
Learning Approximate Execution Semantics
From Traces for Binary Function Similarity

Kexin Pei , Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray

Abstract—Detecting semantically similar binary functions – a crucial capability with broad security usages including vulnerability

detection, malware analysis, and forensics – requires understanding function behaviors and intentions. This task is challenging as

semantically similar functions can be compiled to run on different architectures and with diverse compiler optimizations or obfuscations.

Most existing approaches match functions based on syntactic features without understanding the functions’ execution semantics. We

present TREX, a transfer-learning-based framework, to automate learning approximate execution semantics explicitly from functions’

traces collected via forced-execution (i.e., by violating the control flow semantics) and transfer the learned knowledge to match

semantically similar functions. While it is known that forced-execution traces are too imprecise to be directly used to detect semantic

similarity, our key insight is that these traces can instead be used to teach an ML model approximate execution semantics of diverse

instructions and their compositions. We thus design a pretraining task, which trains the model to learn approximate execution

semantics from the two modalities (i.e., forced-executed code and traces) of the function. We then finetune the pretrained model to

match semantically similar functions. We evaluate TREX on 1,472,066 functions from 13 popular software projects, compiled to run on 4

architectures (x86, x64, ARM, and MIPS), and with 4 optimizations (O0-O3) and 5 obfuscations. TREX outperforms the state-of-the-art

solutions by 7.8%, 7.2%, and 14.3% in cross-architecture, optimization, and obfuscation function matching, respectively, while running

8� faster. Ablation studies suggest that the pretraining significantly boosts the function matching performance, underscoring the

importance of learning execution semantics. Our case studies demonstrate the practical use-cases of TREX – on 180 real-world

firmware images, TREX uncovers 14 vulnerabilities not disclosed by previous studies. We release the code and dataset of TREX at

https://github.com/CUMLSec/trex.

Index Terms—Binary analysis, large language models, software security

Ç

1 INTRODUCTION

SEMANTIC function similarity, which quantifies the behavioral
similarity between two functions, is a fundamental program

analysis capability with a broad spectrum of real-world security
usages, such as vulnerability detection [3], [13], exploit genera-
tion [7], tracing malware lineage [10], [27], [39], [76], software
patching [44], [98], and forensics [53]. OWASP lists “using com-
ponents with known vulnerabilities” as one of the top-10 secu-
rity risks [68] in 2020. Therefore, identifying similar vulnerable

functionsin massive software projects can save significant man-
ual effort.

When matching semantically similar functions for security-
critical applications (e.g., vulnerability discovery), we often have
to deal with software at binary level, such as commercial off-the-
shelf products (i.e., firmware images) and legacy programs.
However, this task is challenging, as the functions’ high-level
information (e.g., data structure definitions) are removedduring
the compilation process. Establishing semantic similarity gets
even harderwhen the functions are compiled to run on different
architectures with various compiler optimizations or obfuscated
with simple transformations.

Recently, Machine Learning (ML) approaches have shown
promise in tackling these challenges [23], [57], [93] by learning
features that can identify similar function binaries across differ-
ent architectures, compiler optimizations, or even some types of
obfuscation. Specifically, ML models learn function representa-
tions (i.e., embeddings) from function binaries and use the dis-
tance between the embeddings of two functions to compute
their similarity. The smaller the distance, the more similar the
functions are to each other. Such approaches have achieved
state-of-the-art results, outperforming traditional methods [100]
using hand-crafted signatures (e.g., number of basic blocks).
Such embedding distance-based strategy is particularly appeal-
ing for large-scale function matching – taking only around 0.1
seconds searching over onemillion functions [30].

Execution Semantics. Despite the impressive progress, it
remains challenging for these approaches to match semanti-
cally similar functions with disparate syntax and structure [58].

� Kexin Pei, Junfeng Yang, Suman Jana, and Baishakhi Ray are with the
Columbia University, New York, NY 10027 USA. E-mail: {kpei, junfeng,
suman, rayb}@cs.columbia.edu.

� Zhou Xuan is with the Purdue University, West Lafayette, IN 47907
USA. E-mail: xuan1@purdue.edu.

Manuscript received 5 May 2022; revised 31 October 2022; accepted 11
December 2022. Date of publication 28 December 2022; date of current version
18 April 2023.
This work was supported in part by NSF under Grants CCF-18-45893, CCF-
18-22965, CCF-16-19123, CNS-18-42456, CNS-18-01426, CNS-16-18771,
CNS-16-17670, CNS-15-64055, and CNS-15-63843, in part by ONR under
Grants N00014-17-1-2010, N00014-16-1-2263, and N00014-17-1-2788, in
part by an NSF CAREER award, in part by an ARO Young Investigator
(YIP) award, in part by a Google Faculty Fellowship, in part by a JP Morgan
Faculty Research Award, in part by a DiDi Faculty Research Award, in part
by a Google Cloud Grant, in part by a Capital One Research Grant, and in
part by an Amazon Web Services Grant.
(Corresponding author: Kexin Pei.)
Recommended for acceptance by D. Lo.
This article has supplementary downloadable material available at https://doi.
org/10.1109/TSE.2022.3231621, provided by the authors.
Digital Object Identifier no. 10.1109/TSE.2022.3231621

2776 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

0098-5589 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 10,2023 at 18:13:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5052-9808
https://orcid.org/0000-0001-5052-9808
https://orcid.org/0000-0001-5052-9808
https://orcid.org/0000-0001-5052-9808
https://orcid.org/0000-0001-5052-9808
https://orcid.org/0000-0003-3406-5235
https://orcid.org/0000-0003-3406-5235
https://orcid.org/0000-0003-3406-5235
https://orcid.org/0000-0003-3406-5235
https://orcid.org/0000-0003-3406-5235
https://github.com/CUMLSec/trex
mailto:kpei@cs.columbia.edu
mailto:junfeng@cs.columbia.edu
mailto:suman@cs.columbia.edu
mailto:rayb@cs.columbia.edu
mailto:xuan1@purdue.edu
https://doi.org/10.1109/TSE.2022.3231621
https://doi.org/10.1109/TSE.2022.3231621

An inherent cause is that the code semantics is characterized
by its execution effects. However, all existing learning-based
approaches are agnostic to program execution semantics,
training only on the static code. Such a setting can easily
lead a model into matching simple patterns, limiting
their accuracy when such spurious shortcuts are absent
or changed [1], [72].

For instance, consider the following pair of x86 instruc-
tions: mov eax,2;lea ecx,[eax+4] are semantically
equivalent to mov eax,2;lea ecx,[eax+eax*2]. An ML
model focusing on syntactic features might pick common
substrings (both sequences share the tokens mov, eax, lea,
ecx) to establish their similarity, which does not encode the
key reason of the semantic equivalence. Without grasping
the execution semantics, an ML model can easily learn such
spurious patterns without understanding the inherent cause
of the equivalence: [eax+eax*2] computes the same exact
address as [eax+4]when eax is 2.

Limitations of Existing Dynamic Approaches. Existing
dynamic approaches try to avoid the above issues by directly
comparing the functions’ behaviors. As finding program
inputs reaching the target functions is extremely challenging
and time-consuming, the prior works perform forced-execution
by initializing the function input states (e.g., registers, mem-
ory) with random values and directly executing the target
functions by ignoring the control flow [25], [75]. While forced-
execution improves the coverage and can thus execute all
instructions within a function, the traces collected in such a
way is often too noisy to be representative of function behav-
ior, as the randomly initialized inputs might not be feasible
during program execution and the control flow is violated.
Therefore,when such traces are directly used to compute simi-
larities, they lead to many false positives [23]. Worse, execut-
ing every function pair during matching is extremely hard to
scale tomillions of function pairs.

Limitations of ML-Based Approaches on Dynamic Traces.
Recent studies have shown that incorporating traces as
an additional input helps the ML model to learn a better
program representation [66], [87], which improves on
many downstream program analysis tasks such as type
inference [73] and program repair [86]. Their key idea is
that instead of executing programs, they employ ML
models to learn an approximate summary of program
behavior from the dynamic information and use that
knowledge for the target analysis task. However, these

approaches are limited when directly applied for match-
ing functions. In order to model traces, they often resort
to mimicking regular execution and therefore the mod-
eled traces have low coverage [73]. In the context of
matching functions, such partial program behaviors with
limited coverage are often not representative enough to
help the model learn a holistic summary of the function
behavior to match their similarity. An obvious followup
question is can we employ forced-execution to teach an
ML model to generate high-coverage representation of
binary code? Unfortunately, training on forced-execution
traces is challenging. As existing ML-based approaches
are often formulated in a way that takes the traces and
directly train for the target task, the noise in the traces
can significantly bias the model into learning spurious
correlation between the noise and the target.

Our Approach. We present TREX, a transfer-learning-based
framework, that trains ML models to learn the execution
semantics from forced-execution traces. Unlike prior works,
which use noisy traces to directly measure similarity or
learning on regular traces with limited coverage, TREX pre-
trains a model on a mix of regular and forced-execution
traces with a dedicated pretraining task that are less suscep-
tible to the noise in the trace. Our key observation is that
while some traces are noisy, i.e., being forced-executed and
occasionally violating the control flow behavior, most parts
of the traces preserve the same effects to those of regular
execution within some neighboring context, e.g., straight-
line code or branches where the flow of control to fall
through. Therefore, we design our pretraining task to make
the model to observe and learn the execution effect of indi-
vidual instructions and their compositions from the local
context (Section 2.2). In order to generalize to diverse traces
collected from various functions, the model has to be resis-
tant to the noise introduced from forced-execution and learn
the execution semantics preserved across a mix of regular
and forced-execution traces. After learning the approximate
execution semantics, we finetune the pretrained model to
learn to compose its learned knowledge of various instruc-
tions to match semantically similar functions (Fig. 1). As a
result, during inference, we do not need to execute any func-
tions on-the-fly to match them. Instead, our model only uses
the function instructions, but with an augmented understand-
ing of their approximate execution semantics. Importantly,
such a design also saves significant runtime overhead by

Fig. 1. TREX’s workflow. We first pretrain the model on the functions’ traces obtained from forced-execution, consisting of instructions and dynamic
values, based on the masked LM task. We then finetune the pretrained model on the semantically similar function (only static instruction) pairs for
function similarity tasks. During inference, the finetuned model computes the function embedding, whose distance encodes the function similarity.

PEI ETAL.: LEARNING APPROXIMATE EXECUTION SEMANTICS FROM TRACES FOR BINARY FUNCTION SIMILARITY 2777

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 10,2023 at 18:13:01 UTC from IEEE Xplore. Restrictions apply.

eliminating the need of performing forced execution during
thematching time.

We pretrain the model on traces with a task inspired
from masked language modeling (masked LM) [22]. Specif-
ically, it randomly masks instructions and values in traces
and asks the model to predict the masked parts based on
those not masked in the context. Such a design forces the
model to learn how individual instructions and their com-
positions behave in order to infer the masked parts cor-
rectly, automating learning execution semantics without
manual feature engineering. To facilitate learning on traces,
TREX adapts the hierarchical Transformer [73] to model
long-range execution effects of instructions on trace values.

To facilitate cross-architecture function matching and
learning on traces collected from different architectures, we
extend the existing forced-execution algorithm [25], [75] that
only works for x86 to support ARM and MIPS. As a result,
we are able to train and evaluate TREX on 1,472,066 functions
collected from 13 open-source software projects across 4
architectures (x86, x64, ARM, and MIPS) and compiled with
4 optimizations (O0-O3), and 5 obfuscation strategies [97].
Our experiments demonstrate that TREX outperforms the
state-of-the-art systems by 7.8%, 7.2%, and 14.3% inmatching
functions across different architectures, optimizations, and
obfuscations, respectively. Our ablation studies show that
the pretraining task improves the accuracy of matching
semantically similar functions by 15.7%. We also apply TREX

in searching vulnerable functions in 180 real-world firmware
images developed by well-known vendors and deployed in
diverse embedded systems, including WLAN routers, smart
cameras, and solar panels. Our case study shows that TREX

helps find 14 CVEs not disclosed in previous studies.
Contributions.Wemake the following contributions.

� We propose a new approach to first train the model
to learn program execution semantics from a mix of
regular and forced-execution trace and then train the
model to compose its learned knowledge to identify
semantically similar functions.

� We extend forced-execution that can expose diverse
function behavior to support multiple architectures
for pretraining. We then develop a dedicated pre-
training objective that helps the model to efficiently
learn the instructions’ execution semantics.

� We release our large-scale binary functions and their
traces collected from a wide spectrum of open-source
software projects, with diverse architectures, optimi-
zations, and obfuscations, to foster future research in
this direction.

� We demonstrate that TREX is faster and more accu-
rate than the state-of-the-art tools in cross-architec-
ture/optimization/obfuscation function matching,
while running up to 8� faster. Moreover, TREX helps
uncover new vulnerabilities in real-world firmware
images not disclosed by previous studies. We open-
source the code, the trained model, and the dataset
of TREX at https://github.com/CUMLSec/trex.

2 OVERVIEW

We use the real-world functions as motivating examples to
describe the challenges of matching semantically similar
functions and how the pretraining task could address them.

2.1 Challenging Cases

We use three semantically equivalent but syntactically dif-
ferent real-world function pairs (Fig. 2) to illustrate the typi-
cal challenges of learning from only static code for
matching similar functions.

Cross-Architecture. Consider Fig. 2a, where two functions
have the same effects as they both take the lower 12-bit of a
register and compare it to 0x80. Detecting they are similar-
ity requires understanding the execution semantics of and
in x86 and lsl/lsr in ARM. It also requires understanding
how the values (i.e., 0xfff and 0x14) in the code are
manipulated. However, learning on static code without
observing how each instruction behaves will fall short to
teach the model how to make such an inference.

Fig. 2. Challenging cases of matching similar functions across different architectures, optimizations, and obfuscations. (a) Function priv_enco-

de_gost is from libcrypto.a in openssl-1.0.1f. The upper function is compiled to x86 while the lower is compiled to ARM. (b) Function
<wd_comparator> is from basenc in coreutils-8.32. The upper and lower function is compiled by GCC-7.5 with -O0 and -O3, respectively.
(c) Function <CMS_add0_cert> is from libcrypto.a in openssl-1.0.1 u. The upper function is compiled using clang with default options.
The lower function is compiled by turning on the instruction substitution using Hikari [97], e.g., -mllvm -enable-subobf.

2778 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 10,2023 at 18:13:01 UTC from IEEE Xplore. Restrictions apply.

https://github.com/CUMLSec/trex

Cross-Optimization. Consider the two functions in Fig. 2b.
They are semantically equivalent as [ebp+8] and [esp

+4] access the same argument pushed on the stack by the
caller. To detect such similarity, the model should under-
stand push decreases the stack pointer esp by 4. The model
should also notice that mov at line 2 assigns the decre-
mented esp to ebp such that ebp+8 in the upper function
equals esp+4 in the lower function. However, such infor-
mation is not manifested in any static code patterns.

Cross-Obfuscation. Fig. 2c demonstrates a simple obfusca-
tion by substituting instructions, which replaces eax+1

with eax-(-1). While both functions increment the value
at stack location [rbp-0x2c] by 1, the upper function
achieves this by loading the value to eax, incrementing it
by 1, and writing eax back to stack, but the lower function
takes a convoluted way by first letting ecx to store -1, decre-
menting eax by ecx, and writing eax to stack. Detecting
the equivalence requires understanding how arithmetic
operations such as xor, sub, and add, execute. However,
static information cannot fully expose such knowledge.

2.2 Pretraining Masked LM on Traces

We describe the intuition how the pretraining task encour-
ages the model towards learning approximate execution
semantics of different instructions under different masking
scenarios, and thus potentially help address the challenging
cases in Fig. 2. Recall the operation of our pretraining task:
given a function’s trace (i.e., instructions and values), we
mask some random parts and train the model to predict the
masked parts using those not masked.

Masking Register. Consider masking the eax in line 3 in
the upper function of Fig. 2c. To correctly predict its name
and trace value, the model has to understand the semantics
of add and can deduce the value of eax in line 3 after
observing the value of eax in line 2 (before the addition
takes the effect). Similarly, when masking the values of ecx
in line 4 and eax in line 5, the model needs to learn the
semantics of xor and sub to minimize the prediction losses.
Such an understanding helps the model to attribute the sim-
ilarity (during finetuning) based on the similar execution
effects between the two functions, as opposed to their simi-
lar syntax.

Masking Opcode. Besides masking the register and its
value, we allow masking the opcode of an instruction. Pre-
dicting the masked opcode requires the model to reversely
infer its execution effect. Consider Fig. 2b, where we mask
the mov in line 2 of upper function. To correctly predict the
opcode, the model should learn several key aspects of the
function.

First, according to its context, i.e., the value of ebp at line 3
and esp at line 2, the model needs to understand that mov
operates as an assignment in order to predict it correctly.
Other opcodes are less likely as their execution effect conflicts
with the observed resulting register values, e.g., add will
assign ebp with ebp+esp, which conflicts with the value
observed at line 3. Second, the model should learn the calling
conventions and basic syntax of x86 instructions, e.g., only a
subset of opcodes accept the stack operands (ebp,esp). It
can thus exclude many syntactically impossible opcodes
such as push, jmp, etc. As a result, the model is able to infer

ebp (line 3 of upper function) equals to esp. Assuming that
the model may have also learned (from other masked sam-
ples) push decrements stack pointer esp by 4 bytes, now
when such a pretrained model is finetuned to match the two
functions, it is more likely to learn that the similarity is due to
that [ebp+8] in the upper function accesses the same
address pointed by [esp+4] in the lower function.

Other Masking Strategies. We are not constrained by the
number or the type of tokens (e.g., operand, opcode, values,
etc.) in the code and trace to mask, i.e., we can mask multi-
ple tokens in one or more instructions and also multiple
trace values. During training, the masking operation selects
a random subset of code blocks and trace values at each
training iteration and training samples. Such a random mask-
ing strategy enables the model to learn execution effect of
diverse instructions and their compositions.

How Pretraining on Noisy Traces Helps Match Similarity.
While the examples in Fig. 2 are straight-line code that their
execution will not introduce noisy traces, they can still be
forced-executed if triggering them requires violating certain
control flow constraints (i.e., predicates in the branch condi-
tions). However, even though such traces might contain
infeasible values, learning from such noisy traces can still
be useful. As the above examples show, predicting the
masked code and trace values requires the model to make
local inference based on its understanding of the neighbor-
ing instructions. Thus, noisy forced-execution traces can still
encode meaningful local behavior that requires the model to
learn their approximate execution semantics. During fine-
tuning, the model is further trained to compose its under-
standing of various instructions’ execution effect and
expected to more likely attribute the function similarity to
their similar behavior instead of their syntax.

3 METHODOLOGY

This section elaborates on TREX’s design, including the
forced-execution algorithms, the architecture, and the train-
ing workflow.

3.1 Forced-Execution

IR Language. We extend forced-execution [75] to handle x64,
ARM, and MIPS, where the original paper only describes
x86 as the use case. We introduce a low-level intermediate
representation (IR) to abstract away the complexity of dif-
ferent architectures’ syntax (Fig. 3). The IR here only serves
to facilitate the discussion of the forced-execution algo-
rithm. In our implementation, we use real assembly instruc-
tions as model’s input (Section 3.2).

Fig. 3. Low-level IR for representing assembly code. The IR abstracts
away the disparate syntax across multiple architectures.

PEI ETAL.: LEARNING APPROXIMATE EXECUTION SEMANTICS FROM TRACES FOR BINARY FUNCTION SIMILARITY 2779

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 10,2023 at 18:13:01 UTC from IEEE Xplore. Restrictions apply.

We denote memory reads and writes by load(e) and
store(ev; ea) (i.e., store the value ev to address ea), which
generalize to both the load-store (i.e., ARM, MIPS) and reg-
ister-memory architecture (i.e., x86). Both operations can
take as input e – an expression that can be an explicit hexa-
decimal number (denoting the address or a constant), a reg-
ister, or a result of an operation on two registers. We use
jmp to denote the jump instruction including both direct
and indirect jump (i.e., the expression ea can be a constant c
or a register r). The first parameter in jmp is the conditional
expression ec and it evaluates to true for unconditional
jump. We represent function invocations and returns by
call and ret, where call is parameterized by an expres-
sion, which can be a constant (direct call) or a register
(indirect call).

Algorithm. Algorithm 1 outlines the steps to forced-exe-
cute a function f . First, it initializes the memory and all
registers except the special-purpose register, such as the
stack pointer and the program counter. It then linearly exe-
cutes instructions of f . We map the memory on-demand
when the instruction attempts to access them. If the instruc-
tion reads from memory, we further initialize a random
value in the mapped memory addresses. We skip call/jump
instructions following the forced execution strategy [75].
Forced-execution terminates when it finishes executing all
instructions, reaches ret, or times out. Note that for
straight-line programs or when the initialized inputs hap-
pen to lead all the condition-checks to false, we obtain a reg-
ular (not forced) execution trace.

Algorithm 1. Forced-Execute a Function f

Input: Function binary f . All registers r.
Output: Forced-execution trace t.
1: I get instructionsðfÞ "put all instructions in f into a

queue
2: t empty vector
3: sp init stack pointer addrðÞ "stack pointer address
4: pc init program counter addrðÞ "first instruction’s

address
5: sm mem mapðsp; STACK SIZEÞ "initialize stack memory
6: cm mem mapðpc; jIjÞ "initialize memory for code
7: for each register ri in r\{sp,pc} do
8: ri random_init() "initialize register values
9: while I 6¼ ; do
10: i dequeueðIÞ
11: if i:type = load or i:type = store then "memory access
12: mem mapði:access addr; i:access sizeÞ
13: if i:type = load then
14: write randomði:access addrÞ
15: t t [executeðiÞ
16: else if i:type = jmp or i:type = call or i:type = nop then
17: continue "skip control transfer
18: else "all other instructions
19: t t [executeðiÞ

3.2 Input Representation

Given a function f and its trace t, we prepare the model
input x, consisting of 5 aligned sequences with the same
size n. Fig. 4 shows the example of TREX’s input and output
and how the input tokens are embedded using different

strategies. We follow StateFormer’s [73] approach for toke-
nizing inputs so we only briefly describe each sequence
below for completeness.

Code. The first sequence xf is the assembly code
sequence: xf ¼ fmov; eax;þ; . . .gn, generated by tokenizing
all assembly instructions. Note that unlike StateFormer,
where their code sequences come from complete static code
of a function, here xf are instructions along one forced-exe-
cuted path in a function. We move all numeric values to the
value sequence (see below) and replace them with a special
token num. With all these preprocessing steps, the vocabu-
lary size of xf across all architectures is 3,300.

Value. The second sequence xt is the trace value
sequence. As discussed in Section 2, we keep explicit numer-
ical values in xt, which denote the value for each token (e.g.,
register) in an instruction before it is executed. For example,
in mov eax,0x8; mov eax,0x3, the trace value of the sec-
ond eax is 0x8. For code token without dynamic value, we
use dummy values (see how we encode trace values in the
following).

Auxiliary Sequences. There are 3 additional sequences to
encode some structural and syntactic hints: the instruction
positions xc, opcode/operand positions xo, and the architec-
ture sequence xa. xc is a sequence of integers encoding the
position of each instruction. All opcodes/operands within a
single instruction share the same value. xo is a sequence of
integers encoding the position of each opcode and operands
within a single instruction. xa specifies which instruction set
architecture that the trace belongs to: xa ¼ fx86, x64, ARM,
MIPSgn.

Encoding Trace Values. As numerical values can lead to
prohibitively large vocabulary (264 possible values on a 64-
bit machine), we follow StateFormer’s hierarchical encoding
to address this challenge. Let xti denote the ith value in xt,
we represent xti as an (padded) 8-byte fixed-length byte
sequence xti ¼{0x00,..., 0xff}8 ordered in Big-Endian.
Unlike StateFormer that uses a neural arithmetic unit
(NAU) that treats each byte independently, we employ a
bidirectional LSTM (bi-LSTM) that takes xti as input and
use its last hidden cell’s output as the value representation
ti ¼ bi-LSTMðxtiÞ. As a recurrent network, bi-LSTM is more
amenable to learn the dependencies between high and low
bytes within a single value. To make the micro-trace code
tokens without dynamic values (e.g., opcode) align with the
byte sequence, we use a dummy sequence (##) with the
same length. Fig. 4a shows how bi-LSTM takes the byte
sequence and computes the embedding.

3.3 Pretraining With Traces

Input Embeddings. We embed each token in the 5 sequen-
ces with the same embedding dimension demb. Specifi-
cally, let EfðxfÞ, EtðxtÞ, EcðxcÞ, EoðxoÞ, EaðxaÞ denote
applying the embedding to the tokens in each sequence,
respectively. We have the embedding of xi: Ei ¼
EfðxfiÞ þ EtðxtiÞ þ EcðxciÞ þ EoðxoiÞ þEaðxaiÞ. Here xfi

denotes the ith token in xf , where other sequences fol-
low the similar notation. Note that EtðxtiÞ is the output
from bi-LSTM (Section 3.2) while the others are simply
one-hot encoded with an embedding matrix. Fig. 4a
illustrates the two embedding strategies.

2780 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 10,2023 at 18:13:01 UTC from IEEE Xplore. Restrictions apply.

Masked LM. To pretrain the model with the masked LM
objective, we mask the code token and value token in xf

and xt, respectively, and replace them with a special token
<MASK>. Let mðEiÞ denote the embedding of the masked
xi and MP a set of positions on which the masks are
applied. The model gp (to be pretrained) takes as input a
sequence of embeddings with random tokens masked:
ðE1; . . .;mðEiÞ; . . .; EnÞ; i 2MP, and predicts the code and
the values of the masked tokens: fx̂fi ; v̂iji 2MPg ¼
gpðE1; . . .;mðEiÞ; . . .; EnÞ. Let gp be parameterized by u, the
objective of training gp is to search for u that minimizes the
cross-entropy losses between (1) the predicted masked
code and the actual code, and (2) the predicted masked
values (8 bytes) and the actual values (Fig. 4a).

argmin
u

XjMPj

i¼1
ð�xfi log ðx̂fiÞ þ a

X8
j¼1
�xtij log ðx̂tijÞÞ; (1)

x̂tij denotes the predicted jth byte of xti (the ith token in
xt). a is a hyperparameter that weighs the cross-entropy
losses between predicting code tokens and predicting
values.

Contextualized Embeddings. We employ the self-attention
layers [84] to endow contextual information to each embed-
ding Ei, which encodes the context-sensitive meaning of
each token (e.g., eax in mov eax,ebx has different embed-
ding with that in jmp eax). This is in contrast with static
embeddings commonly used in the prior works [23], [24],
where a code token is assigned to a fixed embedding
regardless of the changed context. Given k self-attention
layers, let Ek;i denote the learned embeddings after the last
layer. Ek;i will be used to predict the masked code in
pretraining and match similar functions in finetuning (see
following).

3.4 Finetuning for Function Similarity

After the model is pretrained, we finetune the model to pre-
dict function similarity. Given a function pair, we feed each

function’s static code (instead of the traces that only cover one
path as described in Section 3.2) to the pretrained model gp
and obtain the pair of embedding sequences produced by the

last self-attention layer of gp: E
ð1Þ
k ¼ ðEð1Þk;1 ; . . .;E

ð1Þ
k;nÞ and E

ð2Þ
k ¼

ðEð2Þk;1 ; . . .;E
ð2Þ
k;nÞ where E

ð1Þ
k and E

ð2Þ
k correspond to the first and

second function, respectively. Let y ¼ f�1; 1g be the ground-
truth indicating the similarity between two functions. We
stack a 2-layer Multi-layer Perceptrons (MLP) gt, taking as
input the mean pooling of all embeddings within each func-
tion, and producing a function embedding

gtðEkÞ ¼ tanhðð
Xn
i¼1

Ek;iÞ=nÞ �W1Þ �W2:

Here W1 2 Rdemb�demb and W2 2 Rdemb�dfunc transforms the
mean-pooled Ek with demb dimensions into the function
embedding with dfunc dimensions. Let gt be parameterized
by u, the finetuning objective minimizes the cosine embed-
ding loss lce between the ground-truth and the cosine
distance between two function embeddings (Fig. 4b):
argminu lceðgtðEð1Þk Þ; gtðEð2Þk Þ; yÞ, where

lceðx1; x2; yÞ ¼ 1� cosðx1; x2Þ y ¼ 1
maxð0; cosðx1; x2Þ � �Þ y ¼ �1

�
; (2)

� is the margin chosen between 0 and 0.5 [70]. As both gp
and gt are differentiable, optimizing Equations (1) and (2)
can be guided by gradient descent via backpropagation.
After finetuning gt and gp, we compute the function embed-
ding femb ¼ gtðgpðfÞÞ and the function similarity is mea-
sured by the cosine similarity between their embedding
vectors: cosðf ð1Þemb; f

ð2Þ
embÞ.

4 IMPLEMENTATION AND SETUP

We implement TREX using fairseq [67] based on PyTorch
1.6.0 with CUDA 10.2 and CUDNN 7.6.5. We run all experi-
ments on a Linux server running Ubuntu 18.04, with an
Intel Xeon 6230 at 2.10 GHz with 80 virtual cores including

Fig. 4. (Left) Pretraining input-output examples and model architecture. (Right) Finetuning input-output examples. We mark the value sequence xt as
grey to indicate they are dummy values (Section 3.4), i.e., we statically compare two functions’ similarity. The border colors of the box are made con-
sistent across sub-figures to indicate the same type of input sequences.

PEI ETAL.: LEARNING APPROXIMATE EXECUTION SEMANTICS FROM TRACES FOR BINARY FUNCTION SIMILARITY 2781

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 10,2023 at 18:13:01 UTC from IEEE Xplore. Restrictions apply.

hyperthreading, 385 GB RAM, and 8 Nvidia RTX 2080-Ti
GPUs.

Datasets. To train and evaluate TREX, we collect 13 popu-
lar open-source software projects (Table 1). We compile
these projects into 4 architectures, i.e., x86, x64, ARM, and
MIPS, with 4 optimization levels, i.e., O0-O3, using GCC-

7.5. We also obfuscate all projects using 5 types of obfusca-
tions by Hikari [97] on x64. The obfuscations include bogus
control flow (bcf), control flow flattening (cff), register-
based indirect branching (ibr), basic block splitting (spl),
and instruction substitution (sub). We turn off the compiler
optimization in case it optimizes away the obfuscated code.
As we encounter several errors in cross-compilation using
Hikari (based on Clang) [97], and the baseline system (i.e.,
Asm2Vec [23]) to which we compare only evaluates on x64,
we restrict the obfuscated binaries for x64 only. As a result,
we have 1,472,066 functions.

Forced-Execution. We implement forced-execution by Uni-
corn [79].We forced-execute each function 3 timeswithdifferent
initialized registers and memory, generating 3 traces for each
function in pretraining. We leverage multi-processing to paral-
lelize forced-executing each function and set 30 seconds as the
timeout in case any instruction gets stuck (i.e., infinite loops).

Baselines. For comparing cross-architecture performance,
we consider 2 state-of-the-art baselines. The first one is
SAFE [57]. As SAFE’s model is publicly available, we run
their trained models on our collected binaries. We also com-
pare TREX with SAFE’s reported results on their dataset, i.e.,
OpenSSL-1.0.1f and OpenSSL-1.0.1 u. The second baseline is
Gemini [93]. As Gemini’s trained model is not available, we
use their reported numbers directly on their evaluated data-
set, i.e., OpenSSL-1.0.1f and OpenSSL-1.0.1 u.

For cross-optimization/obfuscation comparison, we con-
sider Asm2Vec [23] and Blex [25] as the baselines. Asm2Vec

achieves the state-of-the-art cross-optimization/obfuscation
results, based on learned embeddings from static assembly
code. Blex, on the other hand, leverages functions’ dynamic
behavior to match function binaries. As we only find a third-
party implementation of Asm2Vec that achieves extremely
low Precision@1 (the metric used in Asm2Vec) from our test-
ing (e.g., 0.02 versus their reported 0.814), and we have con-
tacted the authors and do not get replies, we directly
compare to their reported numbers. Blex is not publicly
available either, so we also compare to their reported num-
bers directly.

Metrics. As the cosine similarity between two function
embeddings can be an arbitrary real value between -1 and
1, we consider the receiver operating characteristic (ROC)
curve, which measures the model’s false positives/true pos-
itives under different thresholds. Notably, we use the area
under curve (AUC) of the ROC curve to quantify the accu-
racy of TREX to facilitate benchmarking – the higher the
AUC score, the better the model’s accuracy. Certain base-
lines do not use AUC score to evaluate their system. For
example, Asm2Vec uses Precision at Position 1 (Preci-
sion@1), and Blex uses the number of matched functions as
the metric. Therefore, we also include these metrics to eval-
uate TREX when needed.

Training Setup. To separate the functions in pretraining,
finetuning, and testing, we pretrain TREX on all functions in
the dataset except the project to be finetuned and evaluated.
Note that pretraining is agnostic to any ground-truth indicating
similar functions. Therefore, we can in theory pretrain on
large-scale codebases, which can include the functions for
finetuning [22]. It is thus worth noting that our setup of sep-
arating functions for pretraining and finetuning makes our
testing more challenging. For finetuning, we choose 50,000
random function pairs for each project and select random

TABLE 1
Number of Functions for Each Project Across 4 Architectures With 4 Optimization Levels and 5 Obfuscations

2782 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 10,2023 at 18:13:01 UTC from IEEE Xplore. Restrictions apply.

80% for training, and the remaining is used as the testing
set.

Hyperparameters. We pretrain and finetune the models for
10 epochs and 30 epochs, respectively. We choose a ¼ 0:125
in Equation (1) such that the cross-entropy loss of code pre-
diction and value prediction have the same weight. We pick
� ¼ 0:1 in Equation (2) to make the model slightly inclined
to treat functions as dissimilar because functions in practice
are mostly dissimilar. We use 12 self-attention layers with
each having 12 self-attention heads. We fix the largest input
length to be 512 and split the functions longer than this
length into subsequences for pretraining. The complete
description of the hyperparameters can be found in our sup-
plementary material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSE.2022.3231621.

5 EVALUATION

Our evaluation aims to answer the following questions.

� RQ1: How accurate is TREX in matching functions
across different architectures, optimizations, and
obfuscations?

� RQ2: How does TREX compare to the state-of-the-art?
� RQ3: How fast is TREX compared to other tools?
� RQ4: How much does pretraining on forced-execu-

tion traces help improve the accuracy of matching
functions?

5.1 RQ1: Accuracy

We evaluate how accurate TREX is in matching similar func-
tions across different architectures, optimizations, and obfus-
cations. We prepare function pairs for each project with 5
types of partitions. (1) ARCH: the function pairs have different
architectures but same optimizations. (2) OPT: the function
pairs have different optimizations but same architectures. (3)
OBF: the function pairs have different obfuscations with same
architectures (x64). (4) ARCH+OPT: the function pairs have
both different architectures and optimizations. (5) ARCH+OPT
+OBF: the function pairs can have arbitrary architectures,
optimizations, and obfuscations.

Table 2 reports the testing AUC scores and standard
deviation with 3 runs of TREX. On average, TREX achieves >
0:958 (and up to 0.995) AUC scores, even in the most chal-
lenging setting where the functions can come from different
architectures, optimizations, and obfuscations at the same
time. We note that TREX performs the best on cross-optimi-
zation matching. This is intuitive as the syntax of two func-
tions from different optimizations are not changed
significantly (e.g., the name of opcode, operands remain the
same). Nevertheless, we find the AUC scores for matching
functions from different architectures is only 0.001 lower,
which indicates the model is robust to entirely different syn-
tax between two architectures.

5.2 RQ2: Baseline Comparison

Cross-Architecture. As described in Section 4, we first com-
pare TREX with SAFE and Gemini on OpenSSL-1.0.1f and
OpenSSL-1.0.1 u with their reported numbers (as they only

evaluated on these two projects). We then run SAFE’s
released model on our dataset.

Fig. 5 shows that TREX’s AUC score is higher than those
reported in SAFEandGemini.While SAFE’sAUCscore is close
to TREX’s, it drops to 0.976 when run our testing set – possibly
because the distribution shift between different testing set [95].
For example, Fig. 6 shows that TREX consistently outperforms
SAFE on our dataset, i.e., by 7.3% on average. As SAFE is only
trained onOpenSSL,we also train TREX on the same dataset.

Inspired byArp et al. [6], we study the distribution shift by
measuring the KL-divergence [49] between SAFE’s dataset
and ours. We find the KL-divergence is 0.02, which is signifi-
cant to indicate the distribution shift. Therefore, this observa-
tion demonstrates the generalizability of TREX– when
pretrained to approximately learn execution semantics explic-
itly, it can quickly generalize tomatch unseen functions.

Cross-Optimization. We compare TREX with Asm2Vec and
BLEX on matching functions compiled by different optimi-
zations. As both Asm2vec and Blex run on single architec-
ture, we restrict the comparison on x64. Besides, since
Asm2Vec uses Precision@1 and Blex uses accuracy as the
metric (Section 4), we compare with each tool separately
using their metrics and on their evaluated dataset.

Table 3 shows TREX outperforms Asm2Vec in Precision@1
(by 7.2% on average) on functions compiled by different

TABLE 2
TREX Results (in AUC Score and Its Standard Deviation) on

Function Pairs Across Architectures, Optimizations, and Obfus-
cations

Fig. 5. ROCs of matching functions across different architectures.

PEI ETAL.: LEARNING APPROXIMATE EXECUTION SEMANTICS FROM TRACES FOR BINARY FUNCTION SIMILARITY 2783

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 10,2023 at 18:13:01 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TSE.2022.3231621
http://doi.ieeecomputersociety.org/10.1109/TSE.2022.3231621

optimizations (i.e., between O2 and O3 and between O0 and
O3). As the syntactic difference between O0 and O3 is more
significant than that between O2 and O3, both tools’ AUC
scores decrease (5% drop for TREX and 14% for Asm2Vec),
but TREX’s AUC score dropsmuch less than that of Asm2Vec.

To compare to Blex, we evaluate TREX on Coreutils
between optimizations O0 and O3, where they report to
achieve better performance than BinDiff [100]. As Blex
shows the matched functions of each program in a barchart
without including the numbers of matched functions, we
estimate their matched functions using their reported aver-
age percentage, i.e., 75%.

Fig. 7 shows that TREX consistently outperforms Blex in
number of matched functions in all utility programs of Cor-
eutils. Note that Blex also executes the function and uses the
dynamic features to match binaries. The observation here
thus implies that the learned execution semantics from TREX

is more effective than the hand-coded features in Blex for
matching similar binaries.

Cross-Obfuscation.We compare TREX to Asm2Vec on match-
ing obfuscated function binaries. Asm2Vec is evaluated on
obfuscations including bcf, cff, and sub – a subset of our
evaluated obfuscations. As Asm2Vec only evaluates on 4 proj-
ects, i.e., GMP, ImageMagic, LibTomCrypt, and OpenSSL, we
focus on the same ones, and Table 2 shows the TREX’s results on
other projects.

Table 4 shows TREX achieves better Precision@1 score (by
14.3% on average) throughout different obfuscations.
Importantly, the last two rows show when multiple obfus-
cations are combined, TREX performance is not dropping as
significant as Asm2Vec. It also shows TREX remains robust
under varying obfuscations with different difficulties. For

example, instruction substitution simply replaces a limited
instructions (i.e., arithmetic operations) while control flow
flattening dramatically changes the function code. Asm2Vec
has 12.2% decrease when the obfuscation is changed from
sub to ccf, while TREX only decreases by 4%.

5.3 RQ3: Execution Time

We evaluate the speed of generating function embeddings
for computing similarity. We compare TREX with SAFE and
Gemini on generating functions in 4 projects, i.e., Binutils,
Putty, Findutils, and Diffutils, which have disparate total
number of functions (see supplementary material), available
online. This tests how TREX scales to different number of
functions. Since the offline training (i.e., pretraining TREX) of
all the learning-based tools is a one-time cost, it can be amor-
tized in the functionmatching process sowe do not explicitly
measure the pretraining time. Moreover, the output of all
tools are embedding vectors, which can be indexed and effi-
ciently searched using locality sensitive hashing (LSH) [33].
Therefore, we do not compare the matching time of function
embeddings as it simply depends on the underlying LSH
implementation. Particularly, we compare the runtime of
two procedures in matching functions. (1) Function parsing,
which transforms the function binaries into the format that
the model needs. (2) Embedding generation, which com-
putes the embedding for the parsed function binary. We test
the embedding generation using our GPU (see Section 4).

Fig. 8 shows that TREX is more efficient than the other
tools in both function parsing and embedding generation
for projects with different number of functions. Gemini
requires manually constructing control flow graph and
extracting inter-/intra-basic-block features. It thus incurs
the largest overhead. For generating function embeddings,
our underlying network architectures leverage the self-
attention layers, which is more amenable to parallelization

Fig. 6. Comparison between TREX and SAFE on matching functions com-
piled to different architectures.

TABLE 3
Comparison Between TREX and Asm2Vec (In Precision@1) on

Function Pairs Across Optimizations

Fig. 7. Cross-optimization matching between O0 and O3 in Coreutils by
TREX and Blex. We sort the 109 binaries by their function count, and
aggregate the matched functions every 10 utilities.

TABLE 4
Comparison Between TREX and Asm2Vec (In Precision@1) on

Function Pairs Across Different Obfuscations

2784 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 10,2023 at 18:13:01 UTC from IEEE Xplore. Restrictions apply.

with GPU than the recurrent counterpart (used by SAFE)
and graph neural network (used by Gemini) [84]. As a
result, TREX runs up to 8� faster than SAFE and Gemini.

5.4 RQ4: Ablation Study

In this section, we perform extensive ablation studies to
show the effectiveness of various design in TREX. We also
compare to existing baselines We first quantify how pre-
training helps in matching function binaries. We then evalu-
ate how TREX’s pretraining strategy, i.e., predicting both
code and trace values on the forced-executed traces, com-
pares to the that on regular traces. We leave other ablations
such as the effectiveness of including traces in pretraining
and the contribution of each auxiliary field (Section 3.2) to
the supplementary material, available online.

Pretraining Effectiveness. We compare the testing AUC
scores achieved by TREX (1) with pretraining (except the tar-
get project that will be finetuned), (2) with 66% of pretrain-
ing functions in (1), (3) with 33% of pretraining functions in
(1), and (4) without pretraining (the function embedding is
computed by randomly-initialized model not pretrained).
The function pairs can come from arbitrary architectures,
optimizations, and obfuscations.

Fig. 9 shows that the model’s AUC score drops signifi-
cantly (on average 15.7%) when the model is not pre-
trained. Interestingly, we observe that the finetuned
models achieve similar AUC scores, i.e., with only 1%
decrease when pretrained with just 33% of the functions.
This is likely that 33% of the pretraining set still has
around 400 k functions for pretraining. Therefore, such a
pretraining set can still be large enough to achieve a
decent finetuning performance. To test this hypothesis,
we further reduce the number of pretraining set by 10x,
using 40 k samples. We find the finetuning performance

drops by 11.6% on OpenSSL, getting much closer to the
drop (15.7%) when the model is not pretrained. This
implies pretraining on large-scale dataset is necessary to
effectively boost the finetuning performance.

Comparison to StateFormer. To empirically evaluate which
pretraining strategy (between TREX and StateFormer) is bet-
ter suited for matching similar functions, we take the pre-
trained model from StateFormer, which is pretrained on
regular execution traces with control/data-flow prediction
as the pretraining objective, and finetune on the same set of
functions. Fig. 10 shows the testing AUC scores in matching
similar functions across different architectures, optimiza-
tions, and obfuscations, at each finetuning epoch. We
observe that TREX outperforms StateFormer by 5.3% in AUC
score and is more stable during finetuning.

Pretraining w/o Traces. The above experiment studies TREX’s
finetuning performance when excluding each of the input
sequences. In this section, we also study whether including the
trace values in pretraining canhelp themodel to learn better exe-
cution semantics than learning from only static assembly code,
which in turn results in better functionmatching accuracy. Spe-
cifically, we pretrain the model on the data that contains only
dummy value sequence (see Section 3), and follow the same
experiment setting as described above. Besides replacing the
input value sequence as dummyvalue, we accordingly remove
the prediction of dynamic values in the pretraining objective
(Equation (1)). Fig. 11 shows that the AUC scores decrease by
7.2% when the model is pretrained without traces (and even
0.035 lower than that of SAFE). However, the model still per-
forms reasonably well, achieving 0.88 AUC scores even when
the functions can come from arbitrary architectures, optimiza-
tions, and obfuscations. Moreover, we observe that pretraining
without traces has less performance drop than the model sim-
ply not pretrained (7.2% versus 15.7%). This demonstrates that
even pretrainingwith only static assembly code is indeed help-
ful to improve matching functions. One possible interpretation
is that similar functions are statically similar in syntax, while
understanding their inherently similar execution semantics just
further increases the similarity score.

6 CASE STUDIES ON VULNERABILITY SEARCHING

In this section, we study how TREX can help discover vul-
nerabilities in firmware images. Firmware images often
include third-party libraries. However, these libraries are

Fig. 8. Runtime (log-scaled) performance of TREX, SAFE, and Gemini on
(a) function parsing and (b) embedding generation.

Fig. 9. Comparison of testing AUC scores between models pretrained
with different fraction of the pretraining set.

Fig. 10. Comparison between TREX and StateFormer, where StateFormer
does not perform forced execution and omits predicting code tokens dur-
ing pretraining.

PEI ETAL.: LEARNING APPROXIMATE EXECUTION SEMANTICS FROM TRACES FOR BINARY FUNCTION SIMILARITY 2785

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 10,2023 at 18:13:01 UTC from IEEE Xplore. Restrictions apply.

frequently patched but the manufacturers often fall behind
in updating them accordingly [68]. Indeed, OWASP lists
“using components with known vulnerabilities” as one of
the top-10 application security risks in 2020 [68]. Therefore,
we study whether our tool can uncover functions in firm-
ware images similar to known vulnerable functions. We
find existing state-of-the-art binary similarity tools all per-
form their case studies on the firmware images and vulner-
abilities that have already been studied before. Therefore,
we decide to collect our own dataset with more updated
firmware images and the latest vulnerabilities, instead of
reusing the existing benchmarks. This facilitates finding
1-day vulnerabilities in most recent firmware images not
disclosed before.

Specifically, we crawl firmware images in 180 products
from 22 vendors including WLAN routers, smart cameras,
and solar panels, fromwell-knownmanufacturers’ latest offi-
cial releases and third-party providers such as DD-WRT [34]
(see our supplementary material for firmware details), avail-
able online. For each function in the firmware images, we con-
struct function embedding and build a database using Open
Distro for Elasticsearch [5], which supports vector-based
indexingwith efficient search support based onNMSLIB [12].

Table 5 shows the 14 CVEs we use to search in the firm-
ware images and we include their details in the supplemen-
tary details, available online. For each CVE, we compile the
corresponding vulnerable functions in the specified library
version and generate the vulnerable function embeddings
via TREX. As the firmware images are stripped, we do not

know with which optimizations they are compiled, we
compile the vulnerable functions to both MIPS and ARM
with O3 and rely on TREX’s cross-architecture/optimization
matching capability to match functions potentially com-
piled in different architectures and with different optimiza-
tions. We then obtain the functions ranked top-10 similar
to the vulnerable one and manually verify if they are vul-
nerable. We leverage strings command to identify the
OpenSSL versions indicative of the corresponding vulner-
abilities. Note that such information can be stripped for
other libraries so it is not a reliable approach in general.
We have confirmed all 14 CVEs in 4 firmware models
(Table 5) developed by well-known vendors, i.e., Ubiquiti,
TP-Link, NETGEAR, and Linksys. These cases demonstrate
the practicality of TREX, which helps discover real-world
vulnerabilities in large-scale firmware databases.

Vulnerability Search Performance. We quantify the accu-
racy of TREX in searching vulnerable functions in the firm-
ware images and compare it to that of SAFE. As SAFE does
not work for MIPS, we study how it performs on NETGEAR
R7000 model, the only model that runs on ARM architecture
from Table 5. Specifically, we compile OpenSSL to ARM
and x64 with O3, and feed both our compiled and
firmware’s binaries to TREX and SAFE to compute embed-
dings. Based on the embeddings, we search the compiled
OpenSSL functions in the NETGEAR R7000’s embedded
libraries, and test their top-1/3/5/10 errors. For example,
the top-10 error measures when the query function does not
appear in the top-10 most similar functions in the firmware.
Fig. 12 shows that TREX has 5.5% and 5.6% lower error rate
than SAFE, when the query functions are from the same or
different architectures, respectively.

7 THREATS TO VALIDITY

Learning Approximate Execution Semantics. In this paper, our
pretraining task is designed to help an ML model towards
reasoning how programs execute. However, it does not
guarantee the trained model fully understands the execu-
tion semantics. Therefore, we can only resort to empirical
studies by designing various measurements to test the
trained model’s understanding of execution semantics. Our
evaluation shows the promise (see Appendix), available
online, – TREX obtains high accuracy on predicting diverse
masked code and trace values of millions of functions and
generalizes to unseen functions and trace values. Our case
studies (see Appendix), available online, on unseen test
samples also demonstrate the model learns beyond simply
memorizing patterns or taking spurious shortcuts.

Fig. 11. Comparison of testing AUC scores between models pretrained
with and without forced-execution trace.

TABLE 5
Vulnerabilities We Have Confirmed (✓) in Firmware Images
(Latest Version) From 4 Well-Known Vendors and Products

CVE Ubiquiti
sunMax

TP-Link
Deco-M4

NETGEAR
R7000

Linksys
RE7000

CVE-2016-6303 ✓ ✓ ✓ ✓
CVE-2016-6302 ✓ ✓ ✓ ✓
CVE-2016-2842 ✓ ✓ ✓ ✓
CVE-2016-2182 ✓ ✓ ✓ ✓
CVE-2016-2180 ✓ ✓ ✓ ✓
CVE-2016-2178 ✓ ✓ ✓ ✓
CVE-2016-2176 ✓ ✓ ✗ ✓
CVE-2016-2109 ✓ ✓ ✗ ✓
CVE-2016-2106 ✓ ✓ ✗ ✓
CVE-2016-2105 ✓ ✓ ✗ ✓
CVE-2016-0799 ✓ ✓ ✗ ✓
CVE-2016-0798 ✓ ✓ ✗ ✓
CVE-2016-0797 ✓ ✓ ✗ ✓
CVE-2016-0705 ✓ ✓ ✗ ✓

Fig. 12. Top-1/3/5/10 error of TREX and SAFE in searching functions in
firmware. The queries and the firmware are from (a) both ARM, (b) x64
and ARM, respectively.

2786 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 10,2023 at 18:13:01 UTC from IEEE Xplore. Restrictions apply.

While empirical evidence suggests that TREX likely learns
approximate execution semantics, formally proving that an
MLmodel has learned execution semantics precisely remains
an open problem [43], [47]. So far, only a simple and restricted
set of properties can be formally verified on a limited types of
neural net architectures [16], [88], [92]. To the best of our
knowledge, no existing works can verify that a model has
learned execution semantics – an extremely complex and
non-linear property of program code. Therefore, we envision
an appealing future research direction in verifying that an
MLmodel learned execution semantics correctly.

Ground Truth Bias. Following previous works [23], [57],
[93], we treat functions compiled from the same source as
similar, regardless of architectures, compilers, optimiza-
tions, and obfuscation transforms. However, two semanti-
cally similar functions can differ beyond architectures,
compilers, etc., as long as they have the similar input-output
behavior. For example, quick sort and merge sort are two
equivalent implementations in terms of their input-output
behavior. Therefore, TREX can suffer from potentially uncap-
tured false negatives, missing retrieving vulnerable func-
tions when matching firmware images.

We note that obtaining the ground truths of arbitrary
semantically similar functions is not easy. Without develop-
ers annotating those functions, it is hard to collect a large-
scale training dataset on various software programs. As
TREX aims to learn execution semantics without the function
pair ground truth, it can potentially benefit this task as well.
We leave this as the future study.

Dynamic Trace Bias. In this work, we use concrete dynamic
traces to pretrain TREX. However, the concrete value space can
be extremely large. This leads to the question how TREX pre-
trained on limited trace values generalizes to unseen samples.
In Appendix, available online, we have included generalizabil-
ity study for binary similarity. Moving forward, it can be inter-
esting to study how pretrained TREX generalizes to unseen
trace values and how to improve it. An interesting future
direction is to use symbolic execution traces, a more compact
form of program behavior, but the caveat is that symbolic exe-
cution is much more expensive than micro-execution, restrict-
ing its capability in obtaining large-scale training samples.

8 RELATED WORK

Traditional Approaches to Binary Similartiy. Existing static
approaches extract hand-crafted features by domain experts
to match similar functions. The features often encode the
functions’ syntactic characteristics. For example, BinDiff [100]
extracts the number of basic blocks and the number of func-
tion calls to determine the similarity. Other works [18], [19],
[29], [46], [47], [65] introduce more carefully-selected static
features. For example, ESH [19] decomposes functions into
strands of instructions based on data dependencies. They com-
pare the function by the compose the similarity across these
strands. Instead of relying on manually-defined compositions,
TREX learns the semantics of compositions of instructions by
predicting their execution effects (Section 2.2). Therefore, our
pretraining task automates the process of encoding composi-
tions. Our case study (see Appendix), available online, demon-
strated how our model predicts the trace values by reasoning
over the compositions of multiple instructions.

Another popular static approach is to compute the struc-
tural distance between functions to determine the similar-
ity [11], [20], [21], [26], [38], [78], [100], such as the edit
distance between basic block expression trees [78] or
instruction sequences [21], [38]. As discussed in Section 2,
these features are susceptible to obfuscations and optimiza-
tions. TREX automates learning approximate execution
semantics and has been empirically shown more robust. In
addition to the static approaches, dynamic approaches [25],
[32], [37], [39], [45], [58], [61], [62], [77], [82] construct hand-
coded dynamic features, such as values written to mem-
ory [25] or system calls [62] by executing the function to
match similar functions. These approaches can detect
semantically similar functions by observing their similar
execution behavior. However, these approaches are expen-
sive (because execution happens at query time) [77] and can
suffer from false positives due to the noise introduced by
forced-execution [23], [41]. TREX only uses the traces to learn
approximate execution semantics of instructions and trans-
fer the learned knowledge to match functions without
directly comparing their dynamic behavior. Therefore, it is more
efficient and less susceptible to the imprecision introduced
by the forced-execution. Besides dynamic execution based
on concrete inputs, symbolic execution has been proposed
as an effective alternative to capture the comprehensive
behavior of the program over all paths [15], [31], [53], [63].
However, the key limitation of symbolic execution
approach is their scalability. The authors of CoP [53] have
acknowledged their high computational overhead, taking
an hour to complete a comparison between two reasonable-
sized programs, e.g., thttpd and sthttpd. As a reference
comparison, we run TREX on all the function pairs between
thttpd (102 functions) and sthttpd (103 functions). TREX

takes only 6.8 minutes to compare all the 10,000 pairs.
Therefore, symbolic execution is much less practical in real-
world use cases, e.g., matching large-scale functions, and
the most recent study on binary similarity task [56] chose to
discard all these approaches as they are inherently slow.

ML-Based Approaches to Binary Similarity. Most recent
learning-based works [23], [24], [30], [42], [50], [57], [81],
[93], [94], [96], [99] learn a function representation that is
supposed to encode the function in low dimensional vec-
tors, known as function embeddings [56]. The embeddings
are constructed by taking the functions’ structures (e.g., con-
trol flow graph) [24], [28], [30], [59], [93] or instruction
sequences [23], [50], [57] and training a neural net to align
the function embedding distances to the similarity scores.
All existing approaches are based only on static code, which
lacks the knowledge of function execution semantics. More-
over, the ML architectures adopted in these approaches
require constructing expensive graph features (attributed
CFG [30], [93]). By contrast, TREX learns approximate execu-
tion semantics from traces without extra manual feature
engineering effort. Recently, Marcelli et al. [56] evaluated a
fairly comprehensive set of ML based binary similarity
tools, in which TREX ranks the second in terms of vulnerabil-
ity searching performance. The best performed model based
on graph matching neural networks [51], however, requires
pairwise comparison for retrieval, i.e., it cannot extract
embeddings and perform approximate nearest neighbor
searching. Therefore, it suffers from poor scalability.

PEI ETAL.: LEARNING APPROXIMATE EXECUTION SEMANTICS FROM TRACES FOR BINARY FUNCTION SIMILARITY 2787

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 10,2023 at 18:13:01 UTC from IEEE Xplore. Restrictions apply.

Learning Representations of Program Code. There has been a
growing interest in learning neural program representation
for code modeling tasks [4]. The learned embedding of the
code encodes the program’s key properties, useful for many
applications such as program repair [69], [86], [89], recover-
ing symbol names, types, memory dependencies, and other
higher-level constructs [8], [9], [17], [36], [40], [50], [55], [71],
[73], [74], bug detection and investigation [2], [35], [54], [60],
[64], [80], [83], [85], [90], [91], and forensics [14], [48], [52].
Recent studies have shown promising results that the
learned program representations can be further improved
by program execution behaviors [66], [73], [86], [87]. As
opposed to just incorporating traces as additional input [86],
[87], TREX shows that ML models can learn approximate exe-
cution semantics from large-scale traces explicitly and still
improves downstream analysis tasks, even the traces are
noisy and might deviate substantially from their actual pro-
gram behavior. Such a relaxation on the quality of traces
can potentially benefit a broad spectrum of program analy-
sis tasks where collecting traces is challenging (i.e., inter-
preting compiled languages directly).

9 CONCLUSION

We introduced TREX to match semantically similar functions
based on the function execution semantics. We design a pre-
training task to pretrain an ML model to learn approximate
execution semantics from noisy forced-execution traces and
then transfer the learned knowledge to match semantically
similar functions. Our evaluation showed that pretraining
on forced-execution traces drastically improves the accu-
racy of matching semantically similar functions – TREX

excels in matching functions across different architectures,
optimizations, and obfuscations. We release the code and
dataset of TREX at https://github.com/CUMLSec/trex.

ACKNOWLEDGMENTS

Any opinions, findings, conclusions, or recommendations
expressed herein are those of the authors, and do not neces-
sarily reflect those of the US Government, ONR, ARL, NSF,
Captital One, Google, JP Morgan, DiDi, or Amazon.

REFERENCES

[1] H. Aghakhani et al., “When malware is packin’ heat; limits of
machine learning classifiers based on static analysis features,” in
Proc. Netw. Distrib. Syst. Secur. Symp., 2020.

[2] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang,
“Unified pre-training for program understanding and gener-
ation,” in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguis-
tics, 2021, pp. 2655–2668.

[3] M. Ahmadi, R. M. Farkhani, R. Williams, and L. Lu, “Finding
bugs using your own code: Detecting functionally-similar yet
inconsistent code,” in Proc. 30th USENIX Secur. Symp., 2021,
pp. 2025–2040.

[4] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Comput.
Surv., vol. 51, 2018, Art. no. 81.

[5] I. Amazon Web Services, “Open distro for elasticsearch,” 2020.
[Online]. Available: https://opendistro.github.io/for-elasticsearch/

[6] D. Arp et al., “Dos and don’ts of machine learning in computer
security,” 2020, arXiv:2010.09470.

[7] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and D.
Brumley, “Automatic exploit generation,” Commun. ACM,
vol. 57, pp. 74–84, 2014.

[8] P. Banerjee, K. K. Pal, F. Wang, and C. Baral, “Variable name
recovery in decompiled binary code using constrained masked
language modeling,” 2021, arXiv:2103.12801.

[9] S. Bardin, T. Benoit, and J.-Y. Marion, “Compiler and optimiza-
tion level recognition using graph neural networks,” in Proc.
Mach. Learn. Prog. Anal., 2021.

[10] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E.
Kirda, “Scalable, behavior-based malware clustering,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2009, pp. 8–11.

[11] M. Bourquin, A. King, and E. Robbins, “BinSlayer: Accurate
comparison of binary executables,” in Proc. 2nd ACM SIGPLAN
Prog. Protection Reverse Eng. Workshop, 2013, Art. no. 4.

[12] L. Boytsov and B. Naidan, “Engineering efficient and effective
non-metric space library,” in Proc. Int. Conf. Similarity Search
Appl., 2013, pp. 280–293.

[13] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic
patch-based exploit generation is possible: Techniques and
implications,” in Proc. IEEE Symp. Secur. Privacy, 2008, pp. 143–157.

[14] L. Cai et al., “Structural temporal graph neural networks for
anomaly detection in dynamic graphs,” in Proc. 30th ACM Int.
Conf. Inf. Knowl. Manage., 2021, pp. 3747–3756.

[15] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K.
Tan, “BinGo: Cross-architecture cross-OS binary search,” in Proc.
24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2016, pp. 678–689.

[16] Y. Chen, S. Wang, Y. Qin, X. Liao, S. Jana, and D. Wagner,
“Learning security classifiers with verified global robustness
properties,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2021, pp. 477–494.

[17] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can
learn function type signatures from binaries,” in Proc. 26th USE-
NIX Secur. Symp., 2017, pp. 99–116.

[18] J. Crussell, C. Gibler, and H. Chen, “AnDarwin: Scalable detec-
tion of semantically similar android applications,” in Proc. Eur.
Symp. Res. Comput. Secur., 2013, pp. 182–199.

[19] Y. David, N. Partush, and E. Yahav, “Statistical similarity of bina-
ries,” ACM SIGPLAN Notices, vol. 51, pp. 266–280, 2016.

[20] Y. David, N. Partush, and E. Yahav, “Similarity of binaries
through re-optimization,” in Proc. ACM SIGPLAN Conf. Program.
Lang. Des. Implementation, 2017, pp. 79–94.

[21] Y. David and E. Yahav, “Tracelet-based code search in exe-
cutables,” ACM SIGPLAN Notices, vol. 49, pp. 349–360, 2014.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language under-
standing,” in Proc. Annu. Conf. North Amer. Chapter Assoc. Com-
put. Linguistics: Hum. Lang. Technol., 2019, pp. 4171–4186.

[23] S. H. Ding, B. C. Fung, and P. Charland, “Asm2Vec: Boosting
static representation robustness for binary clone search against
code obfuscation and compiler optimization,” in Proc. IEEE
Symp. Secur. Privacy, 2019, pp. 472–489.

[24] Y. Duan, X. Li, J. Wang, and H. Yin, “DeepBinDiff: Learning pro-
gram-wide code representations for binary diffing,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2020.

[25] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execu-
tion: Dynamic similarity testing for program binaries and
components,” in Proc. 23rd USENIX Secur. Symp., 2014, pp. 303–317.

[26] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovRE:
Efficient cross-architecture identification of bugs in binary code,”
in Proc. Netw. Distrib. Syst. Secur. Symp., 2016, pp. 58–79.

[27] M. Fan et al., “Graph embedding based familial analysis of Android
malware using unsupervised learning,” in Proc. IEEE/ACM Int. Conf.
Softw. Eng., 2019, pp. 771–782.

[28] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone
detection with syntax and semantics fusion learning,” in Proc. 29th
ACM SIGSOFT Int. Symp. Softw. Testing Anal., 2020, pp. 516–527.

[29] M. R. Farhadi, B. C. Fung, P. Charland, and M. Debbabi,
“BinClone: Detecting code clones in malware,” in Proc. Int. Conf.
Softw. Secur. Rel., 2014, pp. 78–87.

[30] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proc. ACM SIG-
SAC Conf. Comput. Commun. Secur., 2016, pp. 480–491.

[31] D. Gao, M. K. Reiter, and D. Song, “BinHunt: Automatically find-
ing semantic differences in binary programs,” in Proc. Int. Conf.
Inf. Commun. Secur., 2008, pp. 238–255.

[32] J. Gao, X. Yang, Y. Fu, Y. Jiang, H. Shi, and J. Sun, “VulSeeker-
pro: Enhanced semantic learning based binary vulnerability
seeker with emulation,” in Proc. 26th ACM Joint Meeting Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng., 2018, pp. 803–808.

2788 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 10,2023 at 18:13:01 UTC from IEEE Xplore. Restrictions apply.

https://github.com/CUMLSec/trex
https://opendistro.github.io/for-elasticsearch/

[33] A. Gionis et al., “Similarity search in high dimensions via
hashing,” in Proc. 25th Int. Conf. Very Large Data Bases, 1999,
pp. 518–529.

[34] S. Gottschall, “DD-WRT,” 2005. [Online]. Available: https://dd-
wrt.com/

[35] W. Guo, D. Mu, X. Xing, M. Du, and D. Song, “DEEPVSA: Facili-
tating value-set analysis with deep learning for postmortem pro-
gram analysis,” in Proc. 28th USENIX Secur. Symp., 2019,
pp. 1787–1804.

[36] K. Heo, H. Oh, and K. Yi, “Machine-learning-guided selectively
unsound static analysis,” in Proc. IEEE/ACM 39th Int. Conf. Softw.
Eng., 2017, pp. 519–529.

[37] Y. Hu, Y. Zhang, J. Li, and D. Gu, “Binary code clone detection
across architectures and compiling configurations,” in Proc.
IEEE/ACM Int. Conf. Prog. Comprehension, 2017, pp. 88–98.

[38] H. Huang, A. M. Youssef, and M. Debbabi, “BinSequence: Fast,
accurate and scalable binary code reuse detection,” in Proc. ACM
Asia Conf. Comput. Commun. Secur., 2017, pp. 155–166.

[39] J. Jang, M. Woo, and D. Brumley, “Towards automatic software
lineage inference,” in Proc. 22nd USENIX Secur. Symp., 2013,
pp. 81–96.

[40] M. Jeon, S. Jeong, S. Cha, and H. Oh, “A machine-learning algo-
rithm with disjunctive model for data-driven program analysis,”
ACM Trans. Program. Lang. Syst., vol. 41, no. 2, pp. 1–41, 2019.

[41] L. Jiang and Z. Su, “Automatic mining of functionally equivalent
code fragments via random testing,” in Proc. 18th Int. Symp.
Softw. Testing Anal., 2009, pp. 81–92.

[42] S. Jiang, C. Fu, Y. Qian, S. He, J. Lv, and L. Han, “IFAttn: Binary
code similarity analysis based on interpretable features with
attention,” Comput. Secur., vol. 120, 2022, Art. no. 102804.

[43] Z. Jiang, F. F. Xu, J. Araki, and G. Neubig, “How can we know
what language models know?,” Trans. Assoc. Comput. Linguistics,
vol. 8, pp. 423–438, 2020.

[44] Z. Jiang et al., “PDiff: Semantic-based patch presence testing for
downstream kernels,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2020, pp. 1149–1163.

[45] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G.
Vigna, “Revolver: An automated approach to the detection of
evasive web-based malware,” in Proc. 22nd USENIX Secur.
Symp., 2013, pp. 637–652.

[46] W. M. Khoo, A. Mycroft, and R. Anderson, “Rendezvous: A
search engine for binary code,” in Proc. 10th Work. Conf. Mining
Softw. Repositories, 2013, pp. 329–338.

[47] D. Kim, E. Kim, S. K. Cha, S. Son, and Y. Kim, “Revisiting binary
code similarity analysis using interpretable feature engineering
and lessons learned,” 2020, arXiv:2011.10749.

[48] H. Koo, S. Park, D. Choi, and T. Kim, “Semantic-aware binary
code representation with bert,” 2021, arXiv:2106.05478.

[49] S. Kullback and R. A. Leibler, “On information and sufficiency,”
Ann. Math. Statist., vol. 22, no. 1, pp. 79–86, 1951.

[50] X. Li, Q. Yu, and H. Yin, “PalmTree: Learning an assembly lan-
guage model for instruction embedding,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2021, pp. 3236–3251.

[51] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph match-
ing networks for learning the similarity of graph structured
objects,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 3835–3845.

[52] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng,
“Log2vec: A heterogeneous graph embedding based approach
for detecting cyber threats within enterprise,” in Proc. ACM SIG-
SAC Conf. Comput. Commun. Secur., 2019, pp. 1777–1794.

[53] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with
applications to software plagiarism detection,” in Proc. ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2014, pp. 389–400.

[54] O. Lutz et al., “ESCORT: Ethereum smart contracts vulnerability
detection using deep neural network and transfer learning,”
2021, arXiv:2103.12607.

[55] A. Maier, H. Gascon, C. Wressnegger, and K. Rieck, “TypeMiner:
Recovering types in binary programs using machine learning,”
in Proc. Int. Conf. Detection Intrusions Malware, Vulnerability
Assessment, 2019, pp. 288–308.

[56] A. Marcelli, M. Graziano, X. Ugarte-Pedrero, Y. Fratantonio, M.
Mansouri, and D. Balzarotti, “How machine learning is solving
the binary function similarity problem,” in Proc. 31st USENIX
Secur. Symp., 2022, pp. 2099–2116.

[57] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Quer-
zoni, “SAFE: Self-attentive function embeddings for binary sim-
ilarity,” in Proc. Int. Conf. Detection Intrusions Malware,
Vulnerability Assessment, 2019, pp. 309–329.

[58] D. McKee, N. Burow, andM. Payer, “Software ethology: An accu-
rate and resilient semantic binary analysis framework,” 2019,
arXiv:1906.02928.

[59] N. Mehrotra, N. Agarwal, P. Gupta, S. Anand, D. Lo, and R. Pur-
andare, “Modeling functional similarity in source code with
graph-based Siamese networks,” 2020, arXiv:2011.11228.

[60] W. Melicher, C. Fung, L. Bauer, and L. Jia, “Towards a light-
weight, hybrid approach for detecting DOM XSS vulnerabilities
with machine learning,” in Proc. Web Conf., 2021, pp. 2684–2695.

[61] J. Ming, M. Pan, and D. Gao, “iBinHunt: Binary hunting with
inter-procedural control flow,” in Proc. Int. Conf. Inf. Secur. Cryp-
tol., 2012, pp. 92–109.

[62] J. Ming, D. Xu, Y. Jiang, and D. Wu, “BinSim: Trace-based
semantic binary diffing via system call sliced segment equiva-
lence checking,” in Proc. 26th USENIX Secur. Symp., 2017,
pp. 253–270.

[63] J. Ming, D. Xu, and D. Wu, “Memoized semantics-based binary
diffing with application to malware lineage inference,” in Proc.
IFIP Int. Inf. Secur. Privacy Conf., 2015, pp. 416–430.

[64] D. Mu et al., “RENN: Efficient reverse execution with neural-net-
work-assisted alias analysis,” in Proc. IEEE/ACM 34th Int. Conf.
Autom. Softw. Eng., 2019, pp. 924–935.

[65] G. Myles and C. Collberg, “K-gram based software birthmarks,”
in Proc. ACM Symp. Appl. Comput., 2005, pp. 314–318.

[66] M. Nye et al., “Show your work: Scratchpads for intermediate
computation with language models,” 2021, arXiv:2112.00114.

[67] M. Ott et al., “fairseq: A fast, extensible toolkit for sequence mod-
eling,” in Proc. Annu. Conf. North Amer. Chapter Assoc. Comput.
Linguistics: Hum. Lang. Technol.: Demonstrations, 2019, pp. 48–53.

[68] OWASP, “Top 10 web application security risks,” 2010. [Online].
Available: https://owasp.org/www-project-top-ten/

[69] S. Parihar, Z. Dadachanji, P. K. Singh, R. Das, A. Karkare, and A.
Bhattacharya, “Automatic grading and feedback using program
repair for introductory programming courses,” in Proc. ACM
Conf. Innov. Technol. Comput. Sci. Educ., 2017, pp. 92–97.

[70] A. Paszke et al., “PyTorch: An imperative style, high-perfor-
mance deep learning library,” in Proc. Adv. Neural Inf. Process.
Syst., 2019, Art. no. 721.

[71] J. Patrick-Evans, L. Cavallaro, and J. Kinder, “Probabilistic nam-
ing of functions in stripped binaries,” in Proc. Annu. Comput.
Secur. Appl. Conf., 2020, pp. 373–385.

[72] M. Payer, S. Crane, P. Larsen, S. Brunthaler, R. Wartell, and M.
Franz, “Similarity-based matching meets malware diversity,”
2014, arXiv:1409.7760.

[73] K. Pei et al., “StateFormer: Fine-grained type recovery from bina-
ries using generative state modeling,” in Proc. 29th ACM Joint
Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2021,
pp. 690–702.

[74] K. Pei, J. Guan, D. Williams-King, J. Yang, and S. Jana, “XDA:
Accurate, robust disassembly with transfer learning,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2021.

[75] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force:
Force-executing binary programs for security applications,” in
Proc. 23rd USENIX Secur. Symp., 2014, pp. 829–844.

[76] R. Perdisci, A. Lanzi, and W. Lee, “McBoost: Boosting scalability
in malware collection and analysis using statistical classification
of executables,” in Proc. Annu. Comput. Secur. Appl. Conf., 2008,
pp. 301–310.

[77] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz,
“Cross-architecture bug search in binary executables,” in Proc.
IEEE Symp. Secur. Privacy, 2016, pp. 709–724.

[78] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow,
“Leveraging semantic signatures for bug search in binary pro-
grams,” in Proc. 30th Annu. Comput. Secur. Appl. Conf., 2014,
pp. 406–415.

[79] N. A. Quynh and D. H. Vu, “Unicorn: Next generation CPU
emulator framework,” BlackHat USA, 2015.

[80] S. Reddy, C. Lemieux, R. Padhye, and K. Sen, “Quickly gener-
ating diverse valid test inputs with reinforcement learning,”
in Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng., 2020, pp.
1410–1421.

PEI ETAL.: LEARNING APPROXIMATE EXECUTION SEMANTICS FROM TRACES FOR BINARY FUNCTION SIMILARITY 2789

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 10,2023 at 18:13:01 UTC from IEEE Xplore. Restrictions apply.

https://dd-wrt.com/
https://dd-wrt.com/
https://owasp.org/www-project-top-ten/

[81] K. Redmond, L. Luo, and Q. Zeng, “A cross-architecture instruc-
tion embedding model for natural language processing-inspired
binary code analysis,” 2018, arXiv:1812.09652.

[82] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analy-
sis of malware behavior using machine learning,” J. Comput.
Secur., vol. 19, pp. 639–668, 2011.

[83] S. L. Shrestha and C. Csallner, “SLGPT: Using transfer learning
to directly generate simulink model files and find bugs in the
simulink toolchain,” 2021, arXiv:2105.07465.

[84] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 6000–6010.

[85] H. Wang et al., “Combining graph-based learning with automated
data collection for code vulnerability detection,” IEEE Trans. Inf.
Forensics Security, vol. 16, no. 9151439, pp. 1943–1958, Dec. 2020.

[86] K. Wang, R. Singh, and Z. Su, “Dynamic neural program embed-
ding for program repair,” in Proc. Int. Conf. Learn. Representations,
2017.

[87] K. Wang and Z. Su, “Blended, precise semantic program
embeddings,” in Proc. 41st ACM SIGPLAN Conf. Program. Lang.
Des. Implementation, 2020, pp. 121–134.

[88] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal
security analysis of neural networks using symbolic intervals,”
in Proc. 27th USENIX Secur. Symp., 2018, pp. 1599–1614.

[89] S. Wang, P. Wang, and D. Wu, “Semantics-aware machine learn-
ing for function recognition in binary code,” in Proc. IEEE Int.
Conf. Softw. Maintenance Evol., 2017, pp. 388–398.

[90] L. Wartschinski, Y. Noller, T. Vogel, T. Kehrer, and L. Grunske,
“VUDENC: Vulnerability detection with deep learning on a nat-
ural codebase for python,” Inf. Softw. Technol., vol. 144, 2022,
Art. no. 106809.

[91] M. Wen, R. Wu, and S.-C. Cheung, “How well do change
sequences predict defects? Sequence learning from software
changes,” IEEE Trans. Softw. Eng., vol. 46, no. 11, pp. 1155–
1175, Nov. 2020.

[92] E. Wong and Z. Kolter, “Provable defenses against adversarial
examples via the convex outer adversarial polytope,” in Proc. Int.
Conf. Mach. Learn., 2018, pp. 5286–5295.

[93] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural net-
work-based graph embedding for cross-platform binary code
similarity detection,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2017, pp. 363–376.

[94] J. Yang, C. Fu, X.-Y. Liu, H. Yin, and P. Zhou, “Codee: A tensor
embedding scheme for binary code search,” IEEE Trans. Softw.
Eng., vol. 48, no. 7, pp. 2224–2244, Jul. 2022.

[95] L. Yang et al., “CADE: Detecting and explaining concept drift
samples for security applications,” in Proc. 30th USENIX Secur.
Symp., 2021, pp. 2327–2344.

[96] Z. Yu, W. Zheng, J. Wang, Q. Tang, S. Nie, and S. Wu,
“CodeCMR: Cross-modal retrieval for function-level binary
source code matching,” in Proc. Adv. Neural Inf. Process. Syst.,
2020, pp. 3872–3883.

[97] N. Zhang, “Hikari–an improvement over Obfuscator-LLVM,” 2017.
[Online]. Available: https://github.com/HikariObfuscator/Hikari

[98] L. Zhao, Y. Zhu, J. Ming, Y. Zhang, H. Zhang, and H. Yin,
“PatchScope: Memory object centric patch diffing,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2020, pp. 149–165.

[99] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural
machine translation inspired binary code similarity comparison
beyond function pairs,” 2018, arXiv:1808.04706.

[100] Zynamics, “BinDiff,” 2019. [Online]. Available: https://www.
zynamics.com/bindiff.html

Kexin Pei is currently working toward the PhD
degree with Columbia University, New York. His
research interests include security, software engi-
neering, and machine learning, specifically focus-
ing on developing data-driven program analysis
approaches to improve the reliability and security
of traditional and AI-based software systems.

Zhou Xuan received the BE degree in software
engineering from Xidian University, in China. He
is currently working toward the PhD degree with
Purdue University. His research interests include
deep learning for program analysis and audit log
analysis.

Junfeng Yang is professor of computer science,
member of the Data Science Institute, and co-direc-
tor of the Software Systems Lab, Columbia Univer-
sity. His research centers on building reliable,
secure, and fast software systems. His research
has resulted in numerous vulnerability patches to
real-world systems, practical adoption with the larg-
est technology companies, and press coverage
with Scientific American, TheAtlantic, TheRegister,
Communications of ACM, and other news outlets.
He won the Sloan Research Fellowship and the Air

Force Office of Scientific Research Young Investigator Program Award,
both in 2012; the National Science Foundation CAREER award, in 2011;
and Best Paper Awards at the USENIX Symposium on Operating System
Design and Implementation, in 2004 and 2022, the ACM Symposium on
Operating Systems Principles, in 2017, and the USENIX Annual Technical
Conference, in 2021.

Suman Jana is an Associate Professor with the
Computer Science Department and the Data
Science institute with Columbia University. His
primary research interest is at the intersection of
computer security and machine learning. His
research has received seven best paper awards,
a CACM research highlight, a Google faculty fel-
lowship, a JPMorgan Chase Faculty Research
Award, an NSF CAREER award, and an ARO
young investigator award.

Baishakhi Ray is an Associate Professor with the
Department of Computer Science, Columbia Uni-
versity, New York. Her research interest is in the
intersection of software engineering and machine
learning. She has received the prestigious IEEE
TCSE Rising star award and NSF CAREER award.
Her research has been acknowledged by Distin-
guished Paper awards with ASE 2022, FASE 2020,
FSE 2017, MSR 2017, and IEEE Symposium on
Security andPrivacy (Oakland), 2014. Her research
has also been published in CACM Research High-
lights and has beenwidely covered in trademedia.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2790 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 10,2023 at 18:13:01 UTC from IEEE Xplore. Restrictions apply.

https://github.com/HikariObfuscator/Hikari
https://www.zynamics.com/bindiff.html
https://www.zynamics.com/bindiff.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

