TXBOX: BUILDING SECURE, EFFICIENT SANDBOXES WITH SYSTEM TRANSACTIONS

Suman JanaVitaly ShmatikovThe University of Texas at AustinDonald E. PorterStony Brook University

UNTRUSTED CODE IS EVERYWHERE !

UNTRUSTED CODE IS EVERYWHERE !

UNTRUSTED CODE IS EVERYWHERE !

SANDBOX: RESTRICT UNTRUSTED CODE

Sandbox restricts untrusted code

Files it can read/write

System calls and arguments it can use

PROPERTIES A SANDBOX SHOULD HAVE

Uncircumventability

* Fidelity -

completely understand effects of untrusted code on host

Separation policy enforcement and policy specification

Performance

A QUICK SURVEY OF SOME SANDBOXING TECHNIQUES

STATIC ANALYSIS

untrusted code

static-analysis is imperfect: false negatives

detect malicious code using static-analysis

if benign

execute code

SYSTEM CALL INTERPOSITION

Incorrect mirroring of system state

Time of check to time of use (TOCTOU) attacks

BUILDING SANDBOXES WITH VMS/EMULATORS

BUILDING SANDBOXES WITH VMS/EMULATORS

FIDELITY: NECESSARY FOR UNCIRCUMVENTABILITY

- # Understand behavior of untrusted code
 - Semantic gaps can lead to circumvention
- Coherent view of all actions performed by untrusted code
 - System calls and arguments
 - # All affected files (read/write)

SANDBOX POLICIES

How should a sandbox decide which actions to allow/deny ?

LEAST PRIVILEGE MODEL

Whitelist minimal set of operations needed for correct functionality of untrusted code

- # Users only have partial information
- Difficult to implement in practice
 - Overestimate: untrusted code can cause more damage

Underestimate: crippled functionality

RECOVERABILITY

Once a sandboxed process is detected doing anything bad, rollback all changes to be safe

Real sandboxes have imperfect policies

can not always enforce least privilege only include a subset of possible malicious actions

Sandboxes with perfect policies may not need recoverability

PROPERTIES A SANDBOX SHOULD HAVE

- # Uncircumventability
- Separation policy enforcement and policy specification
- # Performance
- Recoverability

speculative execution

speculative execution

OS

file B

file A

system call

work-set

to other processes

speculative execution

SECURITY NEEDS TRANSACTIONS

SECURITY NEEDS TRANSACTIONS

OS SUPPORT FOR TRANSACTIONS

- * TxOS : Porter et al. SOSP 2009
- Speculative execution support for 150+ system calls
- Provides ACID semantics
- Originally done for handling concurrency

- Insight: transactions are great match for security
- * Execute untrusted code inside a transaction
- * Make security decisions by checking work-set
- * Parallelize security checks with program execution

* Abort transaction if anything malicious is detected

EVALUATION

Can TxBox isolate large real-world programs?

% FFmpeg : audio/video codec

SpiderMonkey : JavaScript engine

% Vim : editor

* How much performance/memory overhead does TxBox incur ?

TXBOX: PERFORMANCE OVERHEAD

On average TxBox causes less than < 20% runtime overhead compared to Linux</p>

TXBOX: MEMORY OVERHEAD

On average TxBox execution of a process takes 2x more memory compared to regular Linux execution

TXBOX: PARALLEL ANTIVIRUS SCANNING

TXBOX PARALLELIZATION GAIN (CLAMAV SCANNING)

CONCLUSION: SECURITY NEEDS TRANSACTIONS

- Speculatively execute untrusted code
- Rollback if any malice is detected
- Inspect all effects of the untrusted process at the right level of abstraction
- * Prevent circumvention and evasion

CONCLUSION: SECURITY NEEDS TRANSACTIONS

- Speculatively execute untrusted code
- Rollback if any malice is detected
- Inspect all effects of the untrusted process at the right level of abstraction
- Prevent circumvention and evasion

suman@cs.utexas.edu

RECOVERABILITY: OUTPUT COMMIT PROBLEM

- * How to maintain recoverability if an untrusted process performs network i/o ?
- # Unsolvable in general, we do the next best thing
- * Always preserve local recoverability
 - Deny network i/o and continue
 - * Execute network i/o outside of transaction and continue

TXBOX: IMPLEMENTATION ISSUES

- * TxOS transactions need cooperative processes calling
 - * xbegin
 - ** xend
- Untrusted processes are not co-operative
 Support "forced" transactions
 Implement policy manager and policy enforcer
 See paper for details

BUILDING SANDBOXES WITH SYSTEM CALL INTERPOSITION

BUILDING SANDBOXES WITH SYSTEM CALL INTERPOSITION

BUILDING SANDBOXES WITH SYSTEM CALL INTERPOSITION

