TxBox: implementation
issues

TxOS transactions need cooperative processes
calling

xbegin

xend

Untrusted processes are not co-operative

Support “forced” transactions

Implement policy manager and policy enforcer

See paper for details

sandboxed code

Building sandboxes with
system call interposition

kernel

user-space

system call wrapper

system call

 syscall args sandbox

allow/deny

should
allow ?

sandboxed code

Building sandboxes with
system call interposition

kernel

user-space

system call wrapper

system call

system call specific
handler

 syscall args sandbox

allow/deny

should
allow ?

if allowed

sandboxed code

Building sandboxes with
system call interposition

kernel

user-space

system call wrapper

system call

system call specific
handler

 syscall args sandbox

allow/deny

should
allow ?

possible race
condition

if allowed

sandboxed
code

syscall args

Time of check to time of
use (TOCTOU) attacks

kernel

user-land

system call wrapper

system call

untrusted
code

(child)

fork

sandboxed
code

syscall args

Time of check to time of
use (TOCTOU) attacks

sandbox

kernel

user-land

system call wrapper

system call

untrusted
code

(child)

fork

should
allow ?

allow

sandboxed
code

syscall args

Time of check to time of
use (TOCTOU) attacks

sandbox

kernel

user-land

system call wrapper

system call

system call specific
handler

untrusted
code

(child)

fork

overwrite

should
allow ?

allow

sandboxed
code

syscall args

Time of check to time of
use (TOCTOU) attacks

sandbox

kernel

user-land

system call wrapper

system call

system call specific
handler

untrusted
code

(child)

fork

overwrite

should
allow ?

allow

