
FUGIO: Automatic Exploit Generation for
PHP Object Injection Vulnerabilities

Sunnyeo Park∗

KAIST
Daejun Kim∗

KAIST
Suman Jana

Columbia University
Sooel Son

KAIST

Abstract
A PHP object injection (POI) vulnerability is a security-
critical bug that allows the remote code execution of class
methods existing in a vulnerable PHP application. Exploit-
ing this vulnerability often requires sophisticated property-
oriented programming to shape an injection object. Existing
off-the-shelf tools focus only on identifying potential POI
vulnerabilities without confirming the presence of any exploit
objects. To this end, we propose FUGIO, the first automatic
exploit generation (AEG) tool for POI vulnerabilities. FUGIO
conducts coarse-grained static and dynamic program analyses
to generate a list of gadget chains that serve as blueprints for
exploit objects. FUGIO then runs fuzzing campaigns using
these identified chains and produces exploit objects. FUGIO
generated 68 exploit objects from 30 applications containing
known POI vulnerabilities with zero false positives. FUGIO
also found two previously unreported POI vulnerabilities with
five exploits, demonstrating its efficacy in generating func-
tional exploits.

1 Introduction

A PHP object injection (POI) vulnerability is a security-
critical PHP application bug [46] that enables diverse attacks,
including cross-site scripting, SQL injection, and arbitrary
file deletion. PHP supports the functionality of deserializing
a string into a PHP object to facilitate the management of
run-time objects. When exploiting a POI vulnerability, an
adversary targets this functionality; the adversary passes a
forged string into a deserialization function call, thus injecting
an arbitrary PHP object into the target application scope.

A unique aspect of this attack is that the adversary should
alter the properties and structures of the PHP object to invoke
a series of user-defined functions or class methods, thereby
allowing various types of web attacks. The technique used
in composing this exploit object is called property-oriented
programming (POP).

∗Both authors contributed equally to the paper

$this->node->clear

Tree::__destruct

$node = null

Node::clear

$this->close

File::clear

unlink($this->path)

File::close

$this->node->clear

Tree:: __destruct

$this->close

File::clear

unlink($this->path)

File::close

object(Tree) {
[³node´@ =>

object(File) {
[³path´@ => ³FILE_PATH´

}
}

Figure 1: A high-level overview of POP

Figure 1 depicts a high-level overview in which the adver-
sary performs POP for arbitrary file deletion. The left side of
the figure shows two legitimate call stacks that a target appli-
cation implements. The right side shows a new stack trace
that the adversary composes using POP, which the target ap-
plication does not implement. After injecting the class object
on the right side, the target application executes this new stack
trace, thus deleting the file that the adversary chooses. The
adversary connects two stack traces by injecting an object of
which the node property has a File class object and feeds a
file path by changing the path property. This new stack trace
is called a POP chain, which invokes a series of user-defined
existing class methods or functions.

The presence of a deserialization invocation with unsani-
tized user input merely poses a potential threat, whereas the
existence of an actual exploit object poses a critical security
threat. However, existing web scanning tools [32, 50, 58] only
report potential POI vulnerabilities that merely deserialize
user input. Unfortunately, generating exploit objects via POP
requires a significant amount of human effort and expertise.
However, there is no practical alternative for confirming the
exploitability of such potential POI vulnerabilities.
Contributions. We propose FUGIO, the first automatic ex-
ploit generation (AEG) tool designed to find POI vulnerabili-
ties and generate exploits for the identified vulnerabilities.

AEG for POI vulnerabilities requires addressing two chal-
lenges: 1) it is necessary to identify available POP chains that
consist of user-defined methods and functions called gadgets

while considering the availability of these gadgets and their
caller-callee relationships; and 2) for each identified chain,
it should shape an injection object by properly setting not
only the object hierarchy but also its multiple properties, thus
following the execution flow that this POP chain specifies.

We choose to tackle AEG for POI bugs with feedback-
driven targeted fuzzing aided by static and dynamic analyses.
Specifically, FUGIO addresses both of the following chal-
lenges: 1) FUGIO identifies all POP chains by analyzing
dynamically generated classes as well as statically defined
classes and prunes unavailable gadgets when triggering a tar-
get POI vulnerability; and 2) FUGIO generates exploit objects
that follow the execution of identified chains by conducting
feedback-driven fuzzing on a debloated PHP application.

Given the source code of a target PHP application, FUGIO
starts by collecting all class and function information via
static analysis to identify all available gadgets. It also collects
dynamically generated classes and functions when the POI
vulnerability is triggered via dynamic analysis, thus allowing
FUGIO to consider a comprehensive POP chain set.

Based on both of the analyses, FUGIO identifies feasible
POP chains and generates a program under testing (PUT)
that embodies all gadgets. When composing the PUT, it mim-
ics the execution environment in which the vulnerability is
triggered. FUGIO then conducts a feedback-driven fuzzing
campaign on the PUT for each chain, thus generating exploit
objects. The fuzzing process harnesses execution feedback
when prioritizing promising inputs that reach gadgets deeper
in the given chain and mutating property values. Once FU-
GIO finds a potential exploit, it inserts an attack payload into
the properties of the exploit object to check whether the in-
jected payload appears at the sink function, thus confirming
the exploitation of the generated payload.

We evaluated FUGIO on 30 PHP applications, each of
which has at least one known POI vulnerability. From these
applications, FUGIO reported 68 exploitable chains and their
actual exploits with zero false positives. We also applied FU-
GIO to the latest versions of two PHP applications: WordPress
with WooCommerce [3] and Concrete5. FUGIO reported two
previously unreported POI vulnerabilities with concrete ex-
ploits, thus demonstrating its efficacy.

In summary, we propose a new AEG tool for POI vulner-
abilities that applies a series of static and dynamic program
analyses and feedback-driven fuzzing. We demonstrate that
the proposed technique is effective for generating exploits
with zero false positives, which has notoriously demanded
labor-intensive engineering efforts.

2 Background

2.1 PHP Object Injection
A PHP object injection (POI) vulnerability refers to a security-
critical bug in a PHP application that entails remote code exe-

1 <?php
2 class Logger {
3 public function __destruct () { // Magic method
4 if ($this ->logtype === "TEMPORARY") {
5 $this ->log ->clear();
6 } else {
7 $this ->log ->save();
8 } } }
9 class Stream {

10 public function clear() {
11 $this ->close();
12 }
13 public function close() {
14 $this ->handle ->close();
15 } }
16 class TempFile extends Stream {
17 public function save() {
18 $tmpfile = tempnam("/tmp", "XYZ_");
19 $data = file_get_contents($this ->filename);
20 file_put_contents($tmpfile , $data); // Sink
21 }
22 public function close() {
23 unlink($this ->filename); // Sink
24 } }
25 $data = unserialize($_COOKIE['data']); // POI bug

Listing 1: Exploitation of a POI vulnerability

cution [46]. An adversary injects an input string that exploits
this vulnerability, and the vulnerable application creates a
PHP object when deserializing this injected string. The adver-
sary programs this PHP object via POP, enabling it to invoke
a series of class methods or functions that result in file dele-
tion/creation, cross-site scripting, remote code execution, and
other malicious behaviors.
Unserialization. PHP supports two built-in functions that
developers often use to encode and decode object-type data:
serialize() and unserialize(). These methods are de-
signed to serialize a given object into a string and to convert a
given string into an object, respectively. Unserialization also
occurs when a file operation is performed on a PHP Archive
(PHAR) file, such as file_exists and is_file, because this
file type stores its meta-data in serialized form. Therefore, an
adversary can inject an arbitrary object at run-time by feeding
an input string into an unserialize invocation or by trigger-
ing file operations on an attacker’s uploaded PHAR file. For
the latter case, we assume that a forged PHAR file has already
been uploaded to a target web server by exploiting an unre-
stricted file upload (UFU) vulnerability [40]. The adversary
thus attempts to invoke PHP file operations on this uploaded
PHAR file, which unserializes its meta-data.
Property-oriented programming. When exploiting a POI
vulnerability, an attacker crafts an injection object by carefully
choosing its property values to invoke a chain of existing class
methods or functions. This chain reflects a call stack that starts
from the entry method and ends with a method that invokes a
security-sensitive function with attack payloads. This chain
is called a POP chain, and each method of this POP chain is
called a gadget.

Note that the injection of an arbitrary object does not al-
ways lead to code execution; for execution to occur, the PHP
interpreter that runs a vulnerable application should invoke

5: $this->log->clear

Logger::__destruct Tempfile::clear

11: $this->close

TempFile::close

23: unlink

(a) A POP chain triggering unlink

Serialized String Unserialized Object

O:6:“Logger”:2:{

s:7:“logtype”;s:9:“TEMPORARY”;

s:3:“log”;O:8:“TempFile”:1:{

s:8:“filename”;s:9:“FILE_PATH”;}}

Logger

logtype: “TEMPORARY”

log: TempFile

filename: “FILE_PATH”

(b) An exploit object for 2a

Figure 2: An example of POP for the POI in Listing 1

the entry gadget in a POP chain. To achieve this, the attacker
uses a magic method defined in the vulnerable application.
Various types of magic methods are automatically invoked
when certain conditions are met at run-time. For instance, a
__destruct method is called when deleting an object in the
class definition that implements this magic method.

The attacker is also required to adjust the properties of
the injected object to invoke the next gadget within the pre-
vious gadget’s body. The next gadget should be 1) a mem-
ber method of the class containing the previous gadget, 2)
a member method of a different class whose name is used
at the invocation statement in the previous gadget, or 3) a
user-defined function with no owner class.

Listing 1 shows a PHP snippet with the POI vulnerability
at Line 25. The attacker is able to inject an arbitrary object via
the “data” cookie. Figure 2a shows a POP chain devised by
the attacker to exploit this vulnerability. This chain starts from
the __destruct of a Logger object and ends with the close
member method of a TempFile object in which a security-
critical file deletion occurs at Line 23. Based on the chain,
the attacker implements the serialized string on the left side
of Figure 2b; this string is deserialized into a Logger object
containing the logtype property, the value of the which is set
to “TEMPORARY”, and the log property, the value of which
is set to a TempFile object. This object has the filename
property, the value of which is set to a file path to delete, as
shown on the right side of Figure 2b.

When this object is destroyed in runtime, its __destruct
method is automatically invoked. Since the logtype prop-
erty value is “TEMPORARY”, __destruct invokes clear
of TempFile, which sequentially calls close of TempFile
and unlink with the target file name embodied in filename.
Thus, the attacker is able to delete an arbitrary file by injecting
the aforementioned input string. Note that the attacker assigns
a TempFile object in the log property of Logger to connect
the callsite at Line 5 to the second gadget, the clear member
method of TempFile. This control flow is not intended by the
application developers but is introduced by the attacker. The
attacker does not introduce any new code but instead reuses
existing gadgets by reshaping the hierarchy of objects and
setting the appropriate property values.

The presented attack is analogous to code reuse attack tech-
niques, such as return-to-libc [44], return-oriented program-
ming [52], and jump-oriented programming [9]. However, it
is different in that the basic block for executing code is a class
member method in POP.

3 Motivation and Challenges

We propose an AEG approach for finding a POI vulnerability
and generating injection objects that exploit this vulnerabil-
ity. Existing off-the-shelf penetration testing tools, such as
Burp [50] and Acunetix [32], focus only on identifying built-
in callsites that deserialize user input, reporting potential POI
vulnerabilities. The presence of their exploit objects is able to
eliminate possible false positives; however, this task requires
POP, which demands significant manual effort and expertise.

Dahse et al. [13] addressed this limitation by conducting a
static analysis that reports promising POP chains. However,
to eliminate false positives, this static approach still requires
addressing the reachability analysis problem of finding the
appropriate input to exploit one of the promising POP chains.
Furthermore, as the number of promising chains increases,
it becomes an arduous task to vet each chain and generate
exploits. For instance, Contao CMS has at least 26,180 chains,
making it improbable to manually check these chains and
generate working exploits for five exploitable chains.

Performing AEG for POI vulnerabilities must achieve the
following objectives: 1) find a POI vulnerability; 2) identify
POP chains of available gadgets when triggering the identified
vulnerability; and 3) generate input objects for exploitable
POP chains among those identified, thus reporting the ex-
ploitability of the vulnerability.

Considering that the aforementioned static and pen-testing
tools [13, 32, 50, 58] can already find potential POI vulnera-
bilities that pass user input into deserialization function calls,
we do not emphasize the contribution of detecting potential
POI bugs. Rather, our core contribution lies in generating
exploit objects, which is required to address the second and
third objectives. We explain the technical challenges of each
objective below.
Identifying POP chains. An AEG tool should identify all
POP chains that take into account gadgets from all loadable
classes at the location where user inputs are deserialized.

(C1-1) The dynamic nature of PHP makes it difficult to
identify loadable classes and their gadgets. The autoload fea-
ture enables the loading of any existing classes via invoking
developer-specified load callbacks. Also, many PHP CMS ap-
plications rely heavily on dynamically generated PHP classes.
Thus, considering only statically defined classes results in
not considering available gadgets for POP and produces false
negatives.

(C1-2) A naive algorithm for connecting loadable gadgets
produces a prohibitive number of POP chains to vet when as-
sessing exploitability. For instance, in Listing 1, __destruct

Figure 3: FUGIO architecture: A workflow overview of AEG for POI vulnerabilities

has two callsites that invoke clear and save. From this entry
gadget of __destruct, the attacker can connect to different
gadgets with the name of either clear or save by manipu-
lating $this->log. Therefore, as the number of invocations
within gadgets increases, the number of possible candidates
to connect from a given gadget increases. This especially be-
comes problematic when enumerating long chains because
the number of POP chains increases exponentially as length
increases.
Generating exploits. An AEG tool should generate an ex-
ploit object with multiple property values that enable the
exploit execution of an identified chain without disruption.
This poses the difficult problem of generating an appropriate
input that enables an application to reach a target statement.

Consider a gadget containing multiple conditions in its
body. When the invocation statement of the next gadget in-
volves passing these conditions, the tool is required to gener-
ate the appropriate property values to pass these. For instance,
in Listing 1, if the next gadget of Logger::__destruct is
TempFile::clear, the logtype of the object to inject should
be “TEMPORARY”, and the log should be a TempFile class
object. Furthermore, the tool should also provide an attack
payload to be fed into an actual parameter of a security-
sensitive sink in the last gadget by injecting property values.

We choose feedback-driven fuzzing for generating exploits.
Note that symbolic execution is undoubtedly applicable to
systematically generating exploit objects [4, 11, 67]. How-
ever, this approach requires modeling the semantics of PHP
built-in functions in terms of our symbols, which demands a
heavy engineering effort; we observed that 30 applications in
our benchmark used 460 built-in PHP functions in about 300
thousand of the identified gadgets in our evaluation. Further-
more, as the PHP interpreter evolves, more built-in functions
will need to be supported for symbolic execution. Therefore,
we choose a more general approach of fuzzing, which entails
the risk of false negatives.
Fuzzing. Fuzzing a target PHP application invites distinctive
technical challenges.

(C2-1) It is difficult to establish a high throughput when
conducting stateless fuzzing on a large PHP application.
When the size of a target PHP application is large, executing

the application with each generated input is a slow process,
which impedes fuzzing performance; 30 PHP applications
in our benchmark required 0.6 sec, on average, to execute
one object input, which is significantly slower than state-of-
the-art fuzzers [10]. This is because the target application
also executes modules that are not related to POI vulnerabil-
ities. Furthermore, these modules can produce side effects
that change an internal program state or even render the target
application unable to run due to a large number of fuzzing at-
tempts. Lastly, it is time-consuming to restore the application
to its initial state after each fuzzing attempt.

(C2-2) It is not straightforward to devise an exploit ob-
ject with multiple property values via fuzzing. A vast volume
of existing fuzzing literature models fuzzing inputs as byte
streams. However, generating an exploit object for POI vulner-
abilities demands performing property-oriented programming,
which requires altering multiple properties and shaping the
object hierarchy to enable the execution of a POP chain. How
can we identify the required properties for an exploit object?
What properties should be selected for mutation? How should
we mutate and generate the selected property values? These
questions should be addressed to generate exploits via fuzz
testing.

4 Overview

We propose FUGIO, a system that detects POI vulnerabilities
in a target PHP application and confirms the exploitability of
the detected vulnerabilities by generating exploit objects.

To address the two aforementioned challenges, FUGIO con-
ducts both static and dynamic program analyses to consolidate
all statically declared and dynamically generated gadgets (C1-
1). FUGIO then conducts a coarse-grained inter-procedural
taint analysis (with the objective of pruning unnecessary POP
chains) and performs a depth-bounded breadth-first search
that enumerates all promising chains (C1-2).

FUGIO generates exploits by conducting feedback-driven
fuzzing, thus addressing the second challenge. To achieve a
high throughput of fuzz testing, FUGIO synthesizes a program
under testing (PUT) that simulates the execution environment

in which a POI vulnerability is triggered (C2-1). FUGIO
leverages branch coverage, run-time reference errors, and
hints that appear in conditional expressions during fuzzing
to devise more promising input objects in terms of reaching
deeper gadgets in the POP chain being tested (C2-2).

FUGIO consists of five components: POI detector, static
analyzer, dynamic analyzer, POP chain identifier, and POP
chain fuzzer. These components work together to find POI
vulnerabilities and to generate their exploit objects. Figure 3
depicts the workflow of FUGIO. It takes a target PHP applica-
tion source code and URL as input. The POI detector starts to
crawl the websites to detect POI vulnerabilities and passes the
detected vulnerability to the dynamic analyzer. The static and
dynamic analyzers collect data for identifying POP chains
from the given source code and the execution environment, re-
spectively when the detected vulnerability is triggered. Using
these analyses, the POP chain identifier computes promising
POP chains and generates a PUT. For each identified chain,
the fuzzer performs fuzz testing on this PUT until it finds
concrete exploits.

5 Design

5.1 POI Detector
The POI detector detects potential POI vulnerabilities in a
target PHP application through dynamic testing. Specifically,
it dynamically detects injection points that take in a predefined
input string and convert it into a PHP object.

Given a target PHP application with its URL, the detector
starts by crawling the application and computing a list of
URLs to visit. When visiting each webpage in this list, the
detector extracts <a> and <form> tags. From each <a> tag,
the detector builds a GET request template to its destination
URL. From each <form> tag, the detector extracts its action,
method, and input parameters, each of which has a key and the
default value. The detector then assembles these components
and generates a request template with input parameters.

Accordingly, from each request template, the detector gen-
erates a list of testing requests with our input string. For each
GET, POST, and COOKIE parameter in this request template,
the detector injects a predefined serialized string that repre-
sents our testing PHP object, thus generating a set of testing
requests; in each of these requests, one input parameter holds
our predefined string. The detector then sends each testing
request and observes whether a PHP built-in callsite that dese-
rializes a user input is invoked with our testing object. For this,
FUGIO hooks 26 predefined PHP built-in functions that in-
volve the deserialization of user inputs, such as unserialize,
is_file, and file_exists, using runkit [14] or uopz [34].
In short, when one of these built-in functions is invoked with
an actual parameter that holds our testing object, the detector
reports this invocation as a potential POI vulnerability and
passes this callsite information to the dynamic analyzer.

5.2 Static Analyzer

The static analyzer computes static summaries for user-
defined classes and functions that are later used for generating
POP chains and a PUT by the POP chain identifier (§5.4).

The analyzer takes in the source code of the target appli-
cation and outputs a static summary for each file. This static
summary contains function summaries and class summaries
that hold the information of functions and classes defined in
this file. It starts by parsing each PHP file into a set of abstract
syntax trees (ASTs) and then analyzes all definitions of func-
tions, classes, interfaces, and traits. For each defined class, the
static analyzer extracts information, including a name, names-
pace, its parent class, implemented interfaces, used traits, and
the definition itself. It then stores this information in the class
summary of the PHP file defining the class. This summary
also includes the name and visibility of each defined property
and member method.

When parsing a function or member method definition, the
static analyzer extracts its function prototype and computes
a function summary that contains caller-callee relationships.
For each method invocation (e.g., $receiver->method())
within the function or member method definition, the analyzer
extracts a target method name and its receiver class candidates.
When the invocation explicitly uses $this, the static analyzer
precisely infers the receiver as the owner of the target method
or this owner’s parent class. Otherwise, it assigns a set of
classes that include member methods with the target method
name to the receiver candidates, computing a conservative
set of all possible classes. However, when there are intra-
procedural data flows from the assignment statement of a
newly instantiated class involving the new keyword to this
receiver (e.g., $receiver = new ClassA), the analyzer uses
this class as the receiver. This caller-callee information in
each file summary is later used when connecting gadgets to
build POP chains.

For each member method and function, the static analyzer
computes flow-insensitive intra-procedural data flows from its
formal parameters and its owner properties to the arguments
of each invocation callsite in the body. The function summary
contains these data flows, which are later used to prune non-
exploitable intermediate gadgets in which the attack is unable
to change the actual arguments of subsequent gadgets by
adjusting the property values of an injection object.

5.3 Dynamic Analyzer

The dynamic analyzer computes function summaries and class
summaries for dynamically generated classes and functions
that are not statically defined in the target application source
code. These summaries are also later consumed by the POP
chain identifier for generating chains and the PUT.

Given a POI vulnerability, the dynamic analyzer collects
additional information that the static analyzer is unable to

obtain. For this, FUGIO creates a PHP file that installs hooks
to PHP built-in functions that internally deserialize user input,
such as unserialize, file_exists, and fopen, using the
runkit [14] or uopz [34] extensions. We inject this file into the
target web application using the .htaccess file.

When the given POI vulnerability is triggered, the installed
hook attempts to load all classes obtained via the static ana-
lyzer. Note that PHP supports the autoload feature, which in-
vokes developer-specified callbacks when accessing unloaded
classes. Because many PHP applications use this autoload
feature, it is important to know which classes can be loaded
dynamically. We use class_exists to check whether a given
class is loaded. Otherwise, this function automatically tries
to load the given class using the corresponding autoload. By
invoking class_exists for all classes, we obtain a list of
loadable classes.

The dynamic analyzer subsequently examines loaded func-
tions, classes, interfaces, and traits when their bodies are not
statically defined. The analysis process is the same as the anal-
yses performed in the static analyzer. However, the dynamic
analyzer examines classes and functions that are dynamically
defined, which do not exist in the source code. Note that
Dahse et al. [13] did not consider these dynamically gener-
ated functions or classes.

Finally, the dynamic analyzer stores environmental vari-
ables (e.g., $_ENV and $_SERVER) and global variables (e.g.,
$_GLOBAL) when these hooking methods are called. In the
next step, these variables are used to generate a PUT that
mimics the execution environment in which the given POI
vulnerability is triggered.

5.4 POP Chain Identifier

Based on information from the static and dynamic analyzers,
the POP chain identifier emits a list of available POP chains
and a PUT to use in performing fuzz testing.

5.4.1 POP Chain Identification

A POP chain is a sequence of gadgets that reflects a stack
trace from a magic method to a sensitive sink when the ex-
ploitation of a target POI vulnerability occurs. Based on the
type of this sensitive sink, the adversary is able to conduct
different kinds of attacks. In this paper, we specified a total of
26 sensitive sinks causing file creation/modification/deletion,
shell command injection, and remote code execution.

For each invocation of sensitive sinks, FUGIO checks
whether the attacker can change the actual arguments of the
invocation using the function summary of the function or
method (m) that embodies the invocation (§5.2). It checks
whether there is an intra-procedural data flow from any formal
parameters of m or the properties of the owner class of m. If so,
FUGIO takes this sink function into account when generating
POP chains. Otherwise, FUGIO excludes this sink function

because there is no way for the attacker to directly change
such arguments via injecting objects. For instance, from List-
ing 1, FUGIO finds two sensitive sinks, file_put_contents
(in Line 20) and unlink (in Line 23), by checking the intra-
procedural data flow analysis of the save and close methods,
respectively. FUGIO then checks for the existence of data
flows from the filename property to the second argument of
file_put_contents and the first argument of unlink.

The chain identifier is required to generate POP chains,
each of which consists of gadgets along the path from a magic
method to each target sensitive sink. One naive solution for
this is to conduct a depth-first search from each magic method
to a target sensitive sink, generating all feasible chains. How-
ever, traversing the downstream of a callee from an entry
magic method may not encounter any sensitive sinks, thus
wasting computation resources. Also, when there exists a
cycle in call chains, the algorithm does not terminate.

Instead, we designed an algorithm that builds a depth-
bounded call tree in a breadth-first manner as shown in Fig-
ure 4. Specifically, for each invocation of target sinks, the
chain identifier of FUGIO computes a call tree, the root of
which is the method embodying the invocation. Then, for each
leaf node that indicates a function or method (m), it iteratively
attaches new nodes, each child node of which corresponds to a
potential caller of m. The chain identifier builds this tree until
its height grows up to a given height, which is a parameter
that auditors specify. We chose seven for this parameter in
our evaluation (§7.4). By means of this height-bounded tree
search, FUGIO is able to enumerate POP chains, even when
there are cycles in calling gadgets.
Attaching leaf nodes. When attaching potential callers of
the gadget (m) to each leaf, the chain identifier considers
not only authentic callers that the developers intended for
m but also forged callers that the adversary enforces for m
via manipulating object properties. Specifically, the chain
identifier collects all function summaries that have invocation
statements of which 1) the target callee name is the same
as m and 2) the number of actual parameters is the same as
the number of formal parameters of m. This collected set of
function summaries becomes the set of potential callers of
m to attach. From the potential callers, the chain identifier
further removes callers of which the invocation statements
have statically deterministic receivers that do not indicate
the owner class of m. Remind that via the static analysis,
FUGIO already computed a conservative receiver set for each
invocation (§5.2).

Considering that the chain identifier leverages static in-
formation when attaching potential callers of m, it misses
call edges when potential callers are statically undecidable;
for a reflective callsite, such as $receiver->$method, the
chain identifier is unable to determine its possible callees,
thus missing chains that contains this call edge. We discuss
false negatives due to these reflective callsites in §7.3.2.
Generating chains. After building the call tree for each sink,

the chain identifier finds the leaf nodes that represent magic
methods. For each identified leaf node, it computes a path
to the root node, thus emitting a chain of tree nodes, each of
which corresponds to a POP gadget.

Before passing the identified POP chain to the next step, the
chain identifier performs an inter-procedural data flow analy-
sis to prune the chains that do not have any data flows from
gadget properties to actual arguments of the sensitive sink,
rendering it infeasible for the attacker to change these actual
arguments. We leverage the function summary of each gadget
that lies in this POP chain and compute inter-procedural data
flows within the POP chain.

……

Height 1

Height 2

Height 3

TempFile::close

23: unlink

Stream::close Stream::clear Tempfile::clear

14: $this->handle->close 11: $this->close 11: $this->close

Logger::__destruct

5: $this->log->clear

Stream::clear Tempfile::clear

11: $this->close

Stream::close

14: $this->handle->close 11: $this->close

Figure 4: A call tree from unlink in Listing 1

5.4.2 PUT Generation

FUGIO synthesizes a PUT in PHP that is relatively smaller
than its original application but contains all the gadgets nec-
essary to generate exploits. FUGIO first extracts all class and
function definitions from the summaries that the analyzers
compute. To avoid possible conflicts of class and function
names, FUGIO emits one file for each definition. We call this
generated file a definition file.

FUGIO then generates the head and body parts of the PUT.
In the head part, FUGIO sets all the environment and global
variables provided by the dynamic analyzer. FUGIO then
writes the body part to include all definition files that contain
all the gadgets that are loaded and loadable when exploiting a
target POI vulnerability. The body part ends with the unseri-
alize invocation, which takes in a serialized input string that
the fuzzer later provides. This PUT takes in this input string
from a shell command invoking the PHP interpreter running
the PUT. Therefore, the fuzzer invokes unserialize using a
generated input in this PUT, which simulates the execution
environment when exploiting the POI vulnerability.
Instrumentation for feedback. Before conducting feedback-
driven fuzzing, FUGIO instruments a given PUT to obtain
three kinds of feedback when conducting fuzz testing of each
object input: 1) the execution trace that contains executed
conditional expressions and invoked methods, 2) the number
of executed gadgets in the POP chain, and 3) hints for property
values from conditional expressions.

To obtain the first and second types of feedback, we design
FUGIO to insert code that reports their execution at every
function entry, before and after every conditional expression,

Algorithm 1: Fuzzing
Input :An instrumented PUT (put)

A POP chain (pop_chain)
Output :Payloads

1 seed_pool←[]
2 init_seed← GenerateInitialSeed(pop_chain)
3 AddSeed(seed_pool, init_seed)
4 while True do
5 seed← SelectSeed(seed_pool)
6 input← MutateSeed(seed)
7 execution← ExecutePUT(put, input)
8 result← AnalyzeExecution(execution)
9 if NewPath(result) then

10 AddSeed(seed_pool, input)
11 if SinkReached(result) then
12 Report(input,“ProbablyExploitable”)
13 if Oracle(input) == success then
14 Report(input,“Exploitable”)
15 break

16 else
17 if ExecutedGadgets(input)>

ExecutedGadgets(seed) then
18 AddSeed(seed_pool,

GenerateNextGadgetSeed(input))

19 hinted_properties← AnalyzeConditions(result)
20 foreach prop ∈ hinted_properties do
21 AddSeed(seed_pool,

GenerateHintedSeed(input, prop))

22 else if reference error occurs then
23 missing_property← AnalyzeError(execution)
24 AddSeed(seed_pool,

AddProperty(input,missing_property))

and at every invocation statement of user-defined functions.
Specifically, each instrumented code emits the hash value of
its line and file, thus leaving an execution remark.

This step also inserts code that reports hints for property
values, which the fuzzer leverages to generate precise prop-
erty values. In Listing 1, $this->logtype needs to be set to
“TEMPORARY” to invoke the clear (Line 5), but it is improb-
able to randomly generate this specific string. For this, the in-
strumented code reports constants and type-checking built-in
functions, such as is_string() and is_int(), which appear
in executed conditional statements. These reported constants
and built-in functions are later used to generate property val-
ues. We call this type of property generation property hinting.

5.5 POP Chain Fuzzer
Given a PUT and a POP chain, the fuzzer conducts feedback-
driven fuzzing on the PUT, generating an exploit object.

Algorithm 1 describes the overall process of fuzzing. Given
a POP chain and a PUT, the fuzzer initiates a fuzzing cam-
paign during a given time period. The fuzzing process starts
by preparing an initial seed pool (Lines 1–3). It then repeats
the following procedures until finding an injection object that

executes the sensitive sink in the POP chain with an attack
payload. The fuzzer picks a seed based on its previous execu-
tion feedback (Line 5) and mutates this seed, thus generating a
new injection object to test (Line 6). The fuzzer then executes
the instrumented PUT with the mutated seed and analyzes
the execution feedback (Lines 7–8). When this mutated seed
contributes to increasing branch coverage, the fuzzer adds
this seed to the seed pool (Lines 9–10). Furthermore, if this
mutated seed executes more gadgets than the existing seed,
the fuzzer also derives new seeds that target one step deeper
in the POP chain (Lines 17–18). It also computes new seeds
by assigning property values in the current mutated seed by
leveraging constants and inferring property types based on the
usages of properties that appear in the executed conditional
statements (Lines 19–21). The remaining section details each
step in the fuzzing process.
Seed optimization. We prioritize a seed input that reaches a
deeper gadget in a given chain or the security-sensitive sink in
the last gadget of the chain when selecting a seed to mutate.

The fuzzer starts by preparing an empty seed pool (Line 1)
and generates an initial seed input. This initial seed input
is an object of which the class holds the first gadget of the
given POP chain. Then, this initial seed is added to the seed
pool (Lines 2–3). The fuzzer then picks a seed from the seed
pool (Line 5). For each seed, the fuzzer stores its execution
results: 1) the number of selections of the seed, 2) the hash
of its property tree, and 3) the maximum depth of executed
gadgets in the POP chain. Based on this information, the
fuzzer prioritizes a less frequently executed seed that has a
deeper executed gadget.

More formally, we define di f f as the difference between
the length of the POP chain and the maximum depth of exe-
cuted gadgets in the POP chain. Then, we use Equation 1 to
assign the probability for a target gadget depth; the greater
depth the executed gadget has, the greater chance of being
selected the target depth has.

scorei =
1

1+ e
5×di f fi

max(cur_depth)

, Pi =
scorei

Σscorei
(1)

After selecting a target gadget depth, the fuzzer then selects
one seed among those in the seed pool that have reached this
target depth in their execution.

When the seed pool includes seeds that reach the sink,
FUGIO splits the probability of 1.0 into 0.9 and 0.1. It then
uniformly distributes the probability of 0.9 across seeds that
have reached the sink. The probability of 0.1 is also uniformly
distributed across the remaining seeds in the pool. When
there is no seed reaching the sink, the fuzzer assigns the same
probability to each seed that shares the target gadget depth.
It also decreases the probability of each seed as the number
of this seed selection increases, thus increasing the chance of
being selected for less-selected seeds.
Input generation. Generating an injection object requires 1)

1 <?php
2 class Logger {
3 public $logtype;
4 public $log;
5 function setProp($name , $value) {
6 $parent_class = get_parent_class ();
7 if ($parent_class &&
8 property_exists($parent_class , $name)) {
9 parent :: setProp($name , $value);

10 }
11 $this ->$name = $value;
12 }
13 function getProp($name) {
14 return $this ->$name;
15 } }
16 class Stream {
17 ...
18 }
19 class TempFile extends Stream {
20 public $filename;
21 ...
22 }
23 $input = new Logger;
24 $input ->setProp('logtype ', "TEMPORARY");
25 $input ->setProp('log', new TempFile);
26 $input ->getProp('log')
27 ->setProp('filename ', "FILE_PATH");
28 echo base64_encode(serialize($input));

Listing 2: Example of a payload template

designing the structural hierarchy of multiple classes that re-
flects a given POP chain and 2) assigning proper values to the
properties of these multiple classes, which facilitates reach-
ing the sensitive sink with an attack payload. We leveraged a
tree data structure called a property tree when generating and
mutating this injection object. Its root node represents a class
object of which the class holds the magic method, the entry
gadget of a given POP chain. Each node of its descendants
represents a class object property; it contains the property
name, its visibility, type, and value. When a property type is a
class object, this node holds class candidates that the property
may have. In addition, this node becomes the parent node of
a subtree that indicates another class object having another
gadget in the POP chain.

The fuzzer generates a property tree and converts this tree
into an injection object by creating a PHP file that instantiates
the object. In this PHP file, FUGIO defines all the classes used
in this tree, sets property values, and serializes the created
class, as shown in Listing 2. By executing this file, the fuzzer
generates the input, which is fed into the PUT.

Note that the fuzzer does not inject the defined classes
into this PHP file. These classes are helper classes and are
only designed for generating a serialized injection string. The
injected serialized string actually exploits existing classes in
a target PHP application.
Mutation. The fuzzer mutates the property tree of the selected
seed (Line 6). The fuzzer visits each property in the property
tree and checks its type. When this type is Object, the fuzzer
randomly selects one class from the candidate classes of this
property. Otherwise, the fuzzer randomly selects one PHP
type among string, integer, boolean, file, array, and reference.

For string, integer, boolean, and file types, the fuzzer as-

signs a random value of the selected type to this property. For
an array property, the fuzzer randomly sets up the array size
and assigns random values to keys and values in the array.
For a reference property, the fuzzer identifies its owner and
its other properties that the static and dynamic analyzer com-
pute. It then randomly selects one of the other properties and
assigns its reference to the target reference property. After
mutating properties, the property tree is converted into the
PHP file, and the fuzzer executes the instrumented PUT with
the generated input from this file (Line 7).
Feedback. The fuzzer conducts a feedback-driven targeted
fuzzing that leverages the execution result of a given input
to derive new seeds, which are more promising candidates to
reach the sensitive sink in the given POP chain. There exist
four types of feedback that the fuzzer leverages: 1) branch
coverage, 2) the depth of a gadget reached, 3) property hinting,
and 4) reference error.

For branch coverage, the fuzzer adds a mutated seed to
the seed pool when this mutated input covers new branches
(Lines 9–10). For the second type of feedback, the fuzzer
leverages a gadget depth. When the execution of a mutated
seed enables the execution of a new gadget in the POP chain
that is deeper than that the original seed of this mutated one
reached, the fuzzer adds this mutated seed to the seed pool
with the updated depth of the reached gadgets (Lines 17–18).

When observing a property that is used in a conditional
statement with a comparison operator or specific built-in type-
checking functions, such as is_string(), is_int(), and
is_array(), the fuzzer stores the inferred type or a constant
operand in this conditional statement for the property. For
each hinted property, it generates a hinted seed in which the
value of the hinted property is set as the inferred value or is
randomly mutated by the inferred type (Lines 19–21).

Furthermore, the fuzzer observes reference errors in the
invocation of a method call leveraging a receiver (e.g.,
$receiver->method()). When an observed error is due to
a missing property or an incorrect object in the receiver, the
fuzzer appends the missing property node in the tree of the
current input or assigns an Object with a value chosen from
among the classes that have the target method call name
(Lines 22–24).
Exploit oracle. The fuzzer leverages the exploit oracle to
determine whether a generated input object is able to exploit
the POI vulnerability. When the mutated seed has reached the
sensitive sink, the fuzzer reports that the given POP chain is
probably exploitable with the generated input (Lines 11–12).
To confirm the exploitability of an object identified as proba-
bly exploitable, the fuzzer checks whether a generated input
can control the actual arguments of a sensitive sink. The ora-
cle compares each property value in the input object with the
sink arguments, thereby deriving a set of candidate properties
into which the fuzzer injects payloads. For each candidate,
the fuzzer sets its property value to an attack payload that
depends on the target sensitive sink. For instance, if the type

of sensitive sinks is echo, which can allow an XSS attack,
the attack payload is set to <script>alert(1);</script>.
In the case that sensitive sinks cause file deletion, we set the
attack payload to an existing file path.

Lastly, the fuzzer checks whether the injection object in-
vokes the sensitive sink with the attack payload in its argu-
ment. FUGIO hooks 26 sensitive sink calls in PHP and checks
whether each sink is invoked with an actual parameter con-
taining the attack payload. If so, the fuzzer reports that the
given POP chain is exploitable with the generated payload
and terminates the fuzzing campaign (Lines 13–15). Note that
Listing 2 shows a final output, a PHP snippet that defines a
generated exploit object and prints the serialized string of this
object. FUGIO is also able to generate an attack HTTP(S)
request by filling this serialized string into a GET, POST,
or COOKIE input parameter in the original request that the
detector found to trigger the POI vulnerability (§5.1).

In summary, the fuzzer generates an attack string and ex-
ecutes the PUT with this input, which is later deserialized
into an exploit object. The exploit oracle checks whether this
injection object invokes the series of gadgets in the given POP
chain and invokes the sink function with the attack payload.
Manager. FUGIO runs the POP chain identifier and the POP
chain fuzzer in parallel. Once the POP chain identifier com-
putes a set of chains while visiting each sensitive sink, FUGIO
manages fuzzing campaigns by invoking the fuzzing process
for each chain. Therefore, while the POP identifier computes
POP chains for a sink, FUGIO can initiate fuzzing on the
chains generated from a different sink.

FUGIO prioritizes POP chains with a shorter length when
selecting POP chains to fuzz. We implemented this fuzzing
policy to favor short POP chains when generating exploit
objects. In this way, FUGIO terminates the fuzzing process
for the corresponding sink when an exploit object in short
chains is found before it attempts to check long chains, which
requires more computation resources. We set the ratio of CPU
cores to execute the POP chain identifier and the fuzzer to be
3 to 1. After the POP chain identifier is done, all CPU cores
are assigned to the fuzzer.

6 FUGIO Implementation

FUGIO is implemented in 20K+ LoC of Python and PHP.
When identifying object injection points by hooking PHP
built-in functions, we used runkit [14] and uopz [34]. How-
ever, since these extensions do not support hooking eval, we
implemented this functionality to extract dynamically gener-
ated functions and classes. To incorporate this hooking func-
tionality, we prepended the PHP file implementing hooking
using a .htaccess file before executing every PHP file.

We also leveraged PHP-Parser [45] when parsing PHP files
into ASTs for the static analysis and instrumenting a PUT.
For communicating between different modules, we used Rab-
bitMQ [63]. To support open science and further research, we

release FUGIO at https://github.com/WSP-LAB/FUGIO.

7 Evaluation

We evaluate FUGIO by measuring its efficacy in generating
exploit objects (§7.2) and comparing its performance with
a previous study and an open-source tool (§7.3). We then
demonstrate the degree to which several parameters affect
the generation of functional exploits (§7.4). We also evaluate
FUGIO in finding previously unreported POI vulnerabilities
as well as their exploits (§7.5). We demonstrate case studies
with reported exploit objects (§7.6).

7.1 Experimental Setup
We evaluated FUGIO on 30 PHP applications. For each app,
we prepared a known POI vulnerability, thus tasking FUGIO
with generating exploit objects that trigger the vulnerabil-
ity causing file deletion/modification/creation, command in-
jection, or remote code execution. Of 30 applications, eight
applications were the same as those that Dahse et al. used
for evaluation [13]. We also included 21 applications from
PHPGGC [2]. In PHPGGC, 12 packages are PHP libraries.
Thus, we made a simple PHP application using each library
and injected a POI vulnerability into this application. For the
remaining nine applications, we leveraged known POI vulner-
abilities: CVE-2018-20148, CVE-2019-6339, and [64]. The
selection criteria for these benchmarks are as follows: 1) the
vulnerable versions of applications are still accessible, and 2)
the sizes of vulnerable applications are not trivial.
Environment. We performed the evaluation on a Linux work-
station equipped with two Intel Xeon Gold 6238 CPUs @ 2.10
GHz and 384 GB of RAM. For FUGIO execution, we pre-
pared a Docker container for each PHP version and installed
web applications according to their corresponding versions.

7.2 Performance of FUGIO
We conducted five fuzzing campaigns for each of the 30 ap-
plications. Each fuzzing campaign lasted 12 hours. For each
chain, we set FUGIO to conduct fuzzing for at most 100 sec-
onds and to assemble at most seven gadgets. We evaluate the
FUGIO’s sensitivity on these parameters in §7.4.

Table 1 summarizes the evaluation results. The third col-
umn represents the number of identified POP chains, and the
fourth column represents the number of POP chains on which
fuzzing was conducted to generate exploits. The Covered
sinks column represents the number of unique sensitive sinks
in the detected POP chains.

The Exploitable chains column represents the number of
exploitable POP chains, which means that FUGIO is able
to generate PHP object exploits. The Probably exploitable
chains column represents the number of chains with generated
input objects that succeeded in reaching the sink function in

each chain, but FUGIO could not confirm its exploitability
because the generated exploit failed to pass the exploit oracle.
Note that each cell in these columns represents a median
value from five fuzzing trials; the minimum and maximum
values are in square brackets. Also, the number in parentheses
represents the number of reported unique chains during the
five fuzzing trials. The True positive chains column represents
the number of exploitable chains that we manually confirmed.
The numbers to the left and right of the plus sign represent true
positive chains from exploitable (E) and probably exploitable
(PE) chains, respectively. The sum of these two numbers
yields the number of total exploitable objects that FUGIO
created during the five fuzzing trials. The last two columns
show the time spent in identifying POP chains and running
FUGIO, respectively.

From the 30 applications, FUGIO reported a total of 68 E
chains. We manually verified these E chains and confirmed
that FUGIO yielded no false positives. Among the 66 PE
chains, 26 chains were indeed exploitable. FUGIO generated
exploit objects from each of the 27 vulnerable applications.

FUGIO did not succeed in generating exploits for GLPI,
Vanilla, and Yii. In GLPI, FUGIO did not find any E chains
because it actually has no exploitable chains. This means that
the attacker is able to inject an input object but unable to
exploit the vulnerability in GLPI. In Vanilla, FUGIO missed
one exploitable chain that triggers an LFI vulnerability. This
is because FUGIO does not support LFI sinks for comput-
ing chains. In Yii, FUGIO identified exploitable chains, but
the fuzzer could not generate an exploit object for them. The
generation of this exploit requires assigning an array value
holding an appropriate index and its corresponding class ob-
ject to a property of the exploit object. FUGIO was unable to
generate an exploit object satisfying these conditions within
a fuzzing timeout.

Note that FUGIO identified approximately 10 million POP
chains that triggered 1,637 sensitive sinks. Identified chains
ranged from 0 (Vanilla) to 3.2 million chains (Joomla). These
statistics demonstrate the need to automate the generation of
exploit objects.

We further analyzed why FUGIO reported 26 exploitable
chains as PE chains. 1) FUGIO does not perform the exploit
oracle on PE chains with sinks that take file resources, such as
fwrite, because the attacker cannot inject a file resource as a
serialized string. However, we found that nine PE chains were
exploitable by leveraging an existing fopen callsite with an
injected file name. 2) The exploit oracle only reports E chains
when an injected payload appears in an actual argument of
the target sink without any loss. However, four chains were
exploitable even in the case that the attacker can partially
inject an attack string into the parameter. For the remaining
13 chains, FUGIO was unable to pinpoint object properties to
inject attack payloads within a given fuzzing timeout.

https://github.com/WSP-LAB/FUGIO

Table 1: Evaluation of FUGIO: The number of exploitable and probably exploitable chains represents the number of functional
exploit objects that FUGIO generates (WP: WordPress).

PHP Version Application Identified
Chains

Fuzzed
Chains

Covered
Sinks

Exploitable
Chains

Probably
Exploitable

Chains

True
Positive
Chains

Chain
Analysis

Time
Total Time

PHP 5.4

Contao CMS 26,180 25,732 41 3 [3 – 3] (3) 2 [2 – 7] (8) 3 + 2 117m 49s Timeout
Piwik 445,384 14,739 40 0 [0 – 0] (0) 0 [0 – 4] (4) 0 + 1 407m 24s Timeout
GLPI 544,776 8,898 8 0 [0 – 0] (0) 0 [0 – 0] (0) 0 + 0 Timeout Timeout

Joomla 3,292,647 9,075 47 0 [0 – 1] (1) 0 [0 – 5] (5) 1 + 0 Timeout Timeout
CubeCart 30 28 11 1 [1 – 1] (1) 0 [0 – 0] (0) 1 + 0 7s 1m 51s

CMS Made Simple 16 16 13 1 [0 – 1] (1) 0 [0 – 1] (0) 1 + 0 6s 1m 49s
Open Web Analytics 886 765 18 11 [9 – 12] (12) 5 [4 – 6] (5) 12 + 4 45s 16m 52s

Vanilla Forums 0 0 0 0 [0 – 0] (0) 0 [0 – 0] (0) 0 + 0 12s 12s
SwiftMailer 5.0.1 13,387 12,891 16 1 [0 – 2] (2) 1 [0 – 2] (3) 2 + 2 5m 28s 289m 30s
SwiftMailer 5.1.0 14,875 14,875 16 1 [1 – 1] (1) 0 [0 – 0] (0) 1 + 0 7m 45s 330m 37s

Smarty 15 15 7 0 [0 – 1] (1) 3 [2 – 3] (2) 1 + 0 4s 1m 57s
ZendFramework 1,271,410 8,732 264 0 [0 – 1] (1) 1 [0 – 5] (8) 1 + 0 Timeout Timeout

PHP 5.6

PHPExcel 1.8.1 (w/ WP) 2,787 2,679 37 3 [3 – 3] (4) 1 [1 – 1] (2) 4 + 0 1m 31s 55m 49s
PHPExcel 1.8.2 (w/ WP) 3,333 2,677 37 3 [3 – 3] (3) 1 [1 – 1] (1) 3 + 0 1m 56s 56m 10s

Dompdf (w/ WP) 639,904 8,350 115 0 [0 – 1] (1) 0 [0 – 0] (0) 1 + 0 Timeout Timeout
Guzzle (w/ WP) 80,285 27,948 43 3 [0 – 3] (3) 1 [0 – 1] (1) 3 + 1 47m 20s Timeout

WooCommerce 2.6.0 (w/ WP) 3,857 3,747 28 1 [1 – 1] (1) 0 [0 – 0] (0) 1 + 0 23s 76m 18s
WooCommerce 3.4.0 (w/ WP) 158,636 12,004 27 0 [0 – 1] (1) 0 [0 – 0] (0) 1 + 0 311m 56s 581m 25s

Emailsubscribers (w/ WP) 1,844 1,793 28 1 [1 – 1] (1) 0 [0 – 0] (0) 1 + 0 13s 37m
EverestForms (w/ WP) 2,081 2,032 25 1 [1 – 1] (1) 0 [0 – 0] (0) 1 + 0 14s 42m 4s

PHP 7.2

TCPDF 2 2 2 2 [2 – 2] (2) 0 [0 – 0] (0) 2 + 0 4s 13s
Drupal7 15 15 11 1 [0 – 1] (1) 4 [4 – 5] (4) 1 + 0 7s 2m 2s

SwiftMailer 5.4.12 14,977 14,977 16 1 [1 – 1] (1) 2 [1 – 3] (5) 1 + 4 5m 7s 330m 16s
SwiftMailer 6.0.0 13,495 13,175 16 1 [1 – 2] (3) 1 [0 – 3] (5) 3 + 4 4m 45s 286m 25s

Monolog 1.7.0 147 144 34 1 [0 – 2] (6) 0 [0 – 1] (1) 6 + 1 3s 3m 36s
Monolog 1.18.0 4,525 4,230 55 2 [2 – 4] (8) 1 [0 – 2] (4) 8 + 4 12s 84m 16s
Monolog 2.0.0 11,842 11,701 17 0 [0 – 0] (0) 0 [0 – 1] (1) 0 + 1 2m 36s 262m 2s

Laminas 3,254 3,254 4 2 [2 – 2] (2) 0 [0 – 0] (0) 2 + 0 3m 18s 68m 1s
Yii 2,428,535 9,033 453 0 [0 – 0] (0) 0 [0 – 2] (2) 0 + 0 Timeout Timeout

TYPO3 1,073,189 8,751 208 0 [0 – 5] (7) 0 [0 – 6] (7) 7 + 2 Timeout Timeout

Total 10,052,313 222,278 1,637 68 66 68 + 26

7.3 Comparison to State-of-the-Art Tools

We compared the performance of FUGIO to the performance
that Dahse et al. reported in §7.3.1 and that of PHPGGC
in §7.3.2. Dahse et al. proposed a static tool that reports
exploitable chains [13]. On the other hand, FUGIO reports
not only exploitable chains but also their exploit objects. In
§7.3.1, we conduct a fine-grained comparison on the FUGIO’s
ability to identify exploitable chains that Dahse et al. reported.

PHPGGC is an open-source tool that generates PHP ex-
ploit objects only for known exploit chains in specific versions
of PHP applications [2]. Because PHPGGC lists known ex-
ploitable POP chains, we used these chains to measure false
negatives that FUGIO produces in §7.3.2. Note that, unlike
PHPGGC, FUGIO is a general AEG tool for assembling gad-
gets and reporting exploit objects for any PHP applications.

Experimental setup. For each application, we ran FUGIO
five times with a timeout of 12 hours. We set FUGIO to
conduct fuzzing for at most 100 seconds for each chain. In
§7.3.1, we set FUGIO to identify POP chains with a length
of less than nine, which Dahse et al. used. In §7.3.2, we
considered chains of which length is at most nine, which is
the maximum exploitable chain length listed in PHPGGC.

7.3.1 Comparison to Dahse et al.

Target classes. Dahse et al. analyzed whether an object’s
class for injection is loadable by statically checking a stack
of included files [24]. However, when there exists at least
one autoloader callback in an application, they assume that
all existing classes are loadable, which is no longer a valid
assumption because this bug was patched in PHP 5.4.24 and

Table 2: The number of exploitable POP chains and their
exploit objects that FUGIO and Dahse et al. reported.

Tool Contao Piwik GLPI Joomla CubeCart CMSMS OWA Vanilla Total

FUGIO 11 1 0 2 1 1 17 0 33

[13]† 14 3 0 3 1 1 5 0 27

† Excludes POP chains conducting SQLi, XXE, and LFI attacks.

5.5.8 [12, 59, 60]. On the other hand, FUGIO checks loadable
classes by dynamically invoking all existing autoloader call-
backs to check their availability. To conduct a fair comparison,
we consider all user-defined classes as available gadgets when
at least one autoloader exists, making the same assumption
for available gadgets.
Sensitive sinks. Dahse et al. classified the detected chains
into six vulnerability types: file deletion (FD), file creation
(FC), file modification (FM), SQL injection (SQLi), local file
inclusion (LFI), and XML external entity injection (XXE).
We specified a total of 26 sensitive sinks to generate exploits
for FD, FC, FM, and command injection vulnerabilities, as
listed in Appendix 11.1. We excluded sinks enabling LFI and
XXE because those vulnerabilities are not reproducible in
PHP 5.4 [61, 62]. For SQLi, it is possible to identify POP
chains; however, the fuzzer cannot reach the sensitive sink
since such chains require a database account or an instance
that is already connected to the database. We leave this to
future work.

Table 2 shows the number of E chains that FUGIO identi-
fied and successfully generated their exploit objects, compared
to the number of exploitable chains that Dahse et al. reported.
FUGIO generated exploit objects for 33 E chains from six
applications while Dahse et al. identified 27 E chains from
the same applications. Since Dahse et al. omitted the details
of each chain, we could not match each exploitable chain.
Thus, we compare the numbers of exploit objects that FUGIO
reported with the numbers reported in their paper.

For the six missing E chains from Contao, Piwik, and
Joomla, FUGIO could not generate exploit objects due to
the following reasons: 1) four chains required passing compli-
cated conditions to reach the sink functions or to control the
arguments of these sink functions; and 2) two chains required
specific OS environments and the existence of certain files or
directories to reach the sink functions. These limitations stem
from the unsound nature of fuzz testing; we believe that more
advanced fuzzing optimization and computation resources
will decrease the number of false negatives.

Note that the static approach of Dahse et al. reported 10
false positives due to statically unresolved callsites impeding
their taint data flow analysis [13]. This means that auditors
should check the exploitability of all reports, including these
false positives. By contrast, FUGIO reported no false positives
since it executes a PUT with a generated object and confirms
the exploitability using the exploit oracle.

Table 3: Comparison of exploitable POP chains found by
FUGIO and listed in PHPGGC (WP: WordPress)

Applications
PHPGGC FUGIO

Known
Chains

Detected
Chains

Exploits
New

Exploits

SwiftMailer 5.0.1 1 1 0 1
SwiftMailer 5.1.0 1 1 0 3
Smarty 2 1 1 0
ZendFramework 4 2 1 0
PHPExcel 1.8.1 (w/ WP) 5 5 5 1
PHPExcel 1.8.2 (w/ WP) 5 5 5 1
Dompdf 0.8.0 (w/ WP) 1 1 0 0
Guzzle (w/ WP) 5 4 2 2
WooCommerce 2.6.0 (w/ WP) 1 1 1 0
WooCommerce 3.4.0 (w/ WP) 1 1 1 0
Emailsubscribers (w/ WP) 1 1 1 0
EverestForms (w/ WP) 1 1 1 0
TCPDF 6.3.2 1 1 1 1
Drupal7 2 1 1 1
SwiftMailer 5.4.12 1 1 1 6
SwiftMailer 6.0.0 1 1 0 11
Monolog 1.7.0 2 2 0 1
Monolog 1.18.0 1 1 0 3
Monolog 2.0.0 1 1 0 0
Laminas 1 1 1 1
Yii 1 1 0 0

Total 39 34 22 32

7.3.2 Comparison to PHPGGC

Additional setup. FUGIO terminates fuzzing for a sink when
the fuzzer generates at least one exploit (§5) in order to ex-
plore diverse chains that invoke other sinks. However, PH-
PGGC lists multiple chains that share the same sink. There-
fore, we set the fuzzing process not to terminate before
fuzzing all enumerated chains for the corresponding sink.

Table 3 shows the experimental results on the capability of
FUGIO generating exploit objects in 21 PHPGGC applica-
tions. The second column in the table represents the number
of known exploitable chains that PHPGGC lists. The third
column shows the number of gadget chains that FUGIO iden-
tified, and the fourth column represents the number of gen-
erated exploits for these identified chains. The last column
shows the number of new exploitable chains that FUGIO
found, along with their exploit objects. For the 39 exploitable
chains in PHPGGC, FUGIO reported 34 chains and 22 exploit
objects for these chains. Additionally, FUGIO found 32 new
exploitable chains and their exploit objects, producing a total
of 54 exploitable chains and their exploit objects.

Among a total of 39 chains in PHPGGC, FUGIO identi-
fied 34 POP chains; we analyzed the root causes for the five
false negatives. In ZendFramework, Guzzle, and Drupal7, FU-
GIO did not find four chains because these applications used
reflective calls to connect two gadgets. For example, when
connecting the next gadget from the third gadget in a Zend-

0 50 100 150 200 250 300
Fuzzing Time (s)

0

100

200

300

400

500

600

700

of

 P
OP

 C
ha

in
s

528

286

E
PE+E

(a) Fuzzing timeout

1 2 3 4 5 6 7 8 9 10
Maximum Chain Length

0

100

200

300

400

500

600

of

 P
OP

 C
ha

in
s

566

318

E
PE+E

(b) Maximum chain length

Figure 5: The number of POP chains generated while vary-
ing the fuzzing timeout and maximum chain length (E: ex-
ploitable, PE: probably exploitable).

Framework chain, $view->$helper in the third gadget is
supposed to call Zend_Cache_Frontend_Function::call.
The target callee from this invocation is statically undecid-
able unless abstracting possible string values for $helper.
Note that identifying a target callee from a reflective callsite
remains an unresolved problem in the field of static analy-
sis. Any other static approaches, including Dahse et al. [13],
would have produced the same results. An alternative is to
consider all gadgets from this callsite; however, this policy
results in producing a prohibited number of chains.

The one remaining false negative leverages PHP built-in
gadgets, which are not within our scope; FUGIO focuses on
assembling user-defined gadgets in target applications.

Of the 34 identified chains, FUGIO generated exploit ob-
jects for 22 E chains. The missing chains were due to two
reasons. 1) Nine chains were required to build an exploit
object, several properties of which had array values holding
other objects. Because such objects required FUGIO to assign
to an object property an array value holding an appropriate
index and its corresponding object, FUGIO could not gen-
erate these complex objects within a given fuzzing timeout.
2) For the three remaining chains, FUGIO did not conduct
fuzz testing due to an insufficient time budget for testing other
chains. When conducting fuzz testing on these three chains,
FUGIO produced functional exploits.

We emphasize that FUGIO reported new 32 E chains that
PHPGGC does not list. These results demonstrate that FUGIO
is capable of helping developers find exploitable chains via
AEG, which may have been missed due to difficult property-
oriented programming.

7.4 Hyperparameters
We evaluate the effectiveness of two parameters in FUGIO:
fuzzing timeout and max chain length.
Fuzzing timeout. The fuzzer executes a PUT with generated
inputs until it reports an exploit object. The longer the fuzzer
runs, the more exploits can be generated. However, we set
the fuzzing timeout to test other POP chains within a given
time budget. In this section, we conducted an experiment to

determine how long the fuzzer should run for each POP chain.
To build an evaluation dataset, we sampled POP chains

to fuzz. For each sensitive sink in the 30 applications, we
sampled a maximum of 10 chains of which the last gadget
has this sink; the total of sampled POP chains was 13,582.

For each sampled chain, we ran the fuzzer five times with
a timeout of 300 seconds. The fuzzer generated a total of 408
E chains and 662 (PE+E) chains. For each PE or E chain,
we measured the time that the fuzzer spent generating exploit
objects. We then counted the number of chains for which the
exploit object was generated within a certain specified time,
from 0 to 300 seconds in increments of 10 seconds. We plotted
the results in Figure 5a. We then computed the percentage
of chains for which the fuzzer generated the exploit object
within the specified time out of the total chains for which the
exploit object was generated within 300 seconds. We then set
the fuzzing timeout as the time when the percentage becomes
greater than 70%. For the exploitable chains, the percentage
is 70.1% at 100 seconds, and for the probably exploitable and
exploitable chains, the percentage is 70.2% at 50 seconds.
Therefore, we set the fuzzing timeout to be 100 seconds in all
experiments (§7).
Chain length. When identifying POP chains, the chain iden-
tifier takes the height of a call tree as a parameter (§5.4). The
height means the maximum length of POP chains that FU-
GIO computes. We conducted an experiment to measure the
efficacy of the maximum chain length in reporting exploit
objects.

The method for preparing POP chains for this evaluation is
similar to the aforementioned experiment involving fuzzing
timeout. We set the maximum chain length to a value from 1 to
10 and sampled POP chains for each condition. For example,
if the maximum chain length was set to 3, sampling will be
performed among chains of lengths 1, 2, and 3.

FUGIO conducted five fuzzing campaigns for the sampled
chains, using a timeout of 100 seconds. We computed totals
of E chains and both PE and E chains generated for each
maximum chain length. Figure 5b shows the experimental
results. When changing the maximum chain length from 7 to
8, the number of chains decreases. This is because a fuzzing
timeout budget curtails the fuzzing of all promising chains
to generate exploit objects. Therefore, we set the maximum
chain length to be seven in §7.2.

7.5 Field Test
We evaluated the efficacy of FUGIO in the latest version of
two PHP applications: WordPress 5.4.2 with WooCommerce
and Concrete5 8.5.4. WooCommerce is one of the most popu-
lar WordPress plugins over five million active installations [3].

In WordPress, FUGIO identified 39 POP chains for seven
sensitive sinks and reported one exploitable chain with an
exploit object. The chain starts with WC_Log_Handler_File:
:__destruct and triggers call_user_func with two user-

1 <?php
2 class WC_Log_Handler_File extends WC_Log_Handler {
3 function __destruct () { // 1st Gadget
4 foreach ($this ->handles as $handle) {
5 if (is_resource($handle)) {
6 fclose($handle);
7 } } } }
8 class Requests_Utility_FilteredIterator extends
9 ArrayIterator {

10 public function current () { // 2nd Gadget
11 $value = parent :: current ();
12 $value = call_user_func($this ->callback ,
13 $value); // Sink
14 return $value;
15 } }
16

17 // Generate injection object
18 $obj = new WC_Log_Handler_File;
19 $obj ->setProp('handles ',
20 new Requests_Utility_FilteredIterator(
21 ["args" => "ARGUMENT_OF_CALLBACK"]
22));
23 $obj ->getProp('handles ')
24 ->setProp('callback ', "CALLBACK_TO_BE_CALLED");
25

26 // Trigger POI vulnerability
27 $data = unserialize($input);

Listing 3: The exploitable POP chain of WordPress

controllable arguments. Therefore, the attacker can remotely
invoke any existing functions with her choices of arguments.
For instance, the attacker invokes system with a forged argu-
ment, conducting a shell command injection attack.

In Concrete5, FUGIO found four exploitable chains with
exploit objects among 5,016 chains for 201 sensitive sinks.
Three chains and their exploitable objects enable the attacker
to delete an arbitrary file and the one remaining chain with its
exploit object allows the attacker to invoke any user-defined
functions with her choices of arguments.
Disclosure. We reported the vulnerabilities with exploit ob-
jects to HackerOne [21]. The WordPress team notified that
the vulnerability was reported in September 2018, but has
remained a non-disclosed bug. The Concrete5 team patched
the reported vulnerability and assigned CVE-2021-40102.

7.6 Case Studies

We introduce two E chains and their exploit objects that FU-
GIO reported from WordPress 5.4.2 with WooCommerce and
the latest version of Concrete5.
WordPress with WooCommerce. Listing 3 shows a POP
chain and its exploit object that FUGIO generated when de-
tecting the WordPress vulnerability in §7.5. Its exploitable
POP chain consists of two gadgets, WC_Log_Handler_File::
__destruct and Requests_Utility_FilteredIterator:
:current that invokes the call_user_func sink function.

The current method of a class that inherits ArrayItera-
tor is invoked by any call to foreach on that class’s object.
When the handles property in Line 4 is set to the Requests_-
Utility_FilteredIterator instance, its current method
is invoked.

The fuzzer starts by generating an exploit object for this

1 <?php
2 namespace simplehtmldom_1_5 {
3 class simple_html_dom {
4 function __destruct () { // 1st Gadget
5 $this ->clear();
6 }
7 function clear() { // 2nd Gadget
8 if (isset($this ->parent)) {
9 $this ->parent ->clear();

10 unset($this ->parent);
11 } } } }
12 namespace Stash\Driver {
13 class FileSystem extends AbstractDriver {
14 public function clear($key = null) { // 3rd Gadget
15 $path = $this ->makePath($key);
16 if (is_file($path)) {
17 $return = true;
18 unlink($path); // Sink
19 } }
20 protected function makePath($key = null) {
21 if (!isset($this ->cachePath)) {
22 throw new LogicException ('Error ');
23 }
24 $basePath = $this ->cachePath;
25 $path = $basePath;
26 return $path;
27 } } }
28

29 // Generate injection object
30 $obj = new simplehtmldom_1_5\simple_html_dom;
31 $obj ->setProp('parent ', new Stash\Driver\FileSystem);
32 $obj ->getProp('parent ')
33 ->setProp('cachePath ', "FILE_TO_DELETE");
34

35 // Trigger POI vulnerability
36 $data = is_dir($input);

Listing 4: The exploitable POP chain of Concrete5

chain by picking the first gadget class, WC_Log_Handler_-
File (Line 18). To connect the next gadget, the fuzzer mutates
the value of each property declared in WC_Log_Handler_-
File class. When the handles property in Line 4 is mutated
as Object type and its value is set to Requests_Utility_-
FilteredIterator (Lines 19–22), the current method is
invoked and the fuzzer reaches the sink function call_user_-
func in Line 13. Then, the fuzzer checks whether the mu-
tated property can control the arguments of this sensitive sink.
The first argument of call_user_func is the callback prop-
erty of Requests_Utility_FilteredIterator class, which
should be set to an attacker’s choice of callback (Lines 23–24).
This callback’s argument can be passed through $value, the
second argument of call_user_func, which represents the
value of an item that is currently iterated (Line 21). Since the
attacker is able to control the first argument of this call_-
user_func sink, FUGIO concludes fuzz testing by reporting
this exploit object.
Concrete5. Listing 4 shows a POP chain and its exploit object
that FUGIO reported from Concrete5 (§7.5). The chain length
is three. This chain consists of simple_hmtl_dom::__de-
struct, simple_hmtl_dom::clear, and Filesystem::clear
that invokes the unlink function.

To generate an exploit object for this chain, the fuzzer
picks the first gadget class, simple_hmtl_dom (Line 30).
The first gadget, simple_hmtl_dom::__destruct, uncondi-
tionally calls the second gadget, simple_hmtl_dom::clear.

To connect the third gadget, Filesystem::clear, the condi-
tion in Line 8 should be passed. Thus, the fuzzer will assign a
random value to the parent property. After passing this con-
dition, the fuzzer will encounter a reference error in Line 9
when attempting to invoke clear with the parent property.
Now, the fuzzer assigns a class object that has the clear
method. When the fuzzer selects FileSystem for this class
object, the last gadget will be executed (Line 31). To reach
the sensitive sink, the $path variable should be a file path
(Line 16). Although the fuzzer does not know how to set
$path, it can be properly set while mutating the properties of
FileSystem. The fuzzer attempts to assign a random value
in the cachePath property. By setting cachePath as a file to
delete (Lines 32–33), the fuzzer succeeded in generating an
exploit object for the identified POP chain.

8 Discussion and Limitations

Security threats of deserializing an adversarial object have
existed in not only PHP but also other programming lan-
guages, including Python [31, 41], Java [25, 68], Ruby [33],
Android [48], and .NET [18, 43, 55]. Depending on available
gadgets, an adversary conducts various malicious behaviors.

Each language has its own recommendations for mitigating
this threat. A basic takeaway is not to directly deserialize data
from untrusted sources [46]. The common practice of follow-
ing this recommendation is to sanitize user inputs [17, 46].
Unfortunately, sanitization logic should differ based on target
deserialization methods, which often leads to implementing
incorrect sanitization checks [20, 54].

Another line of recommendation suggests that develop-
ers permit only primitive data types like JSON (e.g., json_-
decode in PHP and json.loads in Python), YAML (e.g.,
SnakeYAML in .NET, and PyYAML in python), or XML (e.g.,
XMLDecoder in JAVA), which do not invoke deserialization
callbacks [46, 53]. Unfortunately, Muñoz and Mirosh [43]
found that many JSON libraries in .NET and Java were ex-
ploitable because they invoked setters to populate object fields.
Other works [16, 55] have reported similar vulnerabilities in
XML and YAML formats.

Whitelisting or blacklisting classes to deserialize is a pas-
sive mitigation method [39]. This approach restricts which
classes are allowed or disallowed to be deserialized by lever-
aging the features supported by each language or by raising
errors when deserializing blacklisted classes. However, this
approach requires a significant engineering cost to specify
allowed classes for (de)serialization [20].

Existing tools have focused on detecting unsafe deserializa-
tion [2, 8, 19, 42]. Burp Suite detects vulnerabilities by send-
ing predefined payloads using [19] for Java and [2] for PHP
applications [15, 51]. SerialDetector identifies unsafe deserial-
ization using a taint dataflow analysis and validates identified
vulnerabilities by generating payloads only for known gadget
chains [55]. They do not assemble available gadgets to iden-

tify promising chains. Several static approaches have focused
on identifying exploitable gadget chains [13, 22]. However,
these studies require a manual examination to remove false
positives. By contrast, FUGIO is a general AEG tool that
identifies promising POP chains and generates exploits.

FUGIO has limitations. FUGIO only assembles gadgets
extracted from target PHP applications, not gadgets from PHP
internal classes. Therefore, it cannot generate exploits using
PHP internal gadgets. Generating such exploits require the
manual effort of explicitly providing internal gadgets in PHP
to FUGIO. For the same reason, FUGIO is unable to leverage
gadgets in PHP binary modules [49] to which PHP source
code is converted

FUGIO is also unable to cover reflective calls of which
target callee is statically undecidable when enumerating POP
chains. Considering all existing gadgets for this target callee
results in a prohibited number of chains to conduct fuzzing
testing. A sophisticated static analysis that computes possi-
ble values for this target callee is one alternative approach
for decreasing false negatives. Due to the nature of fuzz test-
ing [38], finding exploits may require multiple campaigns or
longer timeouts when a target chain has a large number of
conditions.

9 Related Work

Finding vulnerabilities in web applications. There is a vast
volume of studies on finding vulnerabilities in PHP applica-
tions. Huang et al. introduced WebSSARI to detect insecure
information flow using a typestate-based static analysis al-
gorithm [29, 30]. Xie et al. presented a three-tier analysis
for capturing information at the intra-block, intra-procedural,
and inter-procedural levels [66]. Pixy performed additional
alias and literal analysis to provide more comprehensive and
precise results [35, 36]. Son et al. presented static analysis
techniques that identify semantic bugs [57] and remediate
access-control bugs [56]. Backes et al. proposed an inter-
procedural analysis technique based on code property graphs
that represent a program’s syntax, control flow, and data de-
pendencies in a single graph structure [6].
AEG. AEG has been used as a verification process that auto-
matically checks whether the reported bug is security-critical.
It contributes to eliminating false positives and helps develop-
ers prioritize bugs to patch [5]. In binary applications, AEG
approaches primarily generate exploits by solving constraints
that are combined 1) path constraints that a user input causes
a given program to crash and 2) constraints for executing
shellcode [4, 11, 23, 26, 27, 47, 65, 67].

AEG techniques are also applied in the analysis of web
applications. Balzarotti et al. introduced Saner for validat-
ing the sanitization process by identifying a suspicious pro-
gram path from input sources to sensitive sinks using static
analysis and simulating the program with inputs contain-
ing attack strings using dynamic analysis [7]. Kieyzun et al.

and Huang et al. proposed AEG approaches based on con-
colic execution [28, 37]. Alhuzali et al. performed additional
static analysis to construct a sequence of malicious HTTP re-
quests that direct the execution of the program to a vulnerable
sink [1].

Many symbolic execution studies have attempted to vali-
date various types of vulnerabilities, such as cross-site script-
ing, SQL injection, or file inclusion, but no prior study has
addressed generating exploits for POI vulnerabilities. Fur-
thermore, those constraint solving approaches require consid-
erable engineering efforts due to the necessity of modeling
thousands of built-in functions. We chose to tackle this prob-
lem via fuzzing instead of symbolic execution.

10 Conclusion

We propose FUGIO, the first AEG tool for POI vulnerabil-
ities. We present a series of static analyses, dynamic anal-
yses, and fuzzing techniques to compute POP chains and
generate exploits. FUGIO reported 68 exploit objects from 30
real-world PHP applications with known POI vulnerabilities.
FUGIO also reported two previously unknown POI vulner-
abilities with functional exploiting objects, demonstrating
the efficacy of FUGIO in significantly alleviating laborious
property-oriented programming burdens.

Acknowledgment

We thank the anonymous reviewers and our shepherd, Xinyu
Xing, for their helpful comments and suggestions to improve
the paper. This work was supported by National Research
Foundation of Korea (NRF) Grant No.: 2020R1C1C1009031
and partially supported by a Google Faculty Fellowship.

References

[1] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and
V.N. Venkatakrishnan. NAVEX: Precise and scalable
exploit generation for dynamic web applications. In
Proceedings of the USENIX Security Symposium, pages
377–392, 2018.

[2] Ambionics Security. PHPGGC: PHP generic gadget
chains. https://github.com/ambionics/phpggc.

[3] Automattic. WooCommerce WordPress plugin. https:
//wordpress.org/plugins/woocommerce/.

[4] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao,
and David Brumley. AEG: Automatic exploit generation.
In Proceedings of the Network and Distributed System
Security Symposium, 2011.

[5] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert,
Edward J Schwartz, Maverick Woo, and David Brumley.
Automatic exploit generation. Communications of the
ACM, 57(2):74–84, 2014.

[6] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben
Stock, and Fabian Yamaguchi. Efficient and flexible dis-
covery of PHP application vulnerabilities. In Proceed-
ings of the IEEE Symposium on Security and Privacy,
pages 334–349, 2017.

[7] Davide Balzarotti, Marco Cova, Vika Felmetsger, Ne-
nad Jovanovic, Engin Kirda, Christopher Kruegel, and
Giovanni Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In
Proceedings of the IEEE Symposium on Security and
Privacy, pages 387–401, 2008.

[8] Moritz Bechler. Java Unmarshaller Security. https:
//github.com/mbechler/marshalsec.

[9] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and
Zhenkai Liang. Jump-oriented programming: a new
class of code-reuse attack. In Proceedings of the ACM
Asia Conference on Computer and Communications Se-
curity, pages 30–40, 2011.

[10] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing.
In Proceedings of the ACM Conference on Computer
and Communications Security, pages 2329–2344, 2017.

[11] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert,
and David Brumley. Unleashing mayhem on binary
code. In Proceedings of the IEEE Symposium on Secu-
rity and Privacy, pages 380–394, 2012.

[12] Johannes Dahse. Joomla! 3.0.2 POI (CVE-2013-1453)
– Gadget Chains. https://websec.wordpress.com/
2014/10/03/joomla-3-0-2-poi-cve-2013-1453-
gadget-chains/, 2014.

[13] Johannes Dahse, Nikola Kreini, and Thorsten Holz.
Code reuse attacks in PHP: Automated POP chain gen-
eration. In Proceedings of the ACM Conference on
Computer and Communications Security, pages 42–53,
2014.

[14] Dmitry Zenovich. Runkit (official PECL PHP runkit
extension). https://github.com/zenovich/runkit.

[15] Federico Dotta. Java Deserialization Scanner (Burp
Suite plugin). https://github.com/federicodotta/
Java-Deserialization-Scanner.

[16] OWASP Stammtisch Dresden. JSON Deserialization Ex-
ploitation. https://owasp.org/www-pdf-archive/
Marshaller_Deserialization_Attacks.pdf.pdf.

https://github.com/ambionics/phpggc
https://wordpress.org/plugins/woocommerce/
https://wordpress.org/plugins/woocommerce/
https://github.com/mbechler/marshalsec
https://github.com/mbechler/marshalsec
https://websec.wordpress.com/2014/10/03/joomla-3-0-2-poi-cve-2013-1453-gadget-chains/
https://websec.wordpress.com/2014/10/03/joomla-3-0-2-poi-cve-2013-1453-gadget-chains/
https://websec.wordpress.com/2014/10/03/joomla-3-0-2-poi-cve-2013-1453-gadget-chains/
https://github.com/zenovich/runkit
https://github.com/federicodotta/Java-Deserialization-Scanner
https://github.com/federicodotta/Java-Deserialization-Scanner
https://owasp.org/www-pdf-archive/Marshaller_Deserialization_Attacks.pdf.pdf
https://owasp.org/www-pdf-archive/Marshaller_Deserialization_Attacks.pdf.pdf

[17] Sondre Forland Fingann. Java deserialization vulnera-
bilities. Master’s thesis, 2020.

[18] James Forshaw. Are you my type? breaking .NET
through serialization. In Proceedings of the Black Hat
USA, 2012.

[19] Christopher Frohoff. ysoserial. https://github.com/
frohoff/ysoserial.

[20] Apostolos Giannakidis. The Deserialization Prob-
lem: What is the Deserialization vulnerability and
what are the challenges in providing a solution.
https://www.waratek.com/wp-content/uploads/
2019/06/WP-Deserialization-20190610.pdf.

[21] HackerOne. Hacker-powered security testing & bug
bounty. https://www.hackerone.com/.

[22] Ian Haken. Automated discovery of deserialization gad-
get chains. In Proceedings of the Black Hat USA, 2018.

[23] Sean Heelan. Automatic generation of control flow hi-
jacking exploits for software vulnerabilities. PhD thesis,
University of Oxford, 2009.

[24] Mark Hills, Paul Klint, and Jurgen Vinju. An empirical
study of PHP feature usage: a static analysis perspective.
In Proceedings of the ACM International Symposium on
Software Testing and Analysis, pages 325–335, 2013.

[25] Philipp Holzinger, Stefan Triller, Alexandre Bartel, and
Eric Bodden. An in-depth study of more than ten years
of java exploitation. In Proceedings of the ACM Confer-
ence on Computer and Communications Security, pages
779–790, 2016.

[26] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek
Saxena, and Zhenkai Liang. Automatic generation of
data-oriented exploits. In Proceedings of the USENIX
Security Symposium, pages 177–192, 2015.

[27] Shih-Kun Huang, Min-Hsiang Huang, Po-Yen Huang,
Chung-Wei Lai, Han-Lin Lu, and Wai-Meng Leong.
CRAX: Software crash analysis for automatic exploit
generation by modeling attacks as symbolic continua-
tions. In IEEE International Conference on Software
Security and Reliability, 2012.

[28] Shih-Kun Huang, Han-Lin Lu, Wai-Meng Leong, and
Huan Liu. CRAXweb: Automatic web application test-
ing and attack generation. In IEEE International Con-
ference on Software Security and Reliability, 2013.

[29] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung
Tsai, Der-Tsai Lee, and Sy-Yen Kuo. Securing web
application code by static analysis and runtime protec-
tion. In Proceedings of the International Conference on
World Wide Web, pages 40–52, 2004.

[30] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung
Tsai, Der-Tsai Lee, and Sy-Yen Kuo. Verifying web
applications using bounded model checking. In Inter-
national Conference on Dependable Systems and Net-
works, pages 199–208, 2004.

[31] Insomnia Security. Deserialization, what could go
wrong? https://insomniasec.com/cdn-assets/
Deserialization_-__What_Could_Go_Wrong.pdf.

[32] Invicti. Acunetix. https://www.acunetix.com/.

[33] Luke Jahnke. Ruby 2.X Universal RCE Deserialization
Gadget Chain. https://www.elttam.com/blog/ruby-
deserialization/#content.

[34] Joe Watkins. uopz: User operations for zend. https:
//github.com/krakjoe/uopz.

[35] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda.
Pixy: a static analysis tool for detecting web application
vulnerabilities. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 258–263, 2006.

[36] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda.
Precise alias analysis for static detection of web applica-
tion vulnerabilities. In Proceedings of the ACM SIGSAC
Workshop on Programming Languages and Analysis for
Security, pages 27–36, 2006.

[37] Adam Kieyzun, Philip J Guo, Karthick Jayaraman, and
Michael D Ernst. Automatic creation of SQL injection
and cross-site scripting attacks. In Proceedings of the In-
ternational Conference on Software Engineering, pages
199–209, 2009.

[38] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the ACM Conference on Computer and Commu-
nications Security, pages 2123–2138, 2018.

[39] Will Klieber. Prevent deserialization of untrusted data.
https://wiki.sei.cmu.edu/confluence/display/
java/SER12-J.+Prevent+deserialization+of+
untrusted+data.

[40] Taekjin Lee, Seongil Wi, Suyoung Lee, and Sooel Son.
FUSE: Finding file upload bugs via penetration testing.
In Proceedings of the Network and Distributed System
Security Symposium, 2020.

[41] Dan Lousqui. Explaining and exploiting deserialization
vulnerability with python. https://dan.lousqui.fr/
explaining-and-exploiting-deserialization-
vulnerability-with-python-en.html.

[42] Alvaro Muñoz. ysoserial.net. https://github.com/
pwntester/ysoserial.net.

https://github.com/frohoff/ysoserial
https://github.com/frohoff/ysoserial
https://www.waratek.com/wp-content/uploads/2019/06/WP-Deserialization-20190610.pdf
https://www.waratek.com/wp-content/uploads/2019/06/WP-Deserialization-20190610.pdf
https://www.hackerone.com/
https://insomniasec.com/cdn-assets/Deserialization_-__What_Could_Go_Wrong.pdf
https://insomniasec.com/cdn-assets/Deserialization_-__What_Could_Go_Wrong.pdf
https://www.acunetix.com/
https://www.elttam.com/blog/ruby-deserialization/#content
https://www.elttam.com/blog/ruby-deserialization/#content
https://github.com/krakjoe/uopz
https://github.com/krakjoe/uopz
https://wiki.sei.cmu.edu/confluence/display/java/SER12-J.+Prevent+deserialization+of+untrusted+data
https://wiki.sei.cmu.edu/confluence/display/java/SER12-J.+Prevent+deserialization+of+untrusted+data
https://wiki.sei.cmu.edu/confluence/display/java/SER12-J.+Prevent+deserialization+of+untrusted+data
https://dan.lousqui.fr/explaining-and-exploiting-deserialization-vulnerability-with-python-en.html
https://dan.lousqui.fr/explaining-and-exploiting-deserialization-vulnerability-with-python-en.html
https://dan.lousqui.fr/explaining-and-exploiting-deserialization-vulnerability-with-python-en.html
https://github.com/pwntester/ysoserial.net
https://github.com/pwntester/ysoserial.net

[43] Alvaro Muñoz and Oleksandr Mirosh. Friday the 13th
json attacks. In Proceedings of the Black Hat USA,
2017.

[44] Nergal. The advanced return-into-lib(c) exploits: PaX
case study. http://phrack.org/issues/58/4.html.

[45] nikic. PHP-parser. https://github.com/nikic/PHP-
Parser.

[46] OWASP. OWASP Top Ten 2017 A8: Insecure Dese-
rialization. https://owasp.org/www-project-top-
ten/2017/A8_2017-Insecure_Deserialization.

[47] Vartan A Padaryan, VV Kaushan, and AN Fedotov. Au-
tomated exploit generation for stack buffer overflow
vulnerabilities. Programming and Computer Software,
41(6):373–380, 2015.

[48] Or Peles and Roee Hay. One class to rule them all: 0-day
deserialization vulnerabilities in android. In Proceed-
ings of the USENIX Workshop on Offensive Technolo-
gies, 2015.

[49] Phalcon. Zephir. https://github.com/zephir-lang/
zephir.

[50] PortSwigger. Burp Suite. https://portswigger.net/
burp.

[51] PortSwigger. PHP object injection slinger. https://
github.com/portswigger/poi-slinger.

[52] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Ste-
fan Savage. Return-oriented programming: Systems,
languages, and applications. ACM Transactions on In-
formation and System Security, 15(1):1–34, 2012.

[53] Ruby-Doc. Marshal. https://ruby-doc.org/core-
2.6.3/Marshal.html.

[54] Sam Sanoop. SuiteCRM: PHAR deserializa-
tion vulnerability to code execution. https://
snyk.io/blog/suitecrm-phar-deserialization-
vulnerability-to-code-execution/.

[55] Mikhail Shcherbakov and Musard Balliu. SerialDetec-
tor: Principled and practical exploration of object injec-
tion vulnerabilities for the web. In Proceedings of the
Network and Distributed System Security Symposium,
2021.

[56] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov.
Fix Me Up: Repairing access-control bugs in web appli-
cations. In Proceedings of the Network and Distributed
System Security Symposium, 2013.

[57] Sooel Son and Vitaly Shmatikov. SAFERPHP: Finding
semantic vulnerabilities in php applications. In Proceed-
ings of the ACM SIGSAC Workshop on Programming
Languages and Analysis for Security, 2011.

[58] SonarSource. PHP Code Quality and Code Security.
https://www.sonarsource.com/php/.

[59] The PHP Group. PHP 5 changelog version 5.4.24.
https://www.php.net/ChangeLog-5.php#5.4.24.

[60] The PHP Group. PHP 5 changelog version 5.5.8. https:
//www.php.net/ChangeLog-5.php#5.5.8.

[61] The PHP Group. PHP commit: add optional
parameter to pass libxml document load options.
https://github.com/php/php-src/commit/
cb72e23c147c5a93161c24428762b434dc58524d.

[62] The PHP Group. Bug 62789: Autoloaders are invoked
with invalid class names. https://bugs.php.net/
bug.php?id=62789, 2012.

[63] VMware. Rabbitmq. https://www.rabbitmq.com/.

[64] WPScan. WooCommerce Authenticated Phar De-
serialization. https://wpscan.com/vulnerability/
9567f575-529d-4d66-980c-73cba6726673.

[65] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui
Gong, and Wei Zou. FUZE: Towards facilitating exploit
generation for kernel use-after-free vulnerabilities. In
Proceedings of the USENIX Security Symposium, pages
781–797, 2018.

[66] Yichen Xie and Alex Aiken. Static detection of security
vulnerabilities in scripting languages. In Proceedings of
the USENIX Security Symposium, pages 179–192, 2006.

[67] Luhang Xu, Weixi Jia, Wei Dong, and Yongjun Li. Au-
tomatic exploit generation for buffer overflow vulnera-
bilities. In Proceedings of the IEEE International Con-
ference on Software Quality, Reliability and Security
Companion, pages 463–468, 2018.

[68] Yang Zhang, Yongtao Wang, Keyi Li, and Kunzhe Chai.
New exploit technique in Java deserialization attack. In
Proceedings of the Black Hat EU, 2019.

11 Appendix

11.1 Target Sensitive Sink Functions
We list the sink functions that FUGIO considers for each web
attack as follows:

• File deletion: unlink, rmdir
• File creation: fopen, fwrite, fputs, mkdir, copy, link,

symlink, file_put_contents
• File modification: chmod, chown, chgrp, touch
• Shell command injection: popen, system, passthru,

exec, proc_open, shell_exec, escapeshellcmd
• Remote code execution: eval, mail, call_user_func,

call_user_func_array, preg_replace

http://phrack.org/issues/58/4.html
https://github.com/nikic/PHP-Parser
https://github.com/nikic/PHP-Parser
https://owasp.org/www-project-top-ten/2017/A8_2017-Insecure_Deserialization
https://owasp.org/www-project-top-ten/2017/A8_2017-Insecure_Deserialization
https://github.com/zephir-lang/zephir
https://github.com/zephir-lang/zephir
https://portswigger.net/burp
https://portswigger.net/burp
https://github.com/portswigger/poi-slinger
https://github.com/portswigger/poi-slinger
https://ruby-doc.org/core-2.6.3/Marshal.html
https://ruby-doc.org/core-2.6.3/Marshal.html
https://snyk.io/blog/suitecrm-phar-deserialization-vulnerability-to-code-execution/
https://snyk.io/blog/suitecrm-phar-deserialization-vulnerability-to-code-execution/
https://snyk.io/blog/suitecrm-phar-deserialization-vulnerability-to-code-execution/
https://www.sonarsource.com/php/
https://www.php.net/ChangeLog-5.php#5.4.24
https://www.php.net/ChangeLog-5.php#5.5.8
https://www.php.net/ChangeLog-5.php#5.5.8
https://github.com/php/php-src/commit/cb72e23c147c5a93161c24428762b434dc58524d
https://github.com/php/php-src/commit/cb72e23c147c5a93161c24428762b434dc58524d
https://bugs.php.net/bug.php?id=62789
https://bugs.php.net/bug.php?id=62789
https://www.rabbitmq.com/
https://wpscan.com/vulnerability/9567f575-529d-4d66-980c-73cba6726673
https://wpscan.com/vulnerability/9567f575-529d-4d66-980c-73cba6726673

	Introduction
	Background
	PHP Object Injection

	Motivation and Challenges
	Overview
	Design
	POI Detector
	Static Analyzer
	Dynamic Analyzer
	POP Chain Identifier
	POP Chain Identification
	PUT Generation

	POP Chain Fuzzer

	FUGIO Implementation
	Evaluation
	Experimental Setup
	Performance of FUGIO
	Comparison to State-of-the-Art Tools
	Comparison to Dahse et al.
	Comparison to PHPGGC

	Hyperparameters
	Field Test
	Case Studies

	Discussion and Limitations
	Related Work
	Conclusion
	Appendix
	Target Sensitive Sink Functions

