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ABSTRACT
Many recent works have proposed methods to train classifiers with

local robustness properties, which can provably eliminate classes

of evasion attacks for most inputs, but not all inputs. Since data dis-

tribution shift is very common in security applications, e.g., often

observed for malware detection, local robustness cannot guarantee

that the property holds for unseen inputs at the time of deploying

the classifier. Therefore, it is more desirable to enforce global robust-

ness properties that hold for all inputs, which is strictly stronger

than local robustness.

In this paper, we present a framework and tools for training

classifiers that satisfy global robustness properties. We define new

notions of global robustness that are more suitable for security

classifiers. We design a novel booster-fixer training framework to

enforce global robustness properties. We structure our classifier as

an ensemble of logic rules and design a new verifier to verify the

properties. In our training algorithm, the booster increases the clas-

sifier’s capacity, and the fixer enforces verified global robustness

properties following counterexample guided inductive synthesis.

We show that we can train classifiers to satisfy different global

robustness properties for three security datasets, and even multiple

properties at the same time, with modest impact on the classifier’s

performance. For example, we train a Twitter spam account classi-

fier to satisfy five global robustness properties, with 5.4% decrease in

true positive rate, and 0.1% increase in false positive rate, compared

to a baseline XGBoost model that doesn’t satisfy any property.

CCS CONCEPTS
• Security and privacy→ Logic and verification; Malware and
its mitigation; Social network security and privacy; Network secu-
rity; • Computing methodologies → Machine learning algo-
rithms; Logical and relational learning; Rule learning;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484776

KEYWORDS
Verifiable Machine Learning; Security Classifier; Adversarial ma-

chine learning; Global Robustness Properties; Formal Verification

ACM Reference Format:
Yizheng Chen, Shiqi Wang, Yue Qin, Xiaojing Liao, Suman Jana, and David

Wagner. 2021. Learning Security Classifiers with Verified Global Robustness

Properties. In Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’21), November 15–19, 2021, Vir-
tual Event, Republic of Korea. ACM, New York, NY, USA, 18 pages. https:

//doi.org/10.1145/3460120.3484776

1 INTRODUCTION
Machine learning classifiers can achieve high accuracy to detect

malware, spam, phishing, online fraud, etc., but they are brittle

against evasion attacks. For example, to detect whether a Twitter

account is spamming malicious URLs, many research works have

proposed to use content-based features, such as the number of

tweets containing URLs from that account [46, 48, 58, 82]. These

features are useful at achieving high accuracy, but attackers can

easily modify their behavior to evade the classifier.

In this paper, we develop a framework and tools for addressing

this problem. First, the defenders identify a property 𝜑 that the

classifier should satisfy; typically, 𝜑 identifies a class of evasion

strategies that might be available to an adversary, and specifies a

requirement on their effect on the classifier (e.g., that they won’t

change the classifier’s output too much). Next, the defenders train

a classifier F that satisfies 𝜑 . We identify several properties 𝜑 that

capture different notions of classifier robustness. Then, we design

an algorithm for the classifier design problem:

Given a property 𝜑 and a training set D, train a clas-
sifier F that satisfies 𝜑 .

Our algorithm trains a verifiably robust classifier: we can formally

verify that F satisfies 𝜑 .

Existing works focus on training and verifying local robustness

properties of classifiers. Typically, they verify the following local

robustness property: define 𝜑 (𝑥) to be the assertion that for all 𝑥 ′,
if ∥𝑥 ′ − 𝑥 ∥𝑝 ≤ 𝜖 , then F (𝑥 ′) is classified the same as F (𝑥). The
past works provide a way to verify whether 𝜑 (𝑥) holds, for a fixed
𝑥 , and then devise ways to train a classifier F so that 𝜑 (𝑥) holds for
most 𝑥 , but not all 𝑥 (local robustness). So far, the most promising

defenses against adversarial examples all take this form, including

adversarial training [59], certifiable training [19, 62, 85, 92], and

randomized smoothing techniques [14, 45, 51]. To evaluate the local
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robustness of a trained model, we can measure the percentage of

data points 𝑥 in the test set that satisfy 𝜑 (𝑥) [18, 20, 21, 26, 28, 34,
38, 57, 70, 71, 77, 78, 83, 86, 87, 90, 92]. This measurement is useful

if at the time of deploying the classifier, the real-world data follow

the same distribution as the measured test set. Unfortunately, data

distribution shift is very common in security applications (e.g., mal-

ware detection [3, 61, 66]), so local robustness cannot guarantee

that the robustness property holds for most inputs at deployment

time. In fact, in some cases, the adversary may be able to adapt

their behavior by choosing novel samples 𝑥 that don’t follow the

test distribution and such that 𝜑 (𝑥) doesn’t hold.
In this paper, we address these challenges by showing how to

train classifiers that satisfy verified global robustness properties.We

define a global robustness property as a universally quantified state-

ment over one or more inputs to the classifier, and its correspond-

ing outputs: e.g., ∀𝑥 .𝜑 (𝑥) or ∀𝑥, 𝑥 ′.𝜑 (𝑥, 𝑥 ′). Since global robustness
holds for all inputs, it is strictly stronger than local robustness, and it

ensures robustness even under distribution shift. Then, we identify

a number of robustness properties that may be useful in security ap-

plications, and we develop a general technique to achieve the prop-

erties. Our technique can handle a large class of properties, formally

defined in Section 5.2.1. The vast majority of past work has focused

on ℓ𝑝 robustness, perhaps motivated by computer vision; however,

in security settings, such as detecting malware, online fraud, or

other attacks, other notions of robustness may be more appropriate.

There are many challenges in training classifiers with global ro-

bustness properties. First, it is hard to maintain good test accuracy

since the definition of global robustness is much stronger than local

robustness. To the best of our knowledge, among global robustness

properties, only two properties have been previously achieved. One

of them is monotonicity [35, 89]; and the other is a concurrent work

that has proposed ℓ𝑝 -norm robustness with the option to abstain

on non-robust inputs [50]. For example, researchers have trained a

monotonic malware classifier to defend against evasion attacks that

add content to a malware [35]. Monotonicity is useful: it limits the

attacker to more expensive evasion operations that may remove

malicious functionality from the malware, if they want to evade the

classifier. However, monotonicity is not general enough to capture

some types of evasion. Second, it is challenging to train classi-

fiers with guarantees of global robustness. Several training tech-

niques sacrifice global robustness in their algorithms. For example,

DL2 [25] proposed several global robustness properties, but their

training technique only achieves local robustness and cannot learn

classifiers with global properties, because they rely on adversarial

training. ART [56] presents an abstraction refinement method to

train neural networkswith global robustness properties. In principle

ART can guarantee global robustness if the correctness loss reaches

zero, however in their experiments the loss never reached zero.

To overcome these challenges, we design a novel booster-fixer

training framework that enforces global robustness. Our classifier

is structured as an ensemble of logic rules—a new architecture that

is more expressive than trees given the same number of atoms and

clauses (formally defined in Section 4.1)—andwe show how to verify

global robustness properties and then how to train them, for these

ensembles. Intuitively, our algorithm trains a candidate classifier

with good accuracy (but not necessarily any robustness), and then

we fix the classifier to satisfy global robustness by iteratively find-

ing counterexamples and repairing them using the Counterexample

Guided Inductive Synthesis (CEGIS) paradigm [80]. Past works for

training monotonic classifiers all use specialized techniques that do

not generalize to other properties [5, 7, 16, 17, 23, 32, 35, 40, 89]. In

contrast, our technique is fully general and can handle a large class

of global robustness properties (formally defined in Section 5.2.1);

we even show that we can enforce multiple properties at the same

time (Section 3.2, Section 6.3.3).

We evaluate our approach on three security datasets: cryptojack-

ing [41], Twitter spam accounts [47], and Twitter spam URLs [43].

Using security domain knowledge and results from measurement

studies, we specify desirable global robustness properties for each

classification task. We show that we can train all properties individ-

ually, and we can even enforce multiple properties at the same time,

with a modest impact on the classifier’s performance. For example,

we train a classifier to detect Twitter spam accounts while satisfying

five global robustness properties; the true positive rate decreases

by 5.4% and the false positive rate increases by 0.1%, compared

to a baseline XGBoost model that doesn’t satisfy any robustness

property.

Since no existing work can train classifiers with any global ro-

bustness property other than monotonicity, we compare our ap-

proach against two types of baseline models: 1) monotonic clas-

sifiers, and 2) models trained with local versions of our proposed

properties. For the monotonicity property, our results show that our

method can achieve comparable or better model performance than

prior methods that were specialized for monotonicity. We also ver-

ify that we can enforce each global robustness property we consider,

which no prior method achieves for any of the other properties.

Our contributions are summarized as follows.

• We define new global robustness properties that are relevant

for security applications.

• We design and implement a general booster-fixer training

procedure to train classifiers with verified global robustness

properties.

• We propose a new type of model, logic ensemble, that is

well-suited to booster-fixer training. We show how to verify

properties of such a model.

• We are the first to train multiple global robustness proper-

ties. We demonstrate that we can enforce these properties

while maintaining high test accuracy for detecting crypto-

jacking websites, Twitter spam accounts, and Twitter spam

URLs. Our code is available at https://github.com/surrealyz/

verified-global-properties.

2 EXAMPLE
In this section, we present an illustrative example to show how

our training algorithm works. Within our booster-fixer framework,

the fixer follows the Counterexample Guided Inductive Synthe-

sis (CEGIS) paradigm. The key step in each CEGIS iteration is to

start from a classifier without the global robustness property, use

a verifier to find counterexamples that violate the property, and

train the classifier for one epoch guided by the counterexample.

This process is repeated until the classifier satisfies the property.

Here, we show how to train one CEGIS iteration for a classifier

https://github.com/surrealyz/verified-global-properties
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Starting Classifier

wasm <  0.5 ⋀
web workers < 1.5 → -1.99

wasm ≥ 0.5 ⋀ 
web workers < 1.5 → 1.39

web workers ≥ 1.5 ⋀
web workers < 3.5 → 1.25

Counterexample:
F(wasm = 1, web workers = 1) = 1.39
F(wasm = 1, web workers = 3) = 1.25

Classifier Output:
FR(x) = R1, FR(xʹ) = R2

Monotonically
increasing?

web workers Constraint

R1 ≤ R2

wasm <  0.5 ⋀
web workers < 1.5 → -1.99

wasm ≥ 0.5 ⋀ 
web workers < 1.5 → 1.32

web workers ≥ 1.5 ⋀
web workers < 3.5 → 1.32

CLN:
Gradient-guided

Optimization

Updated Classifier

Verifier
No

Yes

Stop

1

2

3

4

R0

R1

R2

R0

R1

R2

Figure 1: One CEGIS iteration of our training algorithm, illustrated on a simple example. Here we train a classifier to detect
cryptojacking, while enforcing a monotonicity property.

to detect cryptojacking web pages. For simplicity, we demonstrate

classification using only two features.

2.1 Monotonicity for Cryptojacking Classifier
We use two features to detect cryptojacking: whether the website

uses WebAssembly (wasm), and the number of web workers used

by the website [41]. Cryptojacking websites need the high per-

formance provided by WebAssembly and often use multiple web

worker threads to mine cryptocurrency concurrently. We enforce a

monotonicity property for the web workers feature: the more web

workers a website uses, the more suspicious it should be rated by

the classifier, with all else held equal.

Figure 1 shows a single CEGIS iteration that starts from a clas-

sifier that violates the property, uses a counterexample to guide

the training, and arrives at an updated classifier that satisfies the

property. The classifier is structured as an ensemble of logic rules.

For example, “wasm < 0.5 ∧ web workers < 1.5 → −1.99" means

that if the website does not use WebAssembly, and has at most

one web worker, the clause adds 𝑅_0 to the final prediction value,

which is currently −1.99. Otherwise, the clause is inactive and adds
nothing to the final prediction value. The colored variables are

learnable parameters. The classifier computes the final score as a

sum over all active clauses; if this score is greater than or equal to

0, the webpage is classified as malicious.

Our training procedure executes the following steps:

Step 1○, Figure 1: We use formal methods to verify whether the

current classifier satisfies the monotonicity property for the web

workers feature. If the property is verified, we have learned a robust

classifier and the iteration stops. Otherwise, the verifier produces

a counterexample that violates the property.

Step 2○: We use clause return variables to represent the coun-

terexample. The counterexample found by the verifier is𝑥 = (wasm =

1, web workers = 1), 𝑥 ′ = (wasm = 1, web workers = 3), such that

𝑥 < 𝑥 ′ and F (𝑥) > F (𝑥 ′). We compute variables F𝑅 (𝑥) = 𝑅1,

F𝑅 (𝑥 ′) = 𝑅2 as the classifier output for each input, using the sum

of return variables from the true clauses.

Step 3○: We construct a logical constraint to represent that the

counterexample from this pair of samples (𝑥, 𝑥 ′) should no longer

violate the monotonicity property, i.e., that F𝑅 (𝑥) ≤ F𝑅 (𝑥 ′). Here,

this is equivalent to 𝑅1 ≤ 𝑅2. Then, we re-train the classifier sub-

ject to the constraint that 𝑅1 ≤ 𝑅2. To enforce this constraint, we

smooth the discrete classifier using Continuous Logic Networks

(CLN) [72, 96], and then use projected gradient descent with the

constraint to train the classifier. Gradient-guided optimization en-

sures that this counterexample (𝑥, 𝑥 ′) will no longer violate the

property and tries to achieve the highest accuracy subject to that

constraint. After one epoch of training, the red parameters are

changed by gradient descent in the updated classifier.

Lastly, we discretize the updated classifier and repeat the process

again. In the second iteration, we query the verifier again (Step

4○). In this example, the updated classifier from the first iteration

satisfies the monotonicity property, and the process stops.

This simplified example illustrates the key ideas behind our train-

ing algorithm. Appendix A shows another example, illustrating that

this process is general and can enforce a large class of properties

on the classifier. We define the properties we can support in Sec-

tion 5.2.1.

3 MODEL SYNTHESIS PROBLEM
In this section, we formulate the model synthesis problem mathe-

matically, and then propose new global robustness properties based

on security domain knowledge.

3.1 Problem Formulation
Our goal is to train amachine learning classifier F that satisfies a set

of global robustness properties. Without loss of generality, we focus

on binary classification in the problem definition; this can be ex-

tended to the multi-class scenario. The classifier F\ : R𝑛 → Rmaps

a feature vector 𝑥 = [𝑥1, 𝑥2, ..., 𝑥𝑛] with 𝑛 features to a real number.

Here \ represent the trainable parameters of the classifier; we omit

them from the notation when they are not relevant. The classifier

predicts 𝑦 = 1 if F (𝑥) ≥ 0, otherwise 𝑦 = 0. We use F (𝑥) to repre-

sent the classification score, and 𝑔(F (𝑥)) to denote the normalized

prediction probability for the positive class, where 𝑔 : R→ [0, 1].
For example, we can use sigmoid as the normalized prediction

function 𝑔. We formally define the model synthesis problem here.

Definition 3.1 (Model Synthesis Problem). A model synthesis

problem is a tuple (Φ,D), where
• Φ is a set of global robustness properties, Φ = {𝜑1, 𝜑2, ..., 𝜑𝑘 }.



• D is the training dataset containing𝑚 training samples with

their labels (𝑥 (1) , 𝑦 (1) ), . . . , (𝑥 (𝑚) , 𝑦 (𝑚) ).

Definition 3.2 (Solution to Model Synthesis Problem). A solu-

tion to the model synthesis problem (Φ,D) is a classifier F\ with

weights \ that minimizes a loss function L over the training set,

subject to the requirement that the classifier satisfies the global

robustness properties Φ.

\ = arg min

\

∑
D

L(𝑦,𝑔(F\ (𝑥)))

subject to ∀𝜑𝑖 ∈ Φ, F\ |= 𝜑𝑖

(1)

In Section 5, we present a novel training algorithm to solve the

model synthesis problem.

3.2 Global Robustness Property Definition
We are interested in global robustness properties that are relevant

for security classifiers. Below, we define five general properties that

allow us to incorporate domain knowledge about what is considered

to be more suspicious, about what kinds of low-cost evasion strate-

gies the attackers can use without expending too many resources,

and about the semantics and dependency among features.

Property 1 (Monotonicity): Given a feature 𝑗 ,

∀𝑥, 𝑥 ′ ∈ R𝑛 .[𝑥 𝑗 ≤ 𝑥 ′𝑗 ∧ (∀𝑖 ≠ 𝑗 .𝑥𝑖 = 𝑥 ′𝑖 )] =⇒ F (𝑥) ≤ F (𝑥 ′) (2)

This property specifies that the classifier is monotonically in-

creasing along some feature dimension. It is useful to defend against

a class of attacks that insert benign features into malicious instances

(e.g., mimicry attacks [84], PDF content injection attacks [44], gradient-

guided insertion-only attacks [31], Android app organ harvesting

attacks [67]). If we carefully choose features to be monotonic for a

classifier, injecting content into a malicious instance can only make

it look more malicious to the classifier (not less), i.e., these changes

can only increase (not decrease) classification score. Therefore,

evading the classifier will require the attacker to adopt more sophis-

ticated strategies, which may incur a higher cost to the attacker;

also, in some settings, these strategies can potentially disrupt the

malicious functionality of the instance, rendering it harmless.

A straightforward variant is to require that the prediction score

be monotonically decreasing (instead of increasing) for some fea-

tures. For example, we might specify that, all else being equal, the

more followers a Twitter account has, the less likely it is to be

malicious. It is cheap for an attacker to obtain a fake account with

fewer followers, but expensive to buy a fake account with many

followers or to increase the number of followers on an existing ac-

count. Therefore, by specifying that the prediction score should be

monotonically decreasing in the number of followers, we force the

attacker to spend more money if they wish to evade the classifier

by perturbing this feature.

Property 2 (Stability): Given a feature 𝑗 and a constant 𝑐 ,

∀𝑥, 𝑥 ′ ∈ R𝑛 .[∀𝑖 ≠ 𝑗 .𝑥𝑖 = 𝑥 ′𝑖 ] =⇒ |F (𝑥) − F (𝑥 ′) | ≤ 𝑐 (3)

The stability property states that for all 𝑥, 𝑥 ′, if they only differ

in the 𝑗-th feature, the difference between their prediction scores

is bounded by a constant 𝑐 . The stability constant 𝑐 is effectively

a Lipschitz constant for dimension 𝑗 (when all other features are

held fixed), when 𝑥, 𝑥 ′ are compared using the 𝐿0 distance:

|F (𝑥) − F (𝑥 ′) | ≤ 𝑐 ∥𝑥 𝑗 − 𝑥 ′𝑗 ∥0

We can generalize the stability property definition to a subset

of features 𝐽 that can be arbitrarily perturbed by the attacker.

∀𝑥, 𝑥 ′ ∈ R𝑛 .[∀𝑖 ∉ 𝐽 .𝑥𝑖 = 𝑥 ′𝑖 ] =⇒ |F (𝑥) − F (𝑥 ′) | ≤ 𝑐 ∥𝑥 − 𝑥 ′∥0
(4)

Researchers have shown that constraining the local Lipschitz

constant to be small when training neural networks can increase

the robustness against adversarial examples [12, 33]. However, ex-

isting training methods rely on regularization techniques and thus

achieve only local robustness; they cannot enforce a global Lips-

chitz constant. We are interested in the ℓ0 distance, because some

low-cost features can be trivially perturbed by the attacker to evade

security classifiers: the attacker can replace the value of those fea-

tures with any other desired value. The stability property captures

this by allowing the stable feature to be arbitrarily changed.

Low-cost Features. Some features can have their values arbi-

trarily replaced without too much difficulty. We dub these low-cost

features, because it does not cost the attacker much to arbitrarily

modify the value of these features. In particular a low-cost feature

is one that is trivial to change, i.e. does not require nontrivial time,

effort, and economic cost to perturb. All other features are called

high-cost. Section 6.1 gives a concrete analysis of which features

are low-cost for three security datasets.

Property 3 (High Confidence): Given a set of low-cost fea-

tures 𝐽 ,

∀𝑥, 𝑥 ′ ∈ R𝑛 .[∀𝑖 ∉ 𝐽 .𝑥𝑖 = 𝑥 ′𝑖 ] ∧ 𝑔(F (𝑥)) ≥ 𝛿 =⇒ F (𝑥 ′) ≥ 0 (5)

The high confidence property states that, for any sample 𝑥 that

is classified as malicious with high confidence (e.g., 𝛿 = 0.98), per-

turbing any low-cost feature 𝑗 ∈ 𝐽 does not change the classifier

prediction from malicious to benign. Many low-cost features in

security applications are useful to increase accuracy in the absence

of evasion attacks, but they can be easily changed by the attacker.

For example, to evade cryptojacking detection, an attacker could

use an alias of the hash function name, to evade the hash func-

tion feature. This property allows such features to influence the

classification if the sample is near the decision boundary, but for

samples classified as malicious with high confidence, modifying

just low-cost features should not be enough to evade the classifier.

Thus, samples detected with high confidence by the classifier will

be immune to such low-cost evasion attacks.

Property 3a (Maximum Score Decrease): Given a set of low-

cost features 𝐽 ,

∀𝑥, 𝑥 ′ ∈ R𝑛 .[∀𝑖 ∉ 𝐽 .𝑥𝑖 = 𝑥 ′𝑖 ] =⇒ F (𝑥) − F (𝑥 ′) ≤ 𝑔−1 (𝛿) (6)

Property 3a is stronger than Property 3. If the maximum decrease

of any classification score is bounded by 𝑔−1 (𝛿), then any high con-

fidence classification score does not drop below zero. We provide

the proof in Appendix B. In Section 5.2, we design the training

constraint for Property 3a in order to train for Property 3 (Table 2).



Property 4 (Redundancy): Given 𝑀 groups of low-cost fea-

tures 𝐽1, 𝐽2, . . . , 𝐽𝑀

∀𝑥, 𝑥 ′ ∈ R𝑛 .[∀𝑖 ∉
𝑀⋃

𝑚=1

𝐽𝑚 .𝑥𝑖 = 𝑥 ′𝑖 ] ∧ 𝑔(F (𝑥)) ≥ 𝛿

∧¬[∀𝑚 = 1, . . . , 𝑀, ∃ 𝑗𝑚 ∈ 𝐽𝑚, 𝑥 𝑗𝑚 ≠ 𝑥 ′𝑗𝑚 ]
=⇒ F (𝑥 ′) ≥ 0

(7)

If the attacker perturbs multiple low-cost features, we would like

the high confidence predictions from the classifier to be robust if

different groups of low-cost features are not perturbed at the same

time. In the redundancy property, we identify𝑀 groups of low-cost

features, and require that the attacker has to perturb at least one

feature from each group in order to evade a high confidence pre-

diction. In other words, this makes each group of low-cost features

redundant of every other group. If we know all the high-cost fea-

tures with any one group of low-cost features, all high confidence

predictions are robust.

Property 5 (Small Neighborhood): Given a constant 𝑐 ,

∀𝑥, 𝑥 ′ ∈ R𝑛 .𝑑 (𝑥, 𝑥 ′) ≤ 𝜖 =⇒ |F (𝑥) − F (𝑥 ′) | ≤ 𝑐 · 𝜖 (8)

where 𝑑 (𝑥, 𝑥 ′) = max𝑖 {|𝑥𝑖 − 𝑥 ′
𝑖
|/𝜎𝑖 }.

The small neighborhood property specifies that for any two data

points within a small neighborhood defined by 𝑑 , we want the clas-

sifier’s output to be stable. We define the neighborhood by a new

distance metric 𝑑 (𝑥, 𝑥 ′) that measures the largest change to any

feature value, normalized by the standard deviation of that input

feature. 𝑑 (𝑥, 𝑥 ′) is essentially a ℓ∞ norm, applied to normalized

feature values. We chose not to use the ℓ∞ distance directly because

different features for security classifiers often have a different scale.

4 PROPERTY VERIFICATION
In this section, we describe the key ingredients we need to solve

the model synthesis problem. We define a new type of classifier

that is well-suited to model synthesis, and a verification algorithm

to verify whether the classifier satisfies the properties.

4.1 Logic Ensemble Classifier
We propose a new type of classification model, which we call a

logic ensemble. We show how to train logic ensemble classifiers

that satisfy global robustness properties.

Definition 4.1 (Logic Ensemble Definition). A logic ensemble clas-

sifier F consists of a set of clauses. Each clause has the form

𝐵1 (𝛼1, 𝛽1) ∧ 𝐵2 (𝛼2, 𝛽2) ∧ · · · ∧ 𝐵𝑚 (𝛼𝑚, 𝛽𝑚) → 𝑅

where 𝐵1 . . . 𝐵𝑚 are atoms and 𝑅 is the activation value of the clause.

Each atom 𝐵𝑖 has the form 𝛼𝑖𝑥 𝑗 < 𝛽𝑖 for some 𝑗 . Here the 𝛼𝑖 , 𝛽𝑖 , 𝑅

are trainable parameters for the classifier. The implication denotes

that if the body of the clause holds (all atoms 𝐵1 . . . 𝐵𝑚 are true),

then the clause returns an activation value 𝑅, otherwise it returns

0. The classifier’s output is computed as F𝛼,𝛽,𝑅 (𝑥) =
∑
𝑅𝑖 , where

the sum is over all clauses that are satisfied by 𝑥 .

Logic ensembles can be viewed as a generalization of decision

trees. Any decision tree (or ensemble of trees) can be expressed as a

logic ensemble, with one clause per leaf in the tree, but logic ensem-

bles are more expressive (for a fixed number of clauses) because

they can also represent other structures of rules. Researchers have

previously shown how to train decision trees with monotonicity

properties, so our work can be viewed as an extension of this to a

more expressive class of classifiers and a demonstration that this

allows enforcing other robustness properties as well.

4.2 Integer Linear Program Verifier
We present a new verification algorithm that uses integer linear

programming to verify the global robustness properties of logic

ensembles, including trees. First, we encode the logic ensemble

using boolean variables, adding consistency constraints among

the boolean variables. Then, for each global robustness property,

we symbolically represent the input and output of the classifier

in terms of these boolean variables, and add extra constraints to

assert that the robustness property is violated. Next, we check fea-

sibility of these constraints, expressing them as a 0/1 integer linear

program. If an ILP solver can find a feasible solution, the classifier

does not satisfy the corresponding global robustness property, and

the solver will give us a counterexample. On the other hand, if the

integer linear program is infeasible, the classifier satisfies the global

robustness property.

We describe our algorithm in more detail below. We use the

binary variables in the 0/1 integer linear program to represent an

arbitrary input 𝑥 :

Atom (𝑝):We use 𝑝𝑖 variables to encode the truth value of atoms.

Each atom is transformed into the same form of predicate 𝑥 𝑗 < [𝑖 .

Therefore, each predicate variable 𝑝𝑖 is associated with a feature

dimension 𝑗 and the inequality threshold [𝑖 .

Clause Status (𝑙): We use 𝑙𝑘 variables to encode the truth value

of clauses. When 𝑙𝑘 = 1, all atoms in the 𝑘-th clause are true, and

the clause adds 𝑅𝑘 activation value for the classifier output.

Auxiliary Variables (𝑎):We use 𝑎𝑖1 and 𝑎𝑖2 variables to encode the

neighborhood range for the small neighborhood property, defined

in Equation (8). For each predicate 𝑥 𝑗 < [𝑖 , we create 𝑎𝑖1 variable

for 𝑥 𝑗 < [𝑖 − 𝜎 𝑗 ∗ 𝜖 , and 𝑎𝑖2 variable for 𝑥 𝑗 < [𝑖 + 𝜎 𝑗 ∗ 𝜖 . If 𝑥 𝑗 is
within [[𝑖 − 𝜎 𝑗 ∗ 𝜖, [𝑖 + 𝜎 𝑗 ∗ 𝜖], we must have 𝑎𝑖2 − 𝑎𝑖1 = 0.

Double Variables: All the aforementioned variables are doubled

as 𝑝 ′, 𝑙 ′, 𝑎′ to represent the perturbed input 𝑥 ′ bounded by the ro-

bustness property definition. The classifier’s output for arbitrary

𝑥, 𝑥 ′ are:

F (𝑥) = ∑
𝑘

𝑙𝑘𝑅𝑘 , F (𝑥 ′) = ∑
𝑘

𝑙 ′
𝑘
𝑅𝑘

Then, we create the following linear constraints to ensure de-

pendency between variables of the classifier.

Integer Constraints:Wemerge predicates for integer features. For

example, if 𝑥5 is an integer feature, we use the same binary variable

to represent atoms 𝑥5 < 0.2 and 𝑥5 < 0.3.

Predicate Consistency Constraints: Predicate variables for the

same feature dimension are sorted and constrained accordingly. For

any 𝑝𝑖 , 𝑝𝑡 belonging to the same feature dimension with [𝑖 < [𝑡 ,

𝑥 𝑗 < [𝑡 must be true if 𝑥 𝑗 < [𝑖 is true. Thus, we have 𝑝𝑖 ≤ 𝑝𝑡 .

Redundant Predicate Constraints: We set redundant variables to

be always 0. For example, 𝑥 𝑗 < 0 is always false for a nonnegative

feature.

Lastly, we use standard boolean encoding for Property Viola-
tion Constraints to verify a given property, as shown in Table 1.
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Figure 2: Booster-fixer training framework.

Each property has a pair of input and output constraints. In addition,

we encode input consistency constraints for a given property.

Input Consistency Constraints: For any 𝑥𝑖 and 𝑥 ′𝑖 , if they are de-

fined to be the same by the property, we set the related predicate

variables 𝑝 and 𝑝 ′ to have the same value.

Monotonicity: For two arbitrary inputs 𝑥 and 𝑥 ′, if 𝑥 < 𝑥 ′, then
theremust be at least onemore predicate true for 𝑥 ′. The output con-
straint for (1) denotes violation to monotonically non-decreasing

output, and (2) denotes violation to monotonically non-increasing

output.

Stability: The input constraint says 𝑥 and 𝑥 ′ are different, and
the output constraint says the difference between F (𝑥) and F (𝑥 ′)
are larger than the stable constant 𝑐

stability
.

High Confidence: The input constraint says 𝑥 is classified as ma-

licious with at least 𝛿 confidence. The output constraints says 𝑥 ′

is classified as benign.

Redundancy: The input and output constraints are the same as

high confidence property. However, we encode predicate consis-

tency constraints differently. We set variable equality constraints

such that 𝑥𝑖 = 𝑥 ′
𝑖
for 𝑖 outside the𝑀 low-cost feature groups. We

encode the disjunction of the conditions that only features from

the same group are changed.

Small Neighborhood: For input constraint, for each 𝑗 , we first

encode the conjunction that 𝑥 𝑗 and 𝑥
′
𝑗
are both within a small neigh-

borhood interval 𝑎𝑖2 −𝑎𝑖1 = 1. Then, we encode the disjunction that

𝑥 𝑗 and 𝑥
′
𝑗
can be only within one of such intervals surrounding the

predicates. The output constraint says the difference between the

outputs are larger than the allowed range.

5 TRAINING ALGORITHM
5.1 Framework
Figure 2 gives an overview of our booster-fixer training framework.

We have two major components, a booster and a fixer, which in-

teract with each other to train a classifier with high accuracy that

satisfies the global robustness properties.

The booster increases the size of the classifier, and improves clas-

sification performance.We run𝑁 boosting rounds. The classifier is a

sum of logic ensembles, F (𝑥) = ∑𝑁
𝑏=1

𝑓𝑏 (𝑥), where each 𝑓𝑏 is a logic

ensemble. In the 𝑏-th boosting round, the booster adds 𝑓𝑏 to the en-

semble, proposing a candidate classifier

∑𝑏
𝑖=1 𝑓𝑖 (𝑥) (which does not

need to satisfy any robustness property); then the fixer fixes prop-

erty violations for this classifier. Empirically, more boosting rounds

typically lead to better test accuracy after fixing the properties.

The fixer uses counterexample guided inductive synthesis (CEGIS)

to fix the global robustness properties for the current classifier. We

use a verifier and a trainer to iteratively train the classifier, eliminat-

ing counterexamples in each iteration, until the classifier satisfies

Property Property Violation Constraints

Monotonicity

(1) In:

∑
𝑥
𝑝𝑖 ≤

∑
𝑥 ′
𝑝 ′
𝑖
+ 1,

Out:

∑
𝑥
𝑙𝑘 ∗ 𝑅𝑘 >

∑
𝑥 ′
𝑙 ′
𝑘
∗ 𝑅𝑘

(2) In:

∑
𝑥
𝑝𝑖 ≤

∑
𝑥 ′
𝑝 ′
𝑖
+ 1,

Out:

∑
𝑥
𝑙𝑘 ∗ 𝑅𝑘 <

∑
𝑥 ′
𝑙 ′
𝑘
∗ 𝑅𝑘

Stability

In: |∑
𝑥
𝑝𝑖 −

∑
𝑥 ′
𝑝 ′
𝑖
| ≥ 1,

Out: |∑
𝑥
𝑙𝑘 ∗ 𝑅𝑘 −∑

𝑥 ′
𝑙 ′
𝑘
∗ 𝑅𝑘 | > 𝑐

stability

High

Confidence

In:

∑
𝑥
𝑙𝑘 ∗ 𝑅𝑘 ≥ 𝑔−1 (𝛿),

Out:

∑
𝑥 ′
𝑙 ′
𝑘
∗ 𝑅𝑘 < 0

Redundancy

Same constraints as high confidence.

Diff predicate consistency constr.

Small

Neighborhood

In: for each feature 𝑗 , 𝑥 𝑗 and 𝑥
′
𝑗
are

in the same interval [[𝑖 − 𝜎 𝑗 ∗ 𝜖, [𝑖 + 𝜎 𝑗 ∗ 𝜖],
Out: |∑

𝑥
𝑙𝑘 ∗ 𝑅𝑘 −∑

𝑥 ′
𝑙 ′
𝑘
∗ 𝑅𝑘 | > 𝜖 ∗ 𝑐

neighbor

Table 1: Property violation constraints for the verifier.

the properties. In each CEGIS iteration, we first use the verifier

to find a counterexample that violates the property. Then, we use

training constraints to eliminate the counterexample. The train-

ing constraints reduce the space of candidate classifiers and make

progress towards satisfying the property. We accumulate the train-

ing constraints over the CEGIS iterations, so that our classifier is

guaranteed to satisfy global robustness properties when the fixer

returns a solution. After we fix the global robustness properties for

the classifier

∑𝑏
𝑖=1 𝑓𝑖 (𝑥), we go back to boost the next 𝑏 + 1 round,

to further improve the test accuracy. We will discuss the details of

our training algorithm next.

5.2 Robust Training Algorithm
Algorithm 1 presents the pseudo-code for our global robustness

training algorithm. As inputs, the algorithm needs specifications

of the global robustness properties Φ (Section 3.2) and a training

datasetD to train for both robustness and accuracy. In addition, we

need a booster B (Section 5.1), a verifier V (Section 4.2), a trainer

S (described below) and a loss function L to run the booster-fixer

rounds. We can specify the number of boosting rounds 𝑁 . The al-

gorithm outputs a classifier F that satisfies all the specified global

robustness properties.

First, our algorithm initializes an empty ensemble classifier F
such that we can add sub-classifiers into it over the boosting rounds

(Line 1). We also initialize an empty set of constraints C (Line 2).

Then, we go through 𝑁 rounds of boosting in the for loop from



Algorithm 1 Global Robustness Property Training Algorithm

Input: Global robustness properties Φ.
Training set D = {(𝑥 (𝑖) , 𝑦 (𝑖) )}. Number of boosting rounds 𝑁 .

Input: Booster B. Verifier V . Trainer S. Loss function L.

Output: classifier F that satisfies all the properties in Φ.

1: Initialize an empty classifier F .

2: Initialize an empty set of constraints C.
3: for 𝑏 = 1 to 𝑁 do
4: B adds 𝑓𝑏 to F , so that F (𝑥) = ∑𝑏

𝑖=1 𝑓𝑖 (𝑥).
5: while ∃𝜑𝑖 ∈ Φ, F ̸|= 𝜑𝑖 do
6: for each 𝜑𝑖 ∈ Φ do
7: if F ̸|= 𝜑𝑖 then
8: Call V(F ) to get a counterexample (𝑥, 𝑥 ′).
9: Call GenConstraint(𝑥, 𝑥 ′) to get a constraint 𝑐 .

10: Add 𝑐 to C.
11: end if
12: end for
13: if the constraints in 𝐶 are infeasible then
14: return Failure.

15: end if
16: Update \ = (𝛼, 𝛽, 𝑅) using S(𝛼, 𝛽, 𝑅,D, C).
17: end while
18: end for
19: return F
20:

21: function GenConstraint(𝑥, 𝑥 ′):
22: return a constraint on 𝑅 that implies 𝜑 (𝑥, 𝑥 ′),
23: when 𝑥, 𝑥 ′, 𝛼, 𝛽 are fixed at their current values.

24: end function
25:

26: function S(𝛼, 𝛽, 𝑅,D, C):
27: Update 𝛼, 𝛽, 𝑅 using projected gradient descent:

28: 𝛼, 𝛽, 𝑅 = arg min𝛼,𝛽,𝑅

∑
D L(𝑦,𝑔(F𝛼,𝛽,𝑅 (𝑥)))

29: s.t. 𝑅 satisfies all constraints in C
30: end function

Line 3 to Line 18. Within each boosting round 𝑏, the booster B adds

a tree to the ensemble classifier, such that the current classifier is

F (𝑥) = ∑𝑏
𝑖=1 𝑓𝑖 (𝑥). The fixer runs the while loop from Line 5 and

Line 17. As long as the classifier does not satisfy all specified global

robustness properties, we proceed with fixing the properties (Line

5). For each property, if the model does not satisfy the property,

the verifier V produces a counterexample (𝑥, 𝑥 ′) (Line 8). Then,
we generate a constraint 𝑐 that can eliminate the counterexam-

ple by calling a procedure GenConstraint(𝑥, 𝑥 ′) (Line 9). We add

the constraint to the set 𝐶 . If the set of constraints are infeasible,

the algorithm returns failure. Otherwise, we use the trainer S to

train the weights \ using projected gradient descent (Line 16 calls

S(𝛼, 𝛽, 𝑅,D)). We follow the gradient of the loss function w.r.t. the

weights \ , update the weights, and then we project the weights onto

the ℓ2 norm ball centered around updated weights, subject to all

constraints in 𝐶 ,. Therefore, the weights satisfy all constraints in 𝐶 .

Generating Constraint. The GenConstraint function gener-

ates a constraint according to counterexample (𝑥, 𝑥 ′). We use F𝑅 (𝑥)
to represent the equivalence class of 𝑥 : all inputs that are classified
the same as 𝑥 , i.e., their classification score is a sum of return values

Property Training Constraints

Monotonicity

(1) F𝑅 (𝑥) ≤ F𝑅 (𝑥 ′)
(2) F𝑅 (𝑥) ≥ F𝑅 (𝑥 ′)

Stability |F𝑅 (𝑥) − F𝑅 (𝑥 ′) | ≤ 𝑐
stability

High Confidence F𝑅 (𝑥) − F𝑅 (𝑥 ′) < 𝑔−1 (𝛿)
Redundancy Same as high confidence.

Small Neighborhood |F𝑅 (𝑥) − F𝑅 (𝑥 ′) | ≤ 𝜖 ∗ 𝑐
neighbor

Table 2: Constraints used for the training algorithm.

for the same set of clauses as 𝑥 . We can use constraints over F𝑅 (𝑥)
and F𝑅 (𝑥 ′) to capture the change in the classifier’s output, to satisfy
the global robustness property for all counterexamples in the equiv-

alence class. Specifically, in Table 2, we list the constraints for five

properties we have proposed. The constraints for monotonicity, sta-

bility, redundancy, and the small neighborhood properties have the

same form as the output requirement specified in the corresponding

property definitions. For the high confidence property, our training

constraint is to bound the drop of the classification score to be no

more than the 𝑔−1 of the high confidence threshold 𝛿 . This con-

straint aims to satisfy Property 3a (Equation 6), which then satisfies

Property 3 high confidence (Lemma 1). This constraint eliminates

counterexamples faster than using the constraint F𝑅 (𝑥 ′) ≥ 0.

CLN Trainer. Within the fixer, we use Continuous Logic Net-

works (CLN) [72] to train the classifier to satisfy all constraints in𝐶 .

If we directly enforce constraints over the weights of the classifier,

the structure and weights will not have good accuracy. We want

to use gradient-guided optimization to preserve accuracy of the

classifier while satisfying the constraints. Since our discrete ensem-

ble classifier is non-differentiable, we first use CLN to smooth the

logic ensemble. Following Ryan et al. [72], we use a shifted and

scaled sigmoid function to smooth the inequalities, product t-norm

to smooth conjunctions. To train the smoothed model, we use bi-

nary cross-entropy loss as the loss function L for classification, and

minimize the loss using projected gradient descent according to the

constraints 𝐶 . After training, we discretize the model back to logic

ensemble for prediction, so we can verify the robustness properties.

Note that although our training constraints 𝐶 are only related to

the returned activation values of the clauses (Table 2), the learnable

parameters of atoms may change as well due to the projection (See

Appendix A for an example). In some cases, the structure of the

atom can change as well. For example, if an atom 𝑥0 < 5 is trained

to become −0.5 ∗ 𝑥0 < 2, this changes the inequality of the atom.

5.2.1 Supported Properties. Our framework can handle any global

robustness property 𝜑 of the form ∀𝑥1, . . . , 𝑥𝑘 .` (𝑥1, . . . , 𝑥𝑘 ) =⇒
a (F (𝑥1), . . . , F (𝑥𝑘 )) where the set of values {(𝑦1, . . . , 𝑦𝑘 ) : a (𝑦1,
. . . , 𝑦𝑘 )} is a convex set, as thenwe can project the classifier weights
accordingly (line 27 to line 29 in Algorithm 1). For example, for

the monotonicity property, 𝑘 = 2, ` (𝑥1, 𝑥2) B 𝑥1 ≤ 𝑥2, and

a (F (𝑥1), F (𝑥2)) B F (𝑥1) ≤ F (𝑥2). This class includes but is
not limited to all global robustness properties with arbitrary linear

constraints on the outputs of the classifier.

5.2.2 Algorithm Termination. Algorithm 1 is guaranteed to termi-

nate. When the algorithm terminates, if it finds a classifier, the

classifier is guaranteed to satisfy the properties. However, there

is no guarantee that it will find a classifier (line 14 of Algorithm 1



returns Failure), but empirically our algorithm can find an accurate

classifier that satisfies all the specified properties, as shown in the

results in Section 6.3.

6 EVALUATION
6.1 Datasets and Property Specifications
We evaluate how well our training technique works on three se-

curity datasets of different scale: detection of cryptojacking [41],

Twitter spam accounts [47], and Twitter spam URLs [43]. Table 4

shows the size of the datasets. In total, the three datasets have 4K,

40K, and 422,672 data points respectively. Appendix D lists all the

features for the three datasets. We specify global robustness prop-

erties for each dataset (Table 3) based on our analysis of what kinds

of evasion strategies might be relatively easy and inexpensive for

attackers to perform.

Monotonic Directions. To specify monotonicity properties, we

use two types of security domain knowledge, suspiciousness and

economic cost. We specify a classifier to be monotonically increas-

ing for a feature if, (1) an input is more suspicious as the feature

value increases, or, (2) a feature requires a lot of money to be de-

creased but easier to be increased, such that we force the attackers

to spend more money in order to reduce the classification score.

Similarly, we specify a classifier to be monotonically decreasing

along a feature dimension by analyzing these two aspects.

6.1.1 Cryptojacking. Crytpojacking websites are malicious web-

pages that hijack user’s computing power to mine cryptocurrencies.

Kharraz et al. [41] collected cryptojacking website data from 12 fam-

ilies of mining libraries. We randomly split the dataset containing

2000 malicious websites and 2000 benign websites into 70% training

set and 30% testing data. In total, there are 2800 training samples and

1200 testing samples. We use the training set as the validation set.

Low-cost feature. Among all features, only the hash function fea-

ture is low cost to change. The attacker may use a hash function not

on the list, or may construct aliases of the hash functions to evade

the detection. Since the other features are related to usage of stan-

dard APIs or essential to running high performance cryptocurrency

mining code, they are not trivial to evade.

Monotonicity. We specify all features to be monotonically in-

creasing. Kharraz et al. [41] proposed seven features to classify

cryptojacking websites. A website is more suspicious if any of these

features have larger values. Specifically, cryptojacking websites

prefer to use WebSocket APIs to reduce network communication

bandwidth, use WebAssembly to run mining code faster, runs par-

allel mining tasks, and may use a list of hash functions. Also, if a

website uses more web workers, has higher messageloop load, and

PostMessage event load, it is more suspicious are performing some

heavy load operations such as coin mining.

Stability. Since this is a small dataset, we specify all features to be

stable, with stable constant 0.1.

High Confidence. We use high confidence threshold 0.98.

Small Neighborhood. We specify 𝜖 = 0.2, 𝑐 = 0.5. Each feature is

allowed to be perturbed by up to 20% of its standard deviation, and

the output of the classifier is bounded by 0.01.

6.1.2 Twitter Spam Accounts. Lee et al. [47] used social honeypot

to collect information about Twitter spam accounts, and randomly

sampled benign Twitter users. We reimplement 15 of their proposed

features, including account age, number of following, number of

followers, etc., with the entire list in Table 11, Appendix D. We

randomly split the dataset into 36,000 training samples and 4,000

testing samples, and we use the training set as validation set.

Economic Cost Measurement Study.We have crawled and an-

alyzed 6,125 for-sale Twitter account posts from an underground

forum to measure the effect of LenScreenName and NumFollowers

on the prices of the accounts.

• LenScreenName.Accountswith atmost 4 characters are deemed

special in the underground forum, usually on sale with a spe-

cial tag ‘3-4 Characters’. Table 5 shows that the average price

of accounts with at most 4 characters is five times the price of

accounts with more characters or unspecified characters. More

measurement results are in Appendix C.1.

• NumFollowers.We measure the account price distribution ac-

cording to different tiers of followers indicated in the under-

ground forum, from 500, 1K, 2K up to 250K followers. As shown

in Figure 3, the account prices increase as the number of followers

increases.

Low-cost Features.We identify 8 low-cost features in total. Among

them, two features are related to the user profile, LenScreenName

and LenProfileDescription. According to our economic cost mea-

surement study, accounts with user names up to 4 characters are

considered high cost to obtain. Therefore, we specify LenScreen-

Name with at least 5 characters to be low cost feature range. The

other four low-cost features are related to the tweet content, since

they can be trivially modified by the attacker: NumTweets, Num-

DailyTweets, TweetLinkRatio, TweetUniqLinkRatio, TweetAtRatio,

and TweetUniqAtRatio.

Monotonicity. We specify two features to be monotonically in-

creasing, and two features to be monotonically decreasing, based

on domain knowledge about suspicious behavior and economic

cost measurement studies.

Increase in suspiciousness: Spammers tend to follow a lot of peo-

ple, expecting social reciprocity to gain followers for spam content,

so large NumFollowings makes an account more suspicious. If an

account sends a lot of links (TweetLinkRatio and TweetUniqLinkRa-

tio), it also becomes more suspicious.

Decrease in suspiciousness: Since cybercriminals are constantly

trying to evade blocklists, if an account is newly registered with

a small AgeDays value, it is more suspicious.

Increase in economic cost: Since the attacker needs to spend more

money to obtain Twitter accounts with very few characters, we

specify the LenScreenName to be monotonically increasing,

Decrease in economic cost: Since it is expensive for attackers to
obtain more followers, we specify the NumFollowers feature to be

monotonically decreasing.

Stability. We specify all the low-cost features to be stable, with

stable constant 8.

High Confidence. We allow the attacker to modify any one of

the low cost features individually, but not together. We use a high

confidence prediction threshold 0.98.

Redundancy. Among the 8 low-cost features, we identify four

groups, where each group has one feature that counts an item in

total, and one other feature that counts the same item in a different



Dataset Property Specification

Cryptojacking

- Low-cost features: whether a website uses one of the hash functions on the list.

Monotonicity Increasing: all features

Stability All features are stable. Stable constant = 0.1

High Confidence 𝛿 = 0.98

Small Neighborhood 𝜖 = 0.2, 𝑐 = 0.5

Combined Monotonicity, stability, high confidence, and small neighborhood

Twitter Spam

Accounts

-

Low-cost features: LenScreenName (≥ 5 char), LenProfileDescription, NumTweets, NumDailyTweets,

TweetLinkRatio, TweetUniqLinkRatio, TweetAtRatio, TweetUniqAtRatio.

Monotonicity

Increasing: LenScreenName, NumFollowings, TweetLinkRatio, TweetUniqLinkRatio

Decreasing: AgeDays, NumFollowers

Stability Low-cost features are stable. Stable constant = 8.

High Confidence 𝛿 = 0.98. Attacker is allowed to perturb any one of the low-cost features, but not multiple ones.

Redundancy

𝛿 = 0.98, 𝑀 = 2, any 2 in 4 groups satisfy redundancy: 1) LenScreenName (≥ 5 char), LenProfileDescription

2) NumTweets, NumDailyTweets 3) TweetLinkRatio, TweetUniqLinkRatio 4) TweetAtRatio, TweetUniqAtRatio

Small Neighborhood 𝜖 = 0.1, 𝑐 = 50

Combined Monotonicity, stability, high confidence, redundancy, and small neighborhood

Twitter Spam

URLs

- Low-cost features: Mention Count, Hashtag Count, Tweet Count, URL Percent.

Monotonicity

Increasing: 7 shared resources features. EntryURLid, AvgURLid, ChainWeight,

CCsize, MinRCLen, AvgLdURLDom, AvgURLDom

Stability Low-cost features are stable. Stable constant = 8.

High Confidence 𝛿 = 0.98. Attacker is allowed to perturb any one of the low-cost features, but not multiple ones.

Small Neighborhood 𝜖 = 1.5, 𝑐 = 10

Table 3: Global robustness property specifications for three datasets.

Dataset
Training
set size

Test
set size

Validation
set size

# of
features

Cryptojacking [41] 2800 1200 Train 7

Twitter Spam

Accounts [47]

36,000 4,000 Train 15

Twitter Spam

URLs [43]

295,870 63,401 63,401 25

Table 4: The three datasets we use to evaluate our methods.
For cryptojacking and Twitter spam account datasets, we
use the training set as the validation set.

# Char Price
≤ 4 $1,598.09

≥ 5 $298.40

Unspecified $147.62

Table 5: Average price of
for-sale Twitter accounts
with different number of
characters for the username.
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Figure 3: Price ($) of for-sale
Twitter accounts with differ-
ent number of followers.

granularity (daily or unique count). We specify that any two groups

are redundancy of each other (𝑀 = 2) with 𝛿 = 0.98.

Small Neighborhood. We specify 𝜖 = 0.1, 𝑐 = 50. The attacker

can change each feature up to 10% of its standard deviation value,

and the classifier output change is bounded by 5.

6.1.3 Twitter Spam URLs. Kwon et al. [43] crawled 15,828,532

tweets by 1,080,466 users. They proposed to use URL redirection

chains and and graph related features to classify spam URL posted

on Twitter. We obtain their public dataset and re-extract 25 fea-

tures according to the description in the paper. We extract four

categories of features. (1) Shared resources features capture that the

attacker reuse resources such as hosting servers and redirectors. (2)

Heterogeneity-driven features reflect that attack resources may be

heterogeneous and located around the world. (3) Flexibility-driven

features capture that attackers use different domains and initial

URLs to evade blocklists. (4) Tweet content features measure the

number of special characters, tweets, percentage of URLs made by

the same user. This is the largest dataset in our evaluation, contain-

ing 422,672 samples in total. We randomly split the dataset into 70%

training, 15% testing, and 15% validation sets.

Low-cost Features.We specify four tweet content related features

to be low cost, since the attacker can trivially modify the content.

They are, Mention Count, Hashtag Count, Tweet Count, and URL

percent in tweets. All the other features are high cost, since they

are related to the graph of redirection chains, which cannot be

easily controlled by the attacker. Redirection chains form the traffic

distribution systems in the underground economy, where different

cybercriminals can purchase and re-sell the traffic [29, 55]. Thus

graph-related features are largely outside the control of a single

attacker, and are not trivial to change.

Monotonicity. Based on feature distribution measurement result,

we specify that 7 shared resources-driven features are monotoni-

cally increasing, as shown in Table 3. Example measurement result

is in Appendix C.2.

Stability. We specify low-cost features to be stable, with stable

constant 8.



Performance Global Robustness Properties
Model TPR FPR Acc

AUC F1 Monotonicity Stability

High

Confidence

Redundancy

Small

Neighborhood(%) (%) (%)

Cryptojacking Detection
XGB 100 0.3 99.8 .99917 .998 ✘ ✘ ✔ N/A ✘

Neural Network 100 0.2 99.9 .99997 .999 ✘ ✘ ? N/A ✘

Models with Monotonicity Property
Monotonic XGB 99.8 0.3 99.8 .99969 .998 ✔ ✘ ✔ N/A ✘

Nonnegative Linear 97.7 0.2 98.8 .99987 .988 ✔ ✘ ✘ N/A ✘

Nonnegative Neural Network 99.7 0.2 99.8 .99999 .998 ✔ ✘ ? N/A ✘

Generalized UMNN 99.8 0.2 99.8 .99998 .998 ✔ ✘ ? N/A ✘

DL2 Models with Local Robustness Properties, trained using PGD attacks
DL2 Monotoncity 99.7 0.2 99.8 .99999 .998 ✘ ✘ ? N/A ✘

DL2 Stability 99.8 0.8 99.5 .99987 .995 ✘ ✘ ✘ N/A ✘

DL2 High Confidence 99.7 0.2 99.8 .99999 .998 ✘ ✘ ? N/A ✘

DL2 Small Neighborhood 99.8 0.3 99.8 .99999 .998 ✘ ✘ ? N/A ✘

DL2 Combined 99.3 0.2 99.6 .99985 .996 ✘ ✘ ✘ N/A ✘

Our Models with Global Robustness Properties
Logic Ensemble Monotoncity 100 0.3 99.8 .99999 .998 ✔ ✘ ✔ N/A ✘

Logic Ensemble Stability 100 0.3 99.8 .99831 .998 ✘ ✔ ✔ N/A ✔

Logic Ensemble High Confidence 100 0.3 99.8 .99980 .998 ✘ ✘ ✔ N/A ✘

Logic Ensemble Small Neighborhood 100 0.3 99.8 .99961 .998 ✘ ✔ ✔ N/A ✔

Logic Ensemble Combined 100 3.2 98.4 .99831 .985 ✔ ✔ ✔ N/A ✔

Table 6: Results for training cryptojacking classifier with global robustness properties, compared to baseline models. N/A:
property not specified. ✔: verified to satisfy the property. ✘: verified to not satisfy the property. ?: unknown.

High Confidence. We use a high confidence prediction threshold

0.98. Attacker is allowed to perturb any one of the low-cost features,

but not multiple ones.

Small Neighborhood. We specify 𝜖 = 1.5, 𝑐 = 10, which means

that the attacker can change each feature up to 1.5 times of its stan-

dard deviation, and the classifier output change is bounded by 15.

6.2 Baseline Models
6.2.1 Experiment Setup. We compare against three types of base-

line models, (1) tree ensemble and neural network that are not

trained using any properties, (2) monotonic classifiers, and (3) neu-

ral network models trained with local robustness versions of our

properties.

We train the following monotonic classifiers: monotonic gradi-

ent boosted decision trees using XGBoost (Monotonic XGB), linear

classifier with nonnegative weights trained using logistic loss (Non-

negative Linear), nonnegative neural network, and generalized

unconstrained monotonic neural network (UMNN) [89]. To eval-

uate against models with other properties, we train local versions

of our properties using DL2 [25], which uses adversarial training.

Malicious Class Gradient Weight. Since the Twitter spam ac-

count dataset [47] is missing some important features, we could

not reproduce the exact model performance stated in the paper.

Instead, we get 6% false positive rate. We contacted the authors but

they don’t have the missing data. Therefore, we tune the weight

for the gradient of the malicious class in order to maintain low

false positive rate for the models. We use line search to find the

best weight from 0.1 to 1, which increments by 0.1. We find that

using 0.2 to weigh the gradient of the malicious class can keep the

training false positive rate around 2% for this dataset. For the other

two datasets, we do not weigh the gradients for different classes.

Linear Classifier. The nonnegative linear classifier is a linear com-

bination of input features with nonnegative weights, trained using

logistic loss. If a feature is specified to be monotonically decreasing,

we weigh the feature by -1 at input.

XGBoost Models. For the XGB model and Monotonic XGB model,

we specify the following hyperparameters for three datasets. We

use 4 boosting round, max depth 4 per tree to train the cryptojack-

ing classifier, and 10 boosting rounds, max depth 5 to train Twitter

spam account and Twitter spam URL classifiers.

Neural Network Models. The neural networks without any ro-

bustness properties as well as the nonnegative-weights networks

have two fully connected layers, each with 200, 500, and 300 ReLU

units for Cryptojacking, Twitter spam account, and Twitter Spam

URL detection respectively. The generalized UMNNs, on the other

hand, are positive linear combinations of multiple UMNN each with

two fully connected layers and 50, 100, 100 ReLU nodes for each

single monotonic feature.

We also use DL2 to train neural networks as baselines, which can

achieve local robustness properties using adversarial training. All

the DL2 models share the same architectures as the regular neural

networks and the training objectives is to minimize the loss of PGD

adversarial attacks [42] that target the robustness properties. We

use 50 iterations with step sizes equal to one sixth of the allowable

perturbation ranges for PGD attacks in the training process. For

testing, we use the same PGD iterations and step sizes but with 10

random restarts.

For all the baseline neural networksmentioned above, we train 50

epochs to minimize binary cross-entropy loss on training datasets



using Adam optimizer with learning rate 0.01 and piecewise learn-

ing rate scheduler.

6.2.2 Global Robustness Property Evaluation. To evaluate whether

the baseline models have obtained global robustness properties,

we use our Integer Linear Programming verifier to verify the XGB

and linear models. For neural network models, we use PGD attacks

to maximize the loss function for the property, as described in

Section 6.2.1.

Table 6 and Table 8 show the results of evaluating global robust-

ness properties for the baseline models. For neural network models,

if the PGD attack has found counterexample for the property, we

consider that the network does not satisfy the property. Otherwise,

we use “?” to mark it as unknown/unverified.

Result 1:MonotonicXGB and generalizedUMNNhave the
best true positive rate (TPR) among monotonic classifiers.
For the two relatively large datasets, the performance of monotonic

XGB and generalized UMNN are much better than nonnegative-

weights models. For Twitter spam account detection, the TPR of

monotonic XGB is 16.6% higher than the nonnegative linear clas-

sifier.

Result 2: Some baseline models naturally satisfy a few
global robustness properties. The monotonic XGB model for

crytpojacking detection satisfies the high confidence property, be-

cause it does not use the low-cost feature “hash function” in the

tree structure. In comparison, our technique can train logic ensem-

ble classifiers to satisfy the high confidence property but still use

the low-cost feature to improve accuracy. Also, the nonnegative

linear classifier for Twitter spam account detection satisfies the

small neighborhood property, but it has only 70.1% TPR. Linear

classifiers are known to be robust against small changes in input,

however they have poor performance for many datasets.

Result 3: DL2 models cannot obtain global robustness.We

found counterexamples for all DL2 models for Twitter spam URL

detection, using PGD attacks over the property constraint loss, and

most models trained with cryptojacking and Twitter spam account

detection datasets. If the PGD attack fails to find a counterexam-

ple, it does not mean that the model is verified to have the global

property. There are always stronger attacks that may find coun-

terexamples, as is often observed with adversarially trained models.

6.3 Robust Logic Ensembles
6.3.1 Training Algorithm Implementation. We implement our booster-

fixer framework as the following. We use gradient boosting from

XGBoost [10] as the booster. Within each round, we use the booster

to add one tree to the existing classifier, and encode the classifier

as the logic ensemble. This gives the fixer the structure of clauses

and weights (𝛼, 𝛽, 𝑅 ) as the starting classifier with high accuracy.

To implement the verifier in the fixer, we useAPIs fromGurobi [1]

to encode the integer linear program with boolean variables and

property violation constraints, and then call the Gurobi solver to

verify the global robustness properties of the logic ensemble. If the

solver returns that the interger linear program is infeasible, the

classifier is verified to satisfy the property. Otherwise, we construct

a counterexample according to solutions for the boolean variables.

For the trainer, we use PyTorch to implement the smoothed classi-

fier as Continuous Logic Networks [72, 96]. Then, we use quadratic

Dataset Median Training Time
Cryptojacking 25 min

Twitter Spam Account 29 hours

Twitter Spam URL 3 days

Table 7: Median training time for Logic Ensemble models.

programming to implement projected gradient descent. We com-

pute the updated weights by minimizing the ℓ2 norm between the

initial weights and the convex set defined by the training con-

straints. We implement the mini-batch training for the smoothed

classifier, where we can specify the batch size. After one epoch of

training, we discretize the classifier to the logic ensemble encoding

for the verifier to verify the property again. We also implement

a few heuristics to speed up the time for the verifier to generate

counterexamples, with details described in Appendix E.

6.3.2 Experiment Setup. For the cryptojacking dataset, we boost
4 rounds, each adding a tree with max depth 4. For the other two

datasets, we boost 10 rounds, with max tree depth 5, except that we

only boost 6 rounds when training the Twitter spam account clas-

sifier with all five properties. During CLN training, we keep track

of the discrete classifier at each stage, including all the inequalities

and conjunctions. When we need to smooth the classifier, we use

shifted and scaled sigmoid function to smooth the inequality, with

temperature
1

500
, shift by 0.01, and product t-norm to smooth the

conjunctions, to closely approximate the discrete classifier. The

updated weights from gradient-guided training can be directly used

for the discrete classifier. To discretize the model, we simply do

not apply the sigmoid function and the product t-norm. We use

the Adam optimizer with learning rate 0.001 and decay 0.95, to

minimize binary cross-entropy loss using gradient descent. For

the crytpojacking dataset, we use mini-batch size 1; for the other

two larger datasets, we use mini-batch size 1024. After boosting all

the rounds, we choose the model with the highest validation AUC.

Empirically, our algorithm converges well to an accurate classifier

that satisfies the specified properties.

6.3.3 Global Robustness Property Evaluation. We train 15 logic en-

semble models in total for the three datasets, each satisfying the

specified global robustness properties, shown in Table 6 and Table 8.

We use our Integer Linear Program verifier (Section 4.2) to verify

the properties for all models.

Training Overhead. Similar to most existing robust machine

learning training strategies, training a verifiably robust model is

significantly slower than training a non-robust model. We show

the median training time for Logic Ensemble models in Table 7.

Training non-robust XGBoost models takes one minute. However,

computation is usually cheap and the tradeoff for getting more

robustness in exchange for more computation is common across ro-

bust machine learning techniques. Next, we discuss our key results.

Result 4: Our monotonic models have comparable or bet-
ter performance than existing methods. Our Logic Ensemble

Monotonicity models have higher true positive rate and AUC than

the Nonnegative Linear classifiers for all three datasets, and we also

achieve better performance than the Nonnegative Neural Network

models for the cryptojacking detection and Twitter account detec-

tion datasets. Monotonic XGB outperforms our Logic Ensemble



Performance Global Robustness Properties
Model TPR FPR Acc

AUC F1 Monotonicity Stability

High

Confidence

Redundancy

Small

Neighborhood(%) (%) (%)

Twitter Spam Account Detection
XGB 87.0 2.3 92.2 .98978 .920 ✘ ✘ ✘ ✘ ✘

Neural Network 86.4 2.5 91.8 .98387 .915 ✘ ✘ ✘ ✘ ✘

Models with Monotonicity Property
Monotonic XGB 86.7 2.7 91.9 .98865 .916 ✔ ✘ ✘ ✘ ✘

Nonnegative Linear 70.1 2.4 83.5 .95321 .814 ✔ ✘ ✘ ✘ ✔

Nonnegative Neural Network 78.3 2.5 87.6 .96723 .867 ✔ ✘ ✘ ✘ ✘

Generalized UMNN 86.0 3.9 90.9 .97324 .907 ✔ ✘ ✘ ✘ ✘

DL2 Models with Local Robustness Properties, trained using PGD attacks
DL2 Monotoncity 83.2 2.6 90.1 .97800 .896 ✘ ✘ ✘ ✘ ✘

DL2 Stability 86.1 3.3 91.3 .98029 .910 ✘ ? ✘ ✘ ✘

DL2 High Confidence 82.8 2.6 89.9 .98056 .894 ✘ ✘ ✘ ✘ ✘

DL2 Redundancy 83.9 3.1 90.2 .97898 .898 ✘ ✘ ? ✘ ✘

DL2 Small Neighborhood 88.3 3.5 92.2 .98086 .921 ✘ ✘ ✘ ✘ ✘

DL2 Combined 83.8 3 90.2 .97738 .898 ✘ ✘ ✘ ✘ ?

Our Models with Global Robustness Properties
Logic Ensemble Monotoncity 83.2 3.2 89.8 .97297 .894 ✔ ✘ ✘ ✘ ✘

Logic Ensemble Stability 86.0 2.1 91.8 .98479 .915 ✘ ✔ ✘ ✘ ✘

Logic Ensemble High Confidence 86.1 2.6 91.6 .98311 .913 ✘ ✔ ✔ ✘ ✘

Logic Ensemble Redundancy 85.5 3.2 91.0 .98166 .907 ✘ ✔ ✔ ✔ ✘

Logic Ensemble Small Neighborhood 83.9 2.5 90.5 .98325 0.901 ✘ ✔ ✘ ✘ ✔

Logic Ensemble Combined 81.6 2.4 89.4 .98142 .888 ✔ ✔ ✔ ✔ ✔

Twitter Spam URL Detection
XGB 99.0 1.5 98.7 .99834 .986 ✘ ✘ ✘ N/A ✘

Neural Network 98.8 2.9 97.9 .99735 .977 ✘ ✘ ✘ N/A ✘

Models with Monotonicity Property
Monotonic XGB 99.4 1.7 98.8 .99848 .986 ✔ ✘ ✘ N/A ✘

Nonnegative Linear 93.2 18.6 86.7 .90218 .861 ✔ ✘ ✘ N/A ✘

Nonnegative Neural Network 98.0 6.9 95.3 .98511 .949 ✔ ✘ ✘ N/A ✘

Generalized UMNN 98.8 2.6 98.0 .99732 .977 ✔ ✘ ✘ N/A ✘

DL2 Models with Local Robustness Properties, trained using PGD attacks
DL2 Monotoncity 98.9 3.0 97.9 .99694 .976 ✘ ✘ ✘ N/A ✘

DL2 Stability 99.0 3.0 97.9 .99706 .977 ✘ ✘ ✘ N/A ✘

DL2 High Confidence 99.5 4.6 97.2 .99696 .969 ✘ ✘ ✘ N/A ✘

DL2 Small Neighborhood 99.1 3.0 97.9 .99720 .977 ✘ ✘ ✘ N/A ✘

Our Models with Global Robustness Properties
Logic Ensemble Monotoncity 96.3 3.5 96.4 .98549 .960 ✔ ✘ ✘ N/A ✘

Logic Ensemble Stability 92.9 3.3 95.0 .98180 .943 ✘ ✔ ✘ N/A ✔

Logic Ensemble High Confidence 97.6 5.4 95.9 .98646 .955 ✘ ✔ ✔ N/A ✘

Logic Ensemble Small Neighborhood 97.1 2.8 97.1 .99338 .968 ✘ ✘ ✘ N/A ✔

Table 8: Results for training Twitter account classifier and Twitter spam URL classifier with global robustness properties,
compared to baseline models. N/A: property not specified. ✔: verified to satisfy the property. ✘: verified to not satisfy the
property. ?: unknown.

Monotonic models, but we still have comparable performance. For

example, for the Twitter spam account detection, our Logic Ensem-

ble Monotonicity model has 3.5% lower true positive rate (TPR), and

0.5% higher false positive rate (FPR) than theMonotonic XGBmodel.

Result 5: Our models have moderate performance drop
to obtain an individual property. For cryptojacking detection,

enforcing each property does not decrease TPR at all, and only

increases FPR by 0.1% compared to the baseline neural network

model (Table 6). For Twitter spam account detection, logic ensemble

models that satisfy one global robustness property decrease the TPR

by at most 3.8%, and increase the FPR by at most 0.9%, compared to

the baseline XGB model (Table 8). For Twitter spam URL detection,

within monotonicity, stability, and small neighborhood properties,

enforcing one property for the classifier can maintain high TPR

(from 92.9% to 97.6%) and low FPR (from 2.8% to 5.4%, Table 8). For

example, the Logic Ensemble High Confidence model decreases the

TPR by 1.4% and increases the FPR by 3.9%, compared to the baseline

XGBmodel. This model utilizes the low-cost features to improve the

prediction accuracy. If we only use high-cost features to train a tree

ensemble with the same capacity (10 rounds of boosting), we can



only achieve 79.9% TPR and 0.96075 AUC. In comparison, our Logic

Ensemble High Confidence model has 97.6% TPR and 0.98646 AUC.

Results regarding hyperparameters are discussed in Appendix F.

Result 6: Training a classifier with one property some-
times obtains another property. Table 6 shows that all crypto-
jacking Logic Ensemble classifiers that were enforced with only one

property, have obtained at least one other property. For example, the

Logic Ensemble Stability model has obtained small neighborhood

property, and vice versa. Since we specify all features to be stable

for this dataset, the stability property is equivalent to the global Lip-

schitz property under 𝐿0 distance. On the other hand, we define the

small neighborhood property with a new distance. This shows that

enforcing robustness for one property can generalize the robustness

to a different property. More results are discussed in Appendix G.

Result 7:We can train classifiers to satisfymultiple global
robustness properties at the same time. We train a cryptojack-

ing classifier with four properties, and a Twitter spam account clas-

sifier with five properties. For cryptojacking detection, the Logic

Ensemble Combined model maintains the same high TPR, and only

increases the FPR by 3% compared to the baseline neural network

model (Table 6). For Twitter spam account detection, the Logic En-

semble Combined model that satisfies all properties only decreases

the TPR by 5.4% and increases the FPR by 0.1%, compared to the

baseline XGB model with no property (Table 8). More results are

discussed in Appendix H.

7 RELATEDWORK
Program Synthesis. Solar-Lezama et al. [80] proposed counterex-

ample guided inductive synthesis (CEGIS) to synthesize finite pro-

grams according to specifications of desired functionalities. The key

idea is to iteratively generate a proposal of the program and check

the correctness of the program, where the checker should be able

to generate counterexamples of correctness to guide the program

generation process. The general idea of CEGIS has also been used to

learn recursive logic programs (e.g., as static analysis rules) [2, 15,

69, 75]. We design our fixer following the general form of CEGIS.

Local Robustness.Many techniques have been proposed to ver-

ify local robustness (e.g., ℓ𝑝 robustness) of neural networks, in-

cluding customized solvers [34, 38, 39, 83] and bound propaga-

tion based verification methods [6, 8, 53, 63, 64, 71, 74, 76–78, 86–

88, 90, 92, 94, 98]. Bound propagation verifiers can also be ap-

plied in robust optimization to train the models with certified lo-

cal robustness [9, 11, 54, 62, 85, 93, 97, 99]. Randomized smooth-

ing [14, 36, 45, 52, 73, 95] is another technique to provide probabilis-

tic local robustness guarantee. Several methods have been proposed

to utilize the local Lipshitz constant of neural networks for verifi-

cation [33, 90, 91], and constrain or use the local Lipshitz bounds

to train robust networks [4, 12, 13, 22, 24, 30, 49, 65, 68, 79, 81].

Global Robustness. Fischer et al. [25] and Melacci et al. [60] pro-

posed global robustness properties for image classifiers using uni-

versally quantified statements. Both of their techniques smooth the

logic expression of the property into a differentiable loss function,

and then use PGD attacks [42] to minimize the loss. They can train

neural networks to obtain local robustness, but cannot obtain veri-

fied global robustness. ART [56] proposed an abstraction refinement

strategy to train provably correct neural networks. The model satis-

fies global robustness properties when the correctness loss reaches

zero. However, in practice their correctness loss did not converge

to zero. Leino et al. [50] proposed to minimize global Lipschitz con-

stant to train globally-robust neural networks, but they can only

verify one global property that abstains on non-robust predictions.

Monotonic Classifiers. Many methods have been proposed to

train monotonic classifiers [5, 7, 16, 17, 23, 32, 35, 40, 89]. Recently,

Wehenkel et al. [89] proposed unconstrained monotonic neural net-

works, based on the key idea that a function is monotonic as long as

its derivative is nonnegative. This has increased the performance of

monotonic neural network significantly compared to enforcing non-

negative weights. Incer et al. [35] used monotone constraints from

XGBoost to train monotonic malware classifiers. XGBoost enforces

monotone constraints for the left child weight to be always smaller

(or greater) than the right child, which is a specialized method and

does not generalize to other global robustness properties.

Discrete Classifier and Smoothing. Friedman et al. [27] pro-

posed rule ensemble, where the each rule is a path in the decision

tree, and they used regression to learn how to combine rules. Our

logic ensemble is more general such that the clauses do not have to

form a tree structure. We only take rules from trees as the starting

classifier to fix the properties. Kantchelian et al. [37] proposed the

mixed integer linear program attack to evade tree ensembles by per-

turbing a concrete input. In comparison, our integer linear program

verifier has only integer variables, and represents all inputs symbol-

ically. Continuous Logic Networks was proposed to smooth SMT

formulas to learn loop invariants [72, 96]. In this paper, we apply

the smoothing techniques to train machine learning classifiers.

8 CONCLUSION
In this paper, we have presented a novel booster-fixer training

framework to enforce new global robustness properties for security

classifiers. We have formally defined six global robustness proper-

ties, of which five are new. Our training technique is general, and

can handle a large class of properties. We have used experiments

to show that we can train different security classifiers to satisfy

multiple global robustness properties at the same time.
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A STABILITY
FOR TWITTER ACCOUNT CLASSIFIER

To classify Twitter accounts that broadcast spam URLs, we can use

the number of followers and the ratio of posted URLs over total

number of tweets as features [47]. It is hard for spammers to ob-

tain large amount of followers, and they are likely to post more

URLs than benign users. We specify the URLRatio feature to be

stable, such that arbitrarily changing the feature will not change

the classifier’s output by more than 1.

Figure 4 shows one CEGIS iteration to train the stability prop-

erty. The starting classifier is a decision tree. For example, “1.0 ∗
URLRatio < 0.285 ∧ 1.0 ∗ followers < 1429.5 → −1.71” means

that if the URLRatio and the number of followers both satisfy these

https://doi.org/10.1109/SP40000.2020.00073


Starting Classifier

1.0*URLRatio <  0.285 ⋀
1.0*followers < 1429.5 → -1.71

1.0*URLRatio < 0.285 ⋀ 
1.0*followers ≥ 1429.5 → -0.27

1.0*URLRatio ≥ 0.285 ⋀
1.0*followers < 104.5 → -0.59

1.0*URLRatio ≥ 0.285 ⋀
1.0*followers ≥ 104.5 → 1.04

Counterexample:
F(followers = 2000, URLRatio  = 0.9) -  
F(followers = 2000, URLRatio = 0.223)

= 1.04 - (- 0.27) > 1

Classifier Output:
FR(x) = R3, FR(xʹ) = R1
⎢FR(x) - FR(xʹ)⎥ > 1

Stable?
URLRatio Constraint

⎢R3 - R1⎥ ≤ 1

CLN:
Gradient-guided

Optimization

Updated Classifier

0.99*URLRatio <  0.294 ⋀ 
0.99*followers < 1429.5 → -1.71

1.01*URLRatio < 0.272 ⋀
1.0*followers ≥ 1429.49 → -0.11

1.01*URLRatio ≥ 0.274 ⋀ 
0.98* followers < 104.52 → -0.59

1.01*URLRatio ≥ 0.272 ⋀
0.98*followers ≥ 104.51 → 0.89

Verifier
No

Yes

Stop
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Figure 4: One CEGIS iteration to train stability property for the Twitter account classifier. We specify the classifier’s output
score to change at most by one when the URLRatio feature is arbitrarily perturbed. Multiple weights of the classifiers are
updated by gradient-guided optimization, and the classifier after training no longer forms a tree structure.

1 2 3 3-4 4 5 5-6 6 7-8 9
9-10

11-15N/A

Number of Characters in Username

0.1

1

10

102

103

104

105

 A
cc

ou
nt

 P
ric

e

Figure 5: Price ($, log scale) of Twitter accounts with
different number of characters.

inequalities, the clause is true and returns −1.71, value of the vari-
able 𝑅0. Otherwise, the clause returns 0. We take the sum of return

values from all clauses to be the classification score. One CEGIS

iteration goes through the following four steps.

Step 1○: We ask the verifier whether the URLRatio feature is

stable. If the verifier can verify the stability property, we stop here.

If not, the verifier generates a counterexample that violates the

property. Here, the counterexample shows that if the number of

followers is 2000, and if the URLRatio feature changes from 0.9 to

0.223, the classifier’s output changes by 1.31, which violates the

stability property.

Step 2○: Using the sum of true clauses for each input, we repre-

sent 𝑥, 𝑥 ′ as F𝑅 (𝑥) = 𝑅3, and F𝑅 (𝑥 ′) = 𝑅1.

Step 3○: We construct the constraint to eliminate the counterex-

ample. In this case, we want the difference between the output for

𝑥 and the output for 𝑥 ′ to be bounded by 1, i.e., |𝑅3 −𝑅1 | ≤ 1. Then,

we smooth the classifier using CLN [72, 96], train the weights using

projected gradient descent with the constraint. After one epoch,

we have updated the classifier in the rightmost box of Figure 4. The

red weights of the model are updated by gradient descent. Note

that the classifier no longer follows a tree structure.

Lastly, we repeat this process until the classifier is verified to

satisfy the property (Step 4○). In this example, the updated classifier

still does not satisfy stability, and we will go through more CEGIS

iterations to update it.

B PROOF
Lemma 1. If a classifier satisfies Property 3a, then it also satisfies

Property 3.

Proof. ∀𝑥, 𝑥 ′ ∈ R𝑛 .[∀𝑖 ∉ 𝐽 .𝑥𝑖 = 𝑥 ′
𝑖
] ∧ 𝑔(F (𝑥)) ≥ 𝛿 , we have

F (𝑥) ≥ 𝑔−1 (𝛿). Since F satisfies Property 3a, then we also have

F (𝑥) − F (𝑥 ′) ≤ 𝑔−1 (𝛿). Therefore, F (𝑥 ′) ≥ F (𝑥) − 𝑔−1 (𝛿) ≥ 0.

□

C MEASUREMENT RESULTS
C.1 LenScreenName Feature
Wemeasure the economic cost for attackers to perturb the LenScreen-

Name feature from the Twitter spam account dataset. We extract

the number of characters information from 6,125 for-sale Twitter

account posts, and measure the price for accounts with different

username length. or unspecificed characters. In Figure 5, we plot

the price of accounts according to the username length. If the post

says “3 or 4 characters", we plot the price under “3-4" category. The

majority of accounts are under “N/A” category, where the sellers do

not mention the length of username, but emphasize other attributes

such as number of followers. Overall, if the username length has

at most 4 characters, it affects the account price more than longer

username.

C.2 CCSize Feature
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Figure 6: CDF of # of IPs in a connected component contain-
ing a given URL. Spam URLs tend to be in larger connected
components.



Property Training Constraints Robustness
Stability Smaller 𝑐

stability
Stronger

High Confidence Smaller 𝛿 Stronger

Redundancy Smaller 𝛿 Stronger

Small Neighborhood Smaller 𝑐 given fixed 𝜖 Stronger

Table 9: Robustness controlled by hyperparameters.

Stable Constant 𝑐stability TPR FPR
8 0.86 0.021

4 0.835 0.031

2 0.833 0.029

Table 10: TPR and FPR of Twitter spam account classifiers
trained with the stability property.

We measure the distribution of CCSize feature from the Twitter

spam URL dataset. The CCSize feature counts the number of IP

nodes in the connected component of the posted URL. Since spam-

mers reuse redirectors, their URLs often belong to the same large

connected component and result in a larger CCSize feature value,

compared to benign URLs, as shown in Figure 6. A larger CCSize

value indicates that more resources are being reused, and the initial

URL is more suspicious. Therefore, we specify CCSize feature to

be monotonically increasing.

D CLASSIFICATION FEATURES
Table 11 lists all the features for detecting cryptojacking, Twitter

spam accounts, and Twitter spam URLs.

E HEURISTICS
The time to solve for counterexamples is the bottleneck in training.

Therefore, we implement the following heuristics to improve the

training efficiency:

• We exponentially increase the time out for the solver, start-

ing from 30s. If we find at least one counterexample within

each CEGIS iteration, we add the constraint(s) to eliminate the

counterexample(s) and proceed with CLN training with the con-

straints. We increase the timeout if the solver could not find any

counterexample fast enough in an iteration, and if it also could

not verify that the classifier satisfies all the specified properties.

• We implement property boosting as an option to train mono-

tonicity and stability. Property boosting means that we only train

the property for the newly added sub-classifier, and keep the

previous sub-classifiers fixed. This works for properties that can

be satisfied if every sub-classifiers also satisfy the sub-properties,

since our ensemble is a sum ensemble. If every sub-classifier

is monotonic for a given feature, the ensemble classifier is also

monotonic. Similarly, if every sub-classifier is stable for a given

feature by a stable constant
𝑐
𝐵
, the ensemble classifier is stable

under stable constant 𝑐 .

• We use feature scheduling to train the high confidence property.

Specifically, to run 10 rounds of boosting for either Twitter spam

account or Twitter spam URL detection classifiers, we first boost

6 decision trees as the base model without any low-cost features.

This makes sure that the base model naturally satisfies the high

confidence property. Then, for the remaining 4 rounds, we use all

features to boost new trees and fix the properties for the entire

classifier.

• When training all the five properties (monotonicity, stability,

high confidence, redundancy and small neighborhood) for the

Twitter spam account detection, we use the following property

scheduling to boost 6 rounds. For the first round, we use features

that don’t involve any property to construct a base classifier, so

it naturally satisfies all properties. In the 2nd and 3rd round, we

use all features excluding low-cost ones, so we get high confi-

dence and redundancy for free for these rounds. In the next two

rounds, we use all features excluding monotonic ones, so we get

monotonicity for free for these rounds. In the last round, we use

all features and fix all five properties.

Property boosting, feature scheduling, and property scheduling

reduce the size of the integer linear program, which makes it easier

to be solved.

F HYPERPARAMETERS
Enforcing stronger robustness decreases true positive rate. The

hyperparameters control this tradeoff. In particular, Table 9 shows

how the strength of robustness changes as different hyperparam-

eters change for all proposed properties except monotonicity (we

don’t have such a hyperparameter for monotonicity). For example,

to demonstrate the tradeoff, we trained three Twitter spam account

classifiers with the stability property, where each one has a different

stable constant. Table 10 shows that training with a smaller stable

constant 𝑐
stability

gives us a verifiably robust model with stronger

robustness but lower true positive rate.

G OBTAINING MORE PROPERTIES
Table 8 shows that training a classifier with one property sometimes

obtains another property. For the Twitter spam account detection

classifiers, enforcing one of the high confidence, redundancy, and

small neighborhood properties can obtain at least a second property.

For example, the Logic Ensemble Redundancy model has obtained

stability and high confidence properties. Since we use the same set

of low-cost features to define the high confidence and redundancy

properties, the redundancy property is strictly stronger than the

high confidence property. In other words, if the attacker have to

perturb one low-cost feature from at least two different groups to

evade the classifier (redundancy), they cannot evade the classifier

by perturbing only one low-cost feature (high confidence). For the

largest Twitter spam URL detection dataset, the Logic Ensemble Sta-

bility model also satisfies the small neighborhood property, and the

Logic Ensemble High confidence model also satisfies the stability

property.

H LOGIC ENSEMBLE COMBINED MODEL
Table 8 shows that, for Twitter spam account detection, the Logic

Ensemble Combined with all five properties has higher AUC than

the Logic Ensemble Monotonicity model trained with only one

property. This is because we use property scheduling for Logic En-

semble Combined (Appendix E), such that for each round before the

last round, our classifier satisfies some properties for free. We could

improve the performance of the Logic Ensemble Monotonicity by

similar feature scheduling technique, such as boosting first four



Dataset Feature Name Description Monotonic Low-cost

Cryptojacking

websocket Use WebSocket APIs for network communication Increasing

wasm Uses WebAssembly to execute code in browsers are near native speed Increasing

hash function Use one of the hash functions on a curated list Increasing yes

webworkers The number of web workers threads for running concurrent tasks Increasing

messageloop load The number of MessageLoop events for thread management Increasing

postmessage load The number of PostMessage events for thread job reporting Increasing

parallel functions Run the same tasks in multiple threads Increasing

Twitter Spam

Accounts

LenScreenName The number of characters in the account user name Increasing yes (≥ 5 char)

LenProfileDescription The number of characters in the profile description yes

AgeDays The age of the account in days Decreasing

NumFollowings The number of other users an account follows Increasing

NumFollowers The number of followers for an account Decreasing

Ratio_Following_Followers The ratio of NumFollowings divided by NumFollowers

StdFollowing Standard deviation of NumFollowings over different days

ChangeRateFollowing The averaged difference for NumFollowings between consecutive days

NumTweets Total number of tweets over seven months yes

NumDailyTweets Average number of daily tweets yes

TweetLinkRatio Ratio of tweets containing links over total number of tweets Increasing yes

TweetUniqLinkRatio Ratio of tweets containing unique links over total number of tweets Increasing yes

TweetAtRatio Ratio of tweets containing ‘@’ over total number of tweets yes

TweetUniqAtRatio Ratio of tweets with unique ‘@’ username over total number of tweets yes

PairwiseTweetSimilarity Normalized avg num of common chars in pairwise tweets for a user

Shared Resources-driven

Twitter Spam

URLs

EntryURLid In degree of the largest redirector in the connected component Increasing

AvgURLid Average in degree of URL nodes in the redirection chain Increasing

ChainWeight Total frequency of edges in the redirection chain Increasing

CCsize Number of nodes in the connected component Increasing

CCdensity Edge density of the connected component

MinRCLen Minimum length of the redirection chains in the connected component Increasing

AvgLdURLDom Avg # of domains for landing URL IPs in the connected component Increasing

AvgURLDom Average # of domains for the IPs in the redirection chain Increasing

Heterogeneity-driven

GeoDist Total geographical distance (km) traversed by the redirection chain

CntContinent Number of unique continents in the redirection chain

CntCountry Number of unique countries in the redirection chain

CntIP Number of unique IPs in the redirection chain

CntDomain Number of unique domains in the redirection chain

CntTLD Number of unique top-level domains in the redirection chain

Flexibility-driven

ChainLen Length of the redirection chain

EntryURLDist Distance from the initial URL to the largest redirector

CntInitURL Number of initial URLs in the connected component

CntInitURLDom Total domain name number in the initial URLs

CntLdURL Number of final landing URLs in the redirection chain

AvgIPperURL Average IP number per URL in the connected component

AvgIPperLdURL Average IP number per landing URL in the connected component

Tweet Content

Mention Count Number of ‘@’ that mentions other users yes

Hashtag Count Number of hashtags yes

Tweet Count Number of tweets made by the user account for this tweet yes

URL Percent Percentage of posts from the same user that contain a URL yes

Table 11: Classification features for three datasets. For each feature, we also mark the monotonic direction if we specify the
monotonicity property, and whether we specify the feature to be low cost.

rounds of model with non-monotonic features first, and then train

with all features for later rounds.
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