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Abstract

OS fuzzers primarily test the system-call interface be-

tween the OS kernel and user-level applications for secu-

rity vulnerabilities. The effectiveness of all existing evo-

lutionary OS fuzzers depends heavily on the quality and

diversity of their seed system call sequences. However,

generating good seeds for OS fuzzing is a hard problem

as the behavior of each system call depends heavily on

the OS kernel state created by the previously executed

system calls. Therefore, popular evolutionary OS fuzzers

often rely on hand-coded rules for generating valid seed

sequences of system calls that can bootstrap the fuzzing

process. Unfortunately, this approach severely restricts

the diversity of the seed system call sequences and there-

fore limits the effectiveness of the fuzzers.

In this paper, we develop MoonShine, a novel strat-

egy for distilling seeds for OS fuzzers from system call

traces of real-world programs while still preserving the

dependencies across the system calls. MoonShine lever-

ages light-weight static analysis for efficiently detecting

dependencies across different system calls.

We designed and implemented MoonShine as an

extension to Syzkaller, a state-of-the-art evolutionary

fuzzer for the Linux kernel. Starting from traces con-

taining 2.8 million system calls gathered from 3,220

real-world programs, MoonShine distilled down to just

over 14,000 calls while preserving 86% of the original

code coverage. Using these distilled seed system call

sequences, MoonShine was able to improve Syzkaller’s

achieved code coverage for the Linux kernel by 13% on

average. MoonShine also found 17 new vulnerabilities

in the Linux kernel that were not found by Syzkaller.

1 Introduction

Security vulnerabilities like buffer overflow and use-

after-free inside operating system (OS) kernels are par-

ticularly dangerous as they might allow an attacker to

completely compromise a target system. OS fuzzing is

a popular technique for automatically discovering and

fixing such critical security vulnerabilities. Most OS

fuzzers focus primarily on testing the system-call inter-

face as it is one of the main points of interaction between

the OS kernel and user-level programs. Moreover, any

bug in system call implementations might allow an un-

privileged user-level process to completely compromise

the system.

OS fuzzers usually start with a set of synthetic seed

programs, i.e., a sequence of system calls, and itera-

tively mutate their arguments/orderings using evolution-

ary guidance to maximize the achieved code coverage.

It is well-known that the performance of evolutionary

fuzzers depend critically on the quality and diversity of

their seeds [31, 39]. Ideally, the synthetic seed programs

for OS fuzzers should each contain a small number of

system calls that exercise diverse functionality in the OS

kernel.

However, the behavior of each system call heavily de-

pends on the shared kernel state created by the previous

system calls, and any system call invoked by the seed

programs without the correct kernel state will only trig-

ger the shallow error handling code without reaching the

core logic. Therefore, to reach deeper into a system call

logic, the corresponding seed program must correctly set

up the kernel state as expected by the system call. As

user programs can only read/write kernel state through

other system calls, essentially the seed programs must

identify the dependent system calls and invoke them in

a certain system-call-specific order. For example, a seed

program using the read system call must ensure that the

input file descriptor is already in an "opened" state with

read permissions using the open system call.

Existing OS fuzzers [11, 37] rely on thousands of

hand-coded rules to capture these dependencies and use

them to generate synthetic seed programs. However, this

approach requires significant manual work and does not

scale well to achieve high code coverage. A promising

alternative is to gather system call traces from diverse ex-

isting programs and use them to generate synthetic seed

programs. This is because real programs are required to

satisfy these dependencies in order to function correctly.

However, the system call traces of real programs are

large and often repetitive, e.g., executing calls in a loop.

Therefore, they are not suitable for direct use by OS

fuzzers as they will significantly slow down the effi-

ciency (i.e., execution rate) of the fuzzers. The system

call traces must be distilled while maintaining the correct

dependencies between the system calls as mentioned ear-

lier to ensure that their achieved code coverage does not



go down significantly after distillation. We call this pro-

cess seed distillation for OS fuzzers. This is a hard prob-

lem as any simple strategy that selects the system calls

individually without considering their dependencies is

unlikely to improve coverage of the fuzzing process. For

example, we find that randomly selecting system calls

from existing program traces do not result in any cover-

age improvement over hand-coded rules (see Section 5.4

for more details).

In this paper, we address the aforementioned seed dis-

tillation problem by designing and implementing Moon-

Shine, a framework that automatically generates seed

programs for OS fuzzers by collecting and distilling sys-

tem call traces from existing programs. It distills sys-

tem call traces while still maintaining the dependencies

across the system calls to maximize coverage. Moon-

Shine first executes a set a real-world programs and cap-

tures their system call traces along with the coverage

achieved by each call. Next, it greedily selects the calls

that contribute the most new coverage and for each such

call, identifies all its dependencies using lightweight

static analysis and groups them into seed programs.

We demonstrate that MoonShine is able to distill a

trace consisting of a total of 2.8 million system calls

gathered from 3,220 real programs down to just over

14,000 calls while still maintaining 86% of their origi-

nal coverage over the Linux kernel. We also demonstrate

that our distilled seeds help Syzkaller, a state-of-the-art

system call fuzzer, to improve its coverage achieved for

the Linux kernel by 13% over using manual rules for gen-

erating seeds. Finally, MoonShine’s approach led to the

discovery of 17 new vulnerabilities in Linux kernel, none

of which were found by Syzkaller while using its manual

rule-based seeds.

In summary, we make the following contributions:

• We introduce the concept of seed distillation, i.e.,

distilling traces from real world programs while

maintaining both the system call dependencies and

achieved code coverage as a means of improving

OS fuzzers.

• We present an efficient seed distillation algorithm

for OS fuzzers using lightweight static analysis.

• We designed and implemented our approach as part

of MoonShine and demonstrated its effectiveness by

integrating it with Syzkaller, a state-of-the-art OS

fuzzer. MoonShine improved Syzkaller’s test cov-

erage for the Linux kernel by 13% and discovered

17 new previously-undisclosed vulnerabilities in the

Linux kernel.

The rest of the paper is organized as follows. Section 2

provides an overview of our techniques along with a mo-

tivating example. Section 3 describes our methodology.

We discuss the design and implementation of MoonShine

in Section 4 and present the results of our evaluation in

Section 5. Finally, we describe related work in Section 8

and conclude in Section 10.

2 Overview

2.1 Problem Description

Most existing OS fuzzers use thousands of hand-coded

rules to generate seed system call sequences with valid

dependencies. As such an approach is fundamentally

unscalable, our goal in this paper is to design and imple-

ment a technique for automatically distilling system calls

from traces of real existing programs while maintaining

the corresponding dependencies. However, system call

traces of existing programs can be arbitrarily large and

repetitive, and as a result will significantly slow down

the performance of an OS fuzzer. Therefore, in this pa-

per, we focus on distilling a small number of system calls

from the traces while maintaining their dependencies and

preserving most of the coverage achieved by the com-

plete traces.

Existing test case minimization strategies like afl-

tmin [12] try to dynamically remove parts of an input

while ensuring that coverage does not decrease. How-

ever, such strategies do not scale well to program traces

containing even a modest number of system calls due to

their complex dependencies. For example, consider the

left-hand trace shown in Figure 1. A dynamic test min-

imization strategy similar to that of afl-tmin might take

up to 256 iterations for finding the minimal distilled se-

quence of calls.

To avoid the issues described above, we use

lightweight static analysis to identify the potential depen-

dencies between system calls and apply a greedy strategy

to distill the system calls (along with their dependen-

cies) that contribute significantly towards the coverage

achieved by the undistilled trace. Before describing our

approach in detail, we define below two different types

of dependencies that we must deal with during the distil-

lation process.

Explicit Dependencies. We define a system call ci

to be explicitly dependent on another system call c j if

c j produces a result that ci uses as an input argument.

For example, in Figure 1, the open call in line 2 is an

explicit dependency of the mmap call in line 3 because

open returns a file descriptor (3) that is used by mmap as

its fourth argument. If open did not execute, then mmap

would not return successfully, which means it would take

a different execution path in the kernel.

Implicit Dependencies. A system call ci is defined to

be implicitly dependent on c j if the execution of c j af-

fects the execution of ci through some shared data struc-



1: 0 = mlockall(MCL_FUTURE)

2: 3 = open("tmpfile.txt, O_RDWR, 0600)

3: 0x7b43f2000 = mmap(NULL, PAGE_SIZE,...,3,0)

4: 0x7b43f3000 = mmap(NULL, PAGE_SIZE,...,3,0)

5: 0x7b43f4000 = mmap(NULL, 2*PAGE_SIZE,...,3,0)

6: -EBUSY = msync(0x7b43f2000,...,MS_INVALIDATE)

7: 5 = write(1, "hello", 5)

8. 3 = write(1, "abc", 3)

Implicit Dependency

Explicit Dependency

1. mlockall(...)

2. open(...)

3. mmap(...)

6. msync(...)

7. write(...)

Figure 1: An example of seed distillation by MoonShine. On the left is an example trace before distillation and on the right are the

calls MoonShine identified as contributing the most new coverage along with their dependencies. The line numbers on the right

indicate their position in the original trace.

ture in the kernel, even though there is no overlap be-

tween c j’s output and ci’s input arguments. In Figure

1, the mlockall call is an implicit dependency of the

msync call. The mlockall call instructs the kernel to

lock all memory pages that are mapped into the process’s

address space to avoid swapping. When msync is called

with the flag MS_INVALIDATE on an mmap’d page to in-

validate all changes, msync fails with an -EBUSY error

because the pages were locked in memory. In this case,

the mlockall call affects the behavior of msync through

the vma->vm_flags as shown in Figure 2 even though

these calls do not share any arguments.

2.2 Motivating Example

MoonShine detects explicit and implicit dependencies by

statically analyzing the system call traces and the kernel

sources. We outline how MoonShine performs seed dis-

tillation by leveraging these dependencies below.

For distillation, MoonShine first identifies the calls

that contribute the most unique code coverage. Let us

assume that the mmap, msync, and write calls in lines 3,

6 and 7 respectively contribute most to the code cover-

age in this trace. For each such call, MoonShine uses

static analysis on the trace to identify the explicit depen-

dencies. For the mmap, MoonShine iterates over all its

arguments and looks for any upstream calls in the trace

where the argument was produced by a system call. In

this case, the only argument that matches the result of an

upstream call is the fourth argument: the file descriptor 3

matches the result of open in line 2. MoonShine applies

the same procedure for the msync call and it finds that

the first argument of msync matches the result of mmap in

line 3 and so mmap is marked as an explicit dependency

of msync. When MoonShine applies the same procedure

to the write it finds that it does not have explicit depen-

dencies.

Next, MoonShine uses static analysis on the kernel

source code to identify any upstream calls that may

be implicit dependencies of msync, mmap, and write.

For msync, MoonShine discovers that mlockall’s exe-

cution can impact the coverage achieved by msync. It

observes that msync checks the value of the struct

vma_struct->vma_flags field and mlockall writes to

the same field. Figure 2 shows the relevant code from

the implementations of mmap and msync in the ker-

nel. mlockall calls mlock_fixup which in turn sets the

vma_flags field for every struct vma_struct in the

calling process (line 7). In this case, lock on line 6 is true

and newflags contains the bitflag VM_LOCKED. Without

the mlockall, the vm_flag field would not be set, and

msync would not return -EBUSY, as highlighted on line 5.

MoonShine applies the same process to mmap and finds

that mlockall is also an implicit dependency of mmap. In

the case of the write, MoonShine again finds that it has

no upstream dependencies.

Finally, MoonShine recursively identifies all the de-

pendencies of the system calls that are identified in the

last two steps described above. In this example, Moon-

Shine finds that the open and mlockall calls have no de-

pendencies in the trace. Therefore, MoonShine returns

all the dependencies of write, mmap and msync as the

distilled trace shown on the right in Figure 1.

3 Approach

We present MoonShine’s core seed distillation logic in

Algorithm 1. Starting from a list of system calls S

gathered from the program traces, MoonShine sorts the

system calls by their coverage from largest to smallest

(line 8). For each call in the list, MoonShine captures

both the explicit (line 11) and implicit dependencies (line

12). The dependencies, along with the system calls, are

merged (line 14) so that their ordering in the distilled

trace matches their ordering in the original trace. This

grouping of distilled calls is added to our collection of

seeds S (line 16) for OS fuzzing.

In Algorithm 1, we demonstrate that MoonShine con-

structs seeds from the calls that contribute the most new

coverage and captures those calls’ implicit and explicit

dependencies. In this section we describe how Moon-



mlockall

1: int mlockall (...) {

2: ...

3: void mlock_fixup_lock (...)

4: {

5: ...

6: if (lock)

7: vma->vm_flags = newflags;

8: }

msync

1: int msync (...)

2: {

3: ...

4: if ((flags & MS_INVALIDATE) &&

5: (vma->vm_flags & VM_LOCKED) {

6: error = -EBUSY;

7: }

8: }

Figure 2: This listing shows an implicit dependency between msync and mlockall. The conditional of msync on the right depends

on the value of the struct vma_struct which is set by mlockall on the left.

Algorithm 1 MoonShine’s seed distillation algorithm for

distilling trace S

1: procedure SEEDSELECTION(S)

2: S = /0

3: C= /0

4: i = 1

5: for s ∈ S do

6: cov[i] = Coverage(s)
7: i = i+1

8: sort(cov) // Sort calls by coverage

9: for i = 1 → |S| do

10: if cov[i]\C 6= /0 then

11: expl_deps = GET_EXPLICIT(cov[i])
12: impl_deps = GET_IMPLICIT(cov[i])
13: deps = expl_deps∪ impl_deps

14: seed = MERGE(deps∪ cov[i])
15: C∪= cov[i]
16: S = S ∪ seed

17: return I

Algorithm 2 Pseudocode for capturing explicit and

implicit dependencies.

1: procedure GET_EXPLICIT(c)

2: deps = /0

3: T = TRACE_OF(T)

4: DG = build_dependency_graph(T )
5: for arg in c.args do

6: expl_deps = DG.neighbors

7: for expl_dep in expl_deps do

8: deps ∪= GET_IMPLICIT(expl_dep)
9: deps ∪= {expl_dep}

10: return deps

11: procedure GET_IMPLICIT(c)

12: impl_deps = /0

13: for uc in upstream_calls(c) do

14: if uc.WRITE_deps∩ c.READ_deps then

15: impl_deps ∪= GET_EXPLICIT(uc)
16: impl_deps ∪= {uc}

17: return deps

Shine captures those dependencies.

Explicit Dependencies. For each trace, MoonShine

builds a dependency graph that consists of two types of

nodes: results and arguments. Result nodes correspond

to values returned by system calls. The result nodes store

the following information: 1) value returned, 2) return

type (pointer, int, or semantic) and 3) the call in the trace

which produced the result. Argument nodes similarly

store the value of the argument, the type, and the call

to which the argument belongs. An edge from argument

node a to result node r indicates that a’s value relies on

the call which produced r. MoonShine builds the graph

as it parses the trace. For the returned value of each call,

it constructs the corresponding result node and adds it to

the graph. Afterwards, it places the result node in a re-

sult map that is indexed using the composite key of (type,

value). For each argument in a call, MoonShine checks

the result cache for an entry. A hit indicates the existence

of at least one system call whose result has the same type

and value as the current argument. MoonShine iterates

over all the result nodes stored in the map for the spe-

cific type and value and adds one edge from the argument

node to each result node in the graph.

Once the argument dependency graph is constructed,

MoonShine identifies explicit dependencies for a given

call by enumerating the call’s list of arguments and for

each argument MoonShine visits the corresponding ar-

gument node in the dependency graph. For every edge

from the argument node to a result node, MoonShine

marks the calls that produced the result node as an ex-

plicit dependency. After traversing the entire list, Moon-

Shine returns all calls marked as explicit dependencies.

Implicit Dependencies. In order for the coverage

achieved by a system call ci to be affected by the prior ex-

ecution of system call c j, c j’s execution must influence

the evaluation of a conditional in ci’s execution. This

is because the only values that can be used to evaluate

a conditional are those that are passed as arguments or

those existing in the kernel. Therefore, if a call ci is an

implicit dependency of call c j then c j must have a condi-
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Figure 3: MoonShine workflow

tional in its control flow which depends on a global value

v that is modified by ci.

This gives rise to the following definitions. A global

variable v is a read dependency of a system call c if c

reads v in a conditional. Similarly, a global variable v is

a write dependency of a system call c if c ever writes to

v. As such, a call ca is an implicit dependency of cb if

the intersection of ca’s write dependencies and cb’s read

dependencies is nonempty.

MoonShine is able to identify the collection of read

and write dependencies by performing control flow anal-

ysis on the target kernel. For a given system call, the flow

analysis starts at the function definition. At each con-

ditional, MoonShine checks all components of the cor-

responding expression and records all global variables

read. If MoonShine encounters an assignment expres-

sion or unary assignment expression containing a global

variable, it marks that global variable as a write depen-

dency.

Note that for a given trace this approach may overes-

timate or underestimate the number of implicit depen-

dencies for a given call. It may overestimate because

the condition for which the global variable is a read de-

pendency may only be taken for specific values. Calls

that write to that field may not necessarily write the re-

quired values of the conditional. This approach can un-

derestimate the dependencies if the variable is aliased

and that aliased variable is used in the conditional in-

stead. This method can be further refined through "fine-

grained" data flow analysis, but this comes at the cost of

efficiency during distillation.

The pseudocode for these routines is described in Al-

gorithm 2. Note that the implicit and explicit routines

recursively call each other. This is because every up-

stream dependency must have its dependencies captured

as well. This recursive procedure will always terminate

because in each iteration the target call gets closer to the

beginning of the trace.

4 Implementation

We present MoonShine’s workflow in Figure 3. Moon-

Shine consists of two components: Trace Generation and

Seed Selection. During trace generation, MoonShine ex-

ecutes our seed programs on a kernel instrumented to

record coverage and captures their system call traces.

This collection of traces is passed to the Seed Distiller

which applies our distillation algorithm to extract seeds

for the target fuzzer.

Kernel Instrumentation. In order to perform distil-

lation, MoonShine needs to know the coverage reached

by each system call inside the kernel during its execu-

tion. In general this can be achieved at compile time

or through binary instrumentation. In our prototype we

compile Linux with the flag CONFIG_KCOV [38] which in-

struments the kernel with gcc’s sanitizer coverage. Linux

allows privileged user level programs to recover the cov-

erage they achieved through the debugfs file /sys/ker-

nel/fs/debug/kcov. During fuzzing we combine multiple

other gcc sanitizers to detect bugs, namely Kernel Ad-

dress Sanitizer (KASAN) [18] and Kernel UndefinedBe-

haviorSanitizer (UBSAN) [14]. We also enable kernel-

specific detectors like the Lock dependency tracker for

deadlocks and KMEMLEAK [5] for memory leaks.

Tracer. We implement our tracer by adapting and ex-

tending Strace [13], a popular system call tracer. We ex-

tended Strace because it captured system call names, ar-

guments, and return values out-of-the-box. Furthermore,

Strace can track calls across fork and exec which is use-

ful because many programs are executed by using scripts

and if we are unable to capture traces across these calls

then it limits our ability to scalably capture traces. Our

extension adds a total of 455 lines of code across 3 files.

This feature is disabled by default but can be enabled by

running Strace with the -k flag. We plan to submit a

patch of our changes to the Strace maintainers.

Multiprocess Traces. If a trace consists of multiple

processes, MoonShine first constructs a process tree. Ev-

ery node in the tree stores the system call traces for that

specific process. An edge from node A to node B indi-

cates that B is a child of A. MoonShine determine this

relationship by examining the return value of the clone

system call. If process A calls clone and the result is

B > 0 then we know A is a parent of B. Each edge

also stores the position of the last call in A’s trace be-

fore B was created, and this is important because some

resources produced by A can be accessed by B, e.g. file

descriptors or memory mappings. MoonShine builds a

dependency graph for each node in the tree in DFS order.

Each node in the dependency graph also stores the posi-

tion of the call in that processes trace. When computing

the explicit dependencies for a call in a trace MoonShine

first checks the local dependency graph. If that value is



not in the cache then it traverses up the process tree and

checks each process argument graph. If there is a hit in

the parent process, MoonShine checks to make sure that

the value was stored in the cache prior to the clone. In

this case, MoonShine will copy the call and its upstream

dependencies into the child’s trace.

Explicit Dependencies. There are three exceptions to

our approach of capturing explicit dependencies. First,

system call arguments may themselves return results e.g,

pipe. In order to track this, MoonShine requires the aid

of a template that identifies for a given system call, which

argument has its values set by the kernel. With such a

template, MoonShine will also store the value returned

in the argument inside of its result cache. Second, mem-

ory allocation calls like mmap return a range of values. A

system call may depend on a value inside the range but

not on the value explicitly returned. MoonShine handles

this by specifically tracking memory allocations made by

mmap or SYSTEM V calls. As it parses the trace it makes a

list of active mappings. If the value of a pointer argument

falls within an active mapping, then MoonShine adds an

edge from the argument to the call that produced that

mapping. For any pointer values that do not fall within an

active mapping, such as those on the stack or produced

through brk, MoonShine tracks the memory required for

all such arguments and adds a large mmap call at the be-

ginning of the distilled trace to store their values. The

final exception is when two seeds, currently placed in

separate distilled programs, are found to be dependent

on one another. In this case, MoonShine merges the two

programs into one.

Implicit Dependencies. MoonShine’s implicit depen-

dency tracker is build on Smatch [16], a static anal-

ysis framework for C. Smatch allows users to register

functions which are triggered on matching events while

Smatch walks the program’s AST. These hooks corre-

spond to C expressions such as an Assignment Hook or

Conditional Hook. MoonShine tracks read dependencies

by registering a condition hook that checks if the con-

ditional expression, or any of its subexpressions, con-

tains a struct dereference. On a match, the hook noti-

fies MoonShine which struct and field are the read de-

pendency along with the line and function name, which

MoonShine records.

MoonShine tracks write dependencies by registering a

Unary Operator Hook and Assignment Hook. The unary

operator hook notifies MoonShine every time a unary as-

signment operation is applied to a struct deference. The

notification describes the corresponding struct name and

field and MoonShine records the struct and field as a

write dependency. Our assignment hook is nearly iden-

tical except it only checks the expression on the left side

of the assignment. After running Smatch with our hooks,

we generate a text file that is read by our distillation al-

gorithm to identify potential implicit dependencies for

every call.

5 Evaluation

In this section we evaluate the effectiveness of Moon-

Shine both in terms of its ability to aid OS fuzzers in dis-

covering new vulnerabilities, as well as in terms of its ef-

ficiency in gathering and distilling traces while preserv-

ing coverage. In particular, we assessed MoonShine’s

impact on the performance of Syzkaller, a state-of-the-art

OS fuzzer targeting the Linux kernel, by distilling seeds

constructed from traces of thousands of real programs.

Our evaluation aims at answering the following research

questions.

• RQ1: Can MoonShine discover new vulnerabili-

ties? (Section 5.2)

• RQ2: Can MoonShine improve code coverage?

(Section 5.3)

• RQ3: How effectively can MoonShine track depen-

dencies? (Section 5.4)

• RQ4: How efficient is MoonShine? (Section 5.5)

• RQ5: Is distillation useful? (Section 5.6)

5.1 Evaluation Setup

Seed Programs. Since MoonShine’s ability to track de-

pendencies is limited to the calls within a single trace,

we sought out seed programs whose functionality is self-

contained, but also provides diverse coverage. We con-

structed seeds from 3220 programs from the following

sources 1) Linux Testing Project (LTP) [7], 2) Linux Ker-

nel selftests (kselftests) [6], 3) Open Posix Tests [8], 4)

Glibc Testsuite [3].

The LTP testsuite is designed to test the Linux kernel

for reliability, robustness and scalability and is curated by

both kernel developers along with third party companies

such as IBM, Cisco, and Fujitsu. Out of LTP’s 460 sys-

tem call tests we collected traces for 390. The testcases

we avoided focused on system calls which Syzkaller

does not support such as execve, clone, cacheflush,

etc.

Kselftests is a testing suite contained within the Linux

source tree that tests specific subsystems in the kernel.

Like with our LTP traces, most of the kselftest traces

were collected from the system call suite. Although this

testsuite is significantly smaller than LTP we chose to

collect from it because it is designed to test specific paths

through the kernel. As such, we can expect each program

to provide diverse coverage and be reproducible.



The OpenPosix test suite is designed to test the Posix

2001 API specifications for threads, semaphores, timers

and message queues. We collected traces from the 1,630

message queue and timer tests.

The glibc test suite is used for functional and unit

testing of glibc. The test suite includes regression tests

against previously discovered bugs, and tests which exer-

cise components of the C Standard Library such as pro-

cessing ELF files, io, and networking calls. We collected

the traces from 1,120 glibc tests.

OS Fuzzer. In the experiments we used Syzkaller as

our target OS fuzzer. We chose Syzkaller as it is a state-

of-the-art system call fuzzer, having found a large num-

ber of vulnerabilities, and is actively maintained. Fur-

thermore, Syzkaller employs effective strategies to dis-

cover non-deterministic bugs, e.g., by occasionally exe-

cuting calls from a given program on different threads.

Syzkaller also combines many other existing bug find-

ing mechanisms like fault injection to trigger bug in-

ducing scenarios. Unless stated otherwise, we config-

ured Syzkaller to run on Google Compute Engine (GCE)

with 2 fuzzing groups, each group containing 4 fuzzing

processes. The Syzkaller manager ran on an Ubuntu

16.04 n1-standard-1 instance which contains 1vCPU and

3.75GB. Each fuzzing group ran on an n1-highcpu-4 ma-

chine consisting of 4vCPUs and 3.60GB of memory run-

ning our target kernel.

Distillation Algorithms. In this evaluation we com-

pare MoonShine’s distillation algorithm, termed Moon-

shine(I+E), against two others. The first is a distilla-

tion algorithm which only captures the explicit depen-

dencies, ignoring implicit dependencies, which we call

MoonShine(E). The second is a random distillation al-

gorithm, called RANDOM, which tracks no dependencies

at all. The RANDOM algorithm works by first selecting

all system calls in a trace that contributed the most cover-

age increase, and assigning each to its own synthetic pro-

gram. Then it randomly selects system calls from across

all program traces, distributing them evenly across the

synthetic programs, until it has pulled as many system

calls as Moonshine(I+E).

Lastly, we use the term default Syzkaller to describe

Syzkaller fuzzing without any seeds, using only it’s hard-

coded rules to generate input programs.

5.2 Can MoonShine discover new vulnera-

bilities? (RQ1)

Table 1 shows the vulnerabilities in the Linux kernel that

were discovered using MoonShine. Each vulnerability

was triggered during a fuzzing experiment that lasted 24

hours. Each experiment consisted of the following steps.

First, we generate two sets of distilled seeds using Moon-

shine(I+E) and MoonShine(E) on traces gathered from

all our seed programs. For each set of seeds, we fuzz

the latest kernel release candidate for 24 hours 3 times

each and do the same using the default Syzkaller. For

a vulnerability to be considered as caused by one set of

seeds, it must be triggered in at least two of the three

experiments and not by default Syzkaller. During each

experiment, we restricted Syzkaller to only fuzz the calls

contained in our traces to more accurately track the im-

pact of our seeds. We note that default Syzkaller was un-

able to find any vulnerabilities during these experiments

but when using seeds generated by MoonShine it found

17.

Vulnerabilities Results. Of the 17 new vulnerabilities

we discovered, 10 of them were only discovered when

using seeds generated by Moonshine(I+E) and the av-

erage age of each was over 9 months. Two of the vul-

nerabilities we found in fs/iomap.c and iomap_dio_rw

were over 4 years old. We also note that each of the

bugs discovered using Moonshine(I+E) alone were con-

currency bugs that were triggered by Syzkaller schedul-

ing calls on different threads. We also note that our bugs

were found in core subsystems of the kernel, namely VFS

and net/core. We have reported all vulnerabilities to the

appropriate maintainers and 9 have already been fixed.

Result 1: MoonShine found 17 new vulnerabilities

that default Syzkaller cannot find out of which 10 vul-

nerabilities can only be found using implicit depen-

dency distillation.

Figure 4: Coverage achieved using Moonshine(I+E) and

MoonShine(E) and default Syzkaller in 24 hours of fuzzing.

Seed traces were obtained from the LTP, Kselftest, Glibc, and

Posix sources.



Subsystem Module Operation Impact
Version

Introduced

Distill.

Method

BPF bpf/devmap.c dev_map_alloc() Illegal allocation size 4.0 (I+E) & (E)

BTRFS fs/btrfs/file.c btrfs_fallocate() Assert Failure 4.14 (I+E)

Ext4 fs/fs-writeback.c move_expired_inodes() Use After Free 4.6 (I+E)

JFS fs/jfs/xattr.c __jfs_setxattr() Memory Corruption 2.6 (I+E) & (E)

Network net/ipv4/inet_connection_sock.c inet_child_forget() Use after Free 4.4 (I+E)

Network net/core/stream.c sk_kill_stream_queues() Memory Corruption 4.4 (I+E)

Network net/core/dst.c dst_release() NULL Pointer Deref 4.15-rc8 (I+E)

Network net/netfilter/nf_conntrack_core.c init_conntrack() Memory Leak 4.6 (I+E)

Network net/nfc/nfc.h nfc_device_iter_exit() NULL Pointer Deref 4.17-rc4 (I+E)

Network net/socket.c socket_setattr() NULL Pointer Deref 4.10 (I+E) & (E)

Posix-timers kernel/time/posix-cpu-timers.c posix_cpu_timer_set() Integer Overflow 4.4 (I+E) & (E)

Reiserfs

fs/reiserfs/inode.c,

fs/reiserfs/ioctl.c,

fs/direct-io.c

Multiple Deadlock 4.10 (I+E)

TTY tty/serial/8250/8250_port.c serial8250_console_putchar() Kernel Hangs Indefinitely 4.14-rc4 (I+E)

VFS fs/iomap.c iomap_dio_rw() Data Corruption 3.10 (I+E) & (E)

VFS lib/iov_iter.c iov_iter_pipe() Data Corruption 3.10 (I+E) & (E)

VFS fs/pipe.c pipe_set_size() Integer Overflow 4.9 (I+E) & (E)

VFS inotify_fsnotify.c inotify_handle_event() Memory Corruption 3.14 (I+E)

Table 1: List of previously unknown vulnerabilities found by MoonShine. The rightmost, Distill. Method column reports which

distillation methods produced the seeds that led Syzkaller to find said vulnerability. (I+E) is shorthand for Moonshine(I+E), and

(E) for MoonShine(E). No vulnerabilities were found by the undistilled traces or default Syzkaller.

Figure 5: Coverage breakdown by system call after twenty four hours of fuzzing. The dark blue bars are for Moonshine(I+E) and

white bars are for default Syzkaller.

5.3 Can MoonShine improve code cover-

age? (RQ2)

Figure 4 shows the coverage achieved by our Moon-

shine(I+E) and MoonShine(E) algorithms compared to

Syzkaller using only its manual rules over 24 hours of

fuzzing. The seeds used in this experiment are generated

from all our seed programs described in Section 5.1. For

a fair comparison, we restrict Syzkaller to only fuzz the

system calls that were present in our traces.

Overall Coverage Results. For edge coverage,

Moonshine(I+E) covered 53,270 unique basic blocks,

MoonShine(E) covered 51,920 and default Syzkaller

covered 47,320. This shows Syzkaller’s coverage im-

proves noticeably when it starts with either of Moon-

Shine’s generated seeds; however, when seeded with pro-

grams that have been distilled with both explicit and im-

plicit dependencies, Syzkaller achieves 13% coverage

improvement compared to the 9% when using explicit

dependencies alone.

Breakdown By System Call. Figure 5 shows the

breakdown of the coverage achieved by Moonshine(I+E)

compared to default Syzkaller by system call. The height

of each bar represents the union of all unique basic



blocks hit by that system call across all fuzzer programs

(both seed and generated) over 24 hours of fuzzing. We

see that the system calls where Moonshine(I+E) outper-

formed default Syzkaller were among standard system

calls such as read, write, fsync and mmap. This fact

that Moonshine(I+E) noticeably outperformed Syzkaller

on these standard system calls suggests that Syzkaller’s

hard coded rules are insufficient to capture dependencies

for common calls.

Coverage and Bugs Found. Although 10 out of 17

bugs found were concurrency related we observed that

all our concurrency bugs were found in the file and net-

working subsystems. Similarly, the calls which pro-

duced the most new coverage under our distilled seeds

were also file or networking related, for example fsync

and sockpair. This correlation is not arbitrary. Since

Syzkaller is a coverage-guided, evolutionary fuzzer, it

will continually stress the programs and system calls

which are returning the most new coverage. The test

suites we used for source programs contain programs

which especially exercise functionality in the networking

and filesystem kernel subsystems. Of the 17 bugs found

by MoonShine, 6 were from the network subsystem, and

8 from file systems. These findings imply that the com-

position of seed programs is able to influence Syzkaller

to focus on fuzzing particular regions of the kernel it oth-

erwise would not, and in extension discover bugs in these

regions.

Result 2: MoonShine achieves 13% higher edge cov-

erage than default Syzkaller

5.4 How effectively can MoonShine distill

traces? (RQ3)

Tracking Dependencies. To evaluate how effectively

MoonShine can track dependencies, we first measured

the coverage achieved by our seed programs during trace

generation. Afterwards, we distilled these traces using

Moonshine(I+E) and MoonShine(E) and measured the

coverage achieved by Syzkaller due to these seeds alone,

i.e. with mutation and seed generation disabled. We then

compared the intersection of the coverage achieved by

our traces and the coverage achieved by Syzkaller. Table

2 shows the result of this experiment as we expanded our

seed program sources.

The left column indicates the seed programs used in

the experiment. As we expanded the number of seed

programs, Syzkaller recovered 86.8% and 78.6% of the

original trace coverage using seeds generated by Moon-

shine(I+E) and MoonShine(E). To understand the impact

of tracking dependencies, we repeated this experiment

using seeds generated by RANDOM. As we see in Col-

umn 3, the coverage recovered is at most 23%, nearly

four times worse than when using seeds generated by

Moonshine(I+E) and MoonShine(E).

To understand the impact of the coverage we could

not recover, we repeated our experiments but allowed

Syzkaller to mutate and generate seeds. After 30 min-

utes, we recompared the coverage intersection. The re-

sults are summarized in Table 3. When using Moon-

shine(I+E) and MoonShine(E), Syzkaller can recover

95% and 91.6% of the original traces but when using

RANDOM it achieves minimal improvement over default

Syzkaller. This suggests that capturing dependencies is

crucial to improving Syzkaller’s performance and that

MoonShine is able to do so effectively.

Result 3: MoonShine distills 3220 traces consisting

of 2.9 million calls into seeds totaling 16,442 calls that

preserve 86% of trace coverage.

5.5 How efficient is MoonShine? (RQ4)

To evaluate the efficiency of MoonShine, we measured

the execution time of each of MoonShine components

across our different sources. These results are summa-

rized in Table 4. The last row shows the time required

to process all our sources at once through MoonShine’s

workflow.

Trace Generation. Prior to benchmarking our com-

ponents, we preloaded all seed programs on a custom

Google Cloud image running linux-4.13-rc7 compiled

with kcov. During trace generation, we launched 4 n1-

standard-2 machines and captured the traces in paral-

lel. Our results show that our modifications to Strace

result in a 250% slowdown during trace generation uni-

formly across sources. However, this is to be expected

because after each system call we must capture the cov-

erage recorded by kcov and write it to a file. Further-

more, the kcov api does not deduplicate the edge cov-

erage achieved by a call during its execution. We found

that without deduplication, the average size of our traces

were 33MB. By deduplicating the instructions during

trace generation we are able to reduce the average trace

size from 33MB to 102KB.

Distillation. Our results for distillation show that the

time required to distill a source was proportional to the

size of the source. As Table 4 demonstrates, it took only

18 minutes to distill 3220 traces that contained over 2.9

million calls. We also found that over 90% of the execu-

tion time in distillation was spent reading the traces. The

time required to build the dependency graph and track

implicit dependencies was only 30 seconds. This sug-

gests that MoonShine is able to distill efficiently.



Source
Coverage Number of Distilled Calls

Traced RANDOM (E) (I+E) Traced RANDOM (E) (I+E)

L+K 19,500
3,460

(17.7%)

13,320

(68.3%)

16,400

(84.1%)
283,836

12,712

(4.47%)

10,200

(3.6%)

12,712

(4.47%)

P+L+K 23,381
5,532

(23.7%)

18,288

(78.2%)

21,432

(91.6%)
1,863,474

15,333

(0.82%)

11,455

(.61%)

15,333

(0.82%)

P+G+L+K 25,240
5,449

(21.6%)

19,840

(78.6%)

21,920

(86.8%)
2,953,402

16,442

(0.56%)

11,590

(.39%)

16,442

(0.56%)

Table 2: Seed source breakdown by distillation algorithm. The Traced columns report numbers from the original system call traces,

prior to any distillation. (I+E) is short for Moonshine(I+E) and (E) for MoonShine(E). The numbers show the breakdown for our

seed programs gathered from LTP (L), Posix Test Suites (L), Glibc Tests (G), Kselftests (K).

Distillation

Method

Coverage

Recovered
Percentage

I+E 24,230 95.0%

E 23,140 91.6%

RANDOM 19,120 75.7%

Default 18,200 72.1%

Table 3: Coverage recovered from original traces after 30 min-

utes of fuzzing. I+E refers to Moonshine(I+E) strategy and E

refers to MoonShine(E).

Source

Trace w/

Coverage

(mins)

Trace w/o

Coverage

(mins)

Distillation

(mins)

L+K 8.5 3.8 4.3

G 28.4 13.3 8.5

P 20.4 7.7 10.5

Combined 61.3 25.2 18.3

Table 4: Breakdown of MoonShine performance across three

seed program groups. The first is a combined LTP (L) +

Kselftests(K), followed by Glibc (G) and finally Posix Test

Suite (P).

Result 4: MoonShine collects and distills 110 giga-

bytes of raw program traces in under 80 minutes.

5.6 Is distillation useful? (RQ5)

We now evaluate our claim that without distillation the

performance of the fuzzer will decrease significantly.

We construct 5 different sets of seeds where the aver-

age number of calls for each seed increases by 146 but

the number of seeds stay fixed at 500. We then in-

strument Syzkaller to record any mutations it performs

Distillation

Method
Mutations/sec

Default 335

MoonShine(E) 305

Moonshine(I+E) 296

Undistilled 160

Table 5: Syzkaller’s executions/sec measured after 2 hours of

fuzzing across seeds generated from our different distillation

algorithms. Our seed programs included LTP, Kselftests, Glibc

teststuites, and Posix testsuites

on its programs. Each of our sets of seeds is used by

Syzkaller as it fuzzes Linux 4.14-rc4 for 2 hours. Figure

6 shows the number of mutations it performs over the two

hours. We observe that as the average length increases,

the number of mutations decrease significantly. When

using seeds whose average call length is 730, Syzkaller

performed less than 100 mutations in one hour, which is

prohibitively slow.

We now assess the impact that MoonShine’s seeds

have on Syzkaller’s overall performance. We measured

the mutations per second achieved by Syzkaller through-

out its 2 hour execution when using seeds generated

by Moonshine(I+E), MoonShine(E), and with undis-

tilled seeds. The results are summarized in Table 5.

Syzkaller’s baseline performance was 335 mutations per

second. When using seeds generated by MoonShine(E)

and Moonshine(I+E), the performance only decreased

10%. However, when Syzkaller used undistilled seeds,

its mutation rate decreased by 53%.

Result 5: Running Syzkaller with undistilled seeds

slows the mutation rate by 53%. Running Syzkaller

on distilled seeds only reduces the mutation rate to

88.4% of what is achieved by default Syzkaller.



Figure 6: A comparison of Syzkaller’s total mutations achieved

in 2 hours of fuzzing while varying average seed program

length. As program length increased, the number of mutations

decreased in that timespan.

6 Case Studies of Bugs

In this section we describe two select bugs discovered by

MoonShine during our experiments.

6.1 inotify Buffer Overflow

Description. Our first bug is a buffer overflow in the
inotify_handle_event() module within the inotify

subsystem. The inotify API enables users to track ac-
tions within the filesystem such as file creation, deletion,
renaming, etc,. On a matching action, the kernel calls
inotify_handle_event() to generate an event for the
user, which has the following structure:

struct inotify_event_info {

struct fsnotify_event *fse;

int wd;

u32 sync_cookie;

int name_len;

char name[]; /* optional field */

}

When generating a file-related event,

inotify_handle_event() determines the amount

of memory to allocate by first checking the

length of the filename. After allocating memory,

inotify_handle_event() calls strcpy() to copy the

filename. However, if the filename length increases

after determining the amount of memory to allocate but

before the strcpy(), it will cause a buffer overflow.

This can happen if another task calls rename() in that

window. This scenario is detailed in Figure 7. In the

top window, Thread 1 executes inotify_handle_event

and if the event corresponds to a filename then it will

call strlen(dentry->d_name.name). After computing

alloc_len, Thread 2 calls rename which performs

a memcpy to change dentry->d_name.name. When

Thread 1 resumes, dentry->d_name.name is different

so the subsequent strcpy will overflow the struct if the

size of the name has increased.

After 4.5 hours of fuzzing with seeds distilled using

Moonshine(I+E), Syzkaller reported a KASAN: slab out

of bounds in strcpy crash in inotify_handle_event().

The program that triggered the bug is listed in Figure 8.

Lines 2 and 3 initialize an inotify instance to watch

the current directory for all events. Line 5 creates a file

named "short" and line 6 closes it. In line 7, the file

is renamed to the longer name "long_name." The rea-

son Syzkaller triggered this bug is because it will ran-

domly schedule calls on different threads. In this case,

the rename and close were run in parallel.

How Distilled Seeds Helped. The program in Fig-

ure 8 is from the inotify02 testcase in LTP. The goal

of the test case was to test the close, create, and rename

events to ensure correct semantic behavior. When using

only its manual rules, Syzkaller never generated the rel-

evant sequence of calls for this bug to trigger. This is

because its manual rules are weighted to select calls that

share semantic types. In this case, the rename, close

and inotify_add_watch did not share semantic types,

but MoonShine’s distillation algorithm could detect that

each of these calls contributed new coverage as during

their control paths each triggered an inotify event. Fur-

thermore, MoonShine observed inotify_add_watch is

an implicit dependency of both rename and close so the

calls were merged into one program.

6.2 Integer Overflow in fcntl

The pipe system call creates an undirected data channel

that allows communication between two processes. By

default, the size of a pipe is the same as the system limit

which is typically 4096 bytes. The size can be increased

by calling fcntl with the command F_SETPIPE_SZ.

However, calling this command with size 0 causes an

unsigned long long overflow. Figure 9 shows the rel-

evant excerpts from the call stack.

The root cause of the error happens in line 12. Since

size is 0, nr_pages is also set to 0 which means that

fls_long(-1) returns 64, resulting in the undefined ex-

pression (1UL << 64).

How Distilled Seeds Helped. Our seed program

fcntl30.c (from the LTP testsuite) called fcntl with

F_SETPIPE_SZ. Figure 10 shows the relevant excerpt

where the test iteratively changes the pipe size starting

from the default size of 4096; however, during fuzzing,

Syzkaller changed the size to 0. Default Syzkaller was

unable to detect the bug because it is unable to under-

stand that the command F_SETPIPE_SZ is meant to take



Thread 1: fs/notify/inotify/inotify_fsnotify.c

int inotify_handle_event ()

{

struct inotify_event_info *event;

int len = 0;

int alloc_len = sizeof(struct

inotify_event_info);

if (dentry ->d_name.name) {

len = strlen(dentry ->d_name.name);

alloc_len += len + 1;

}

/* Interrupted by Thread 2 */

Thread 2: fs/dcache.c

static void copy_name ()

{

memcpy(dentry ->d_iname , target ->d_name.name ,

target ->d_name.len + 1);

dentry ->d_name.name = dentry ->d_iname;

}

Thread 1 (continued)

/* Execution Resumed */

event = kmalloc(alloc_len , GFP_KERNEL);

event ->name_len = len;

if (len)

strcpy(event ->name , dentry ->d_name.name);

}

Figure 7: inotify_handle_event() bug in

fs/notify/fsnotify.c. After Thread 1 computes

alloc_len, Thread 2 increases the length of filename by

copying a larger string to dentry->d_name.name, causing the

overflow in strcpy.

1: mmap (...)

2: r0 = inotify_init ()

3: r1 = inotify_add_watch(r0,

&(0 x7f0000000000)="2e", 0xfff)

4: chmod (&(0 x7f0000001000)="2e", 0x1ed)

5: r2 = creat (&(0 x7f0000002000)="short",

0x1ed)

6: close(r2)

7: rename (&(0 x7f000000a000)="short",

&(0 x7f0000006000 -0xa)="long_name")

8: close(r0)

Figure 8: Syzkaller program that caused the bug. We have in-

creased readability by truncating arguments and changing the

filenames from hex strings to "long_name" and "short." Criti-

cally, "long_name" is longer than "short."

a file descriptor corresponding to pipe. When execut-

ing the command, Syzkaller randomly chooses from the

collection of previously opened file descriptors so in or-

der to trigger this bug it must select both fcntl with the

command F_SETPIPE_SZ and ensure that pipe has al-

1: long pipe_fcntl (...) {

2: ...

3: case F_SETPIPE_SZ:

4: pipe_set_size(pipe , arg); //arg = 0

5: ...

6: long pipe_set_size(pipe , 0) {

7: ...

8: round_pipe_size (0);

9: ...

10: unsigned int round_pipe_size (0) {

11: ...

12: nr_pages = (size + PAGE_SIZE - 1) >>

PAGE_SHIFT; // = 0UL

13: return (1UL << fls_long (0-1)) <<

PAGE_SHIFT; // fls_long (-1) returns

64

14: ...

Figure 9: fcntl undefined behavior when called with com-

mand F_SETPIPE_SZ and size of 0.

1: int main (...)

2: {

3: int pipe_fds [2], test_fd;

4: ...

5: for (lc = 0; TEST_LOOPING(lc); lc++) {

6: pipe(pipe_fds);

7: test_fd = pipe_fds [1];

8:

9: TEST(fcntl(test_fd , F_GETPIPE_SZ));

10:

11: orig_pipe_size = TEST_RETURN;

12: TEST(fcntl(test_fd , F_SETPIPE_SZ ,

new_pipe_size));

13: ...

14: }

15: ...

16: }

Figure 10: Relevant excerpt from fcntl30.c. Traces from this

program were distilled to form the fcntl pipe bug.

ready been executed. Whereas for the seed programs,

the application already knows that the fcntl command

should be associated with pipe so those two commands

are already in the same program.

7 Discussion

We have demonstrated that trace distillation can improve

kernel security by discovering new vulnerabilities effi-

ciently. In this section, we describe some of the limita-

tions of our current prototype implementation and some

future directions that can potentially minimize these is-

sues.

7.1 Limitations

Lack of Inter-Thread Dependency Tracking. Moon-

Shine’s dependency tracking algorithm assumes that all



dependencies of a call are produced by the same thread

or a parent process. However, if a call depends on a

resource produced by a parallel thread or process, then

the current implementation of MoonShine cannot track

the dependency. While the programs producing the

traces used in this paper contained very few such inter-

process/thread dependencies, more complex programs

like databases or Web servers may have such dependen-

cies as their processes/threads often share sockets and

memory regions. Developing a tracking mechanism for

such inter-thread/inter-process dependencies will be an

interesting area for future work.

False Positives from Static Analysis. MoonShine’s

static implicit dependency analysis may result in false

positives, i.e., it may detect two system calls to have im-

plicit dependencies where there are none. Note that these

false positives do not affect the coverage achieved by the

distilled corpus but might make the traces slightly larger

than they need to be.

In our experiments, we observed that imprecise

pointer analysis is a major source of false positives. If

two system calls read and write from the same struct

field, MoonShine cannot determine if the corresponding

pointers refer to the same struct instance. For example,

MoonShine identifies mlock as an implicit dependency

of munmap because struct vma is a write dependency of

mlock and a read dependency of munmap. However, the

instances of struct vma are completely determined by

the pointers passed in as the first argument to each call.

If the first arguments to these calls are different, then the

instances of the struct will also differ and the two calls

will not be dependencies. However, due to the impre-

cision of static analysis, MoonShine always treats these

calls as dependencies irrespective of their arguments.

7.2 Future Work

Supporting other Kernel Fuzzers. Most fuzzers, irre-

spective of their design, benefit significantly from using

a diverse and compact set of seeds [31]. MoonShine’s

trace distillation mechanism is designed to increase the

diversity and minimize the size of seed traces (while

maintaining the dependencies) used for kernel fuzzing.

Although our current prototype implementation is based

on Linux and Syzkaller, there are a several ways we can

extend MoonShine to benefit other kernel fuzzers. In par-

ticular, for other Linux kernel fuzzers, it should be rela-

tively straightforward to adapt MoonShine’s trace gener-

ation and seed selection components. MoonShine’s static

implicit dependency analysis can also be easily extended

to other open source OS kernels such as FreeBSD.

For closed-source operating systems like Microsoft

Windows, MoonShine can potentially support trace dis-

tillation of by leveraging recent works [29, 33] using

virtualization-based approaches to capturing system call

traces and kernel code coverage albeit with higher per-

formance overhead. MoonShine can be extended to

dynamically identify implicit dependencies by tracking

the load and store instructions executed during a sys-

tem call execution and identifying the calls that read-

/write to the same addresses. Such a virtualization-

based dynamic approach to tracking implicit dependen-

cies will be more precise (i.e., fewer false positives) than

MoonShine’s static-analysis-based approach, but will in-

cur significantly higher performance overhead. Explor-

ing this tradeoff is an interesting area for future research.

Fuzzing Device Drivers. The system calls in our

traces targeted core subsystems of the Linux kernel such

as file system, memory management, and networking.

However, device drivers make up over 40% of the Linux

source code [15] and are the most common source of vul-

nerabilities [34]. Recent work [20, 28] has shown that

targeted fuzzing of device drivers is effective at discover-

ing critical security vulnerabilities. We believe that these

approaches can also benefit from MoonShine’s trace dis-

tillation. For example, seeds distilled from traces of An-

droid applications/services that communicate with differ-

ent device drivers can be used for efficient fuzzing of An-

droid device drivers.

8 Related Work

Seeding and Distillation. Seed selection was first ex-

plored in the context of file-format fuzzing, i.e., fuzzers

for application code that parse well-structured input

(pdfs, jpeg, png, etc.). In 2008, Ormandy et al. seeded

a fuzzer for the Microsoft internet explorer browser with

contents gathered by crawling different URLs and un-

covered two serious security vulnerabilities [27]. In

2011, Evans et al. also seeded a fuzzer for Adobe Flash

Player with 20,000 distilled SWF files and discovered

400 unique crashes [19].

Recently, Beret et al. evaluated four distillation strate-

gies on the CERT Basic Fuzzing Framework (BFF) [2]

across 5 file formats and found maximizing code cov-

erage to be the optimal distillation strategy [31]. While

MoonShine is also a seed distillation framework, distil-

lation for OS fuzzers is fundamentally a different and ar-

guably more difficult problem than distilling file formats.

File-format distillation works at the level of entire files

and simply selects a small set of seed files out of a given

set of files without worrying about pruning each individ-

ual file’s contents. By contrast, OS fuzzer distillation

must work at the finer granularity of individual system

calls within program traces and maintain the implicit/-

explicit dependencies of the system calls while minimiz-

ing the number of calls as the program traces tend to be,

on average, multiple orders of magnitude larger than the



seed files used for fuzzing.

Seed Generation and Generational Fuzzers. Gener-

ational fuzzers craft test inputs according to some form

of specification and are often used to fuzz programs

which take highly-structured input, e.g., compilers. For

instance, jsfunfuzz [32], and Csmith [40] are equipped

with JavaScript and C grammars, respectively, which

they use to craft syntactically valid programs. Other

fuzzers use dynamically learned grammars to help craft

input. For example, Godefroid et al. [21] present a white-

box fuzzer which generates grammatical constraints dur-

ing symbolic execution.

Another related line of work has investigated the pos-

sibility of synthetically crafting new seeds from exist-

ing ones. LangFuzz [24] and IFuzzer [36] are both

JavaScript fuzzers that parse code fragments from an in-

put test suite and recombine these fragments to craft in-

teresting new inputs. Skyfire [39] uses a PCSG (proba-

bilitistic context-sensitive grammar) learned from input

programs to generate diverse and uncommon seeds. By

contrast, MoonShine distills the seed traces while pre-

serving both syntactic and semantic integrity and the

achieved code coverage.

Lastly, IMF [22] is a model-based macOS kernel

fuzzer that programatically infers an API model from the

call trace of real-world programs. Using this inferred

model, IMF is able to generate and mutate C programs

for use in a fuzzing campaign. Both IMF and MoonShine

rely on tracking explicit input dependencies between sys-

tem calls. However, unlike MoonShine, IMF does not

perform any trace distillation, which in our setting slows

the rate of fuzzing by up to 90%. Furthermore, IMF does

not support any implicit dependency tracking, which was

essential for finding 10 out of the 17 vulnerabilities de-

tected by MoonShine.

Other Fuzzers. Trinity [11], iknowthis [4], and sys-

fuzz [9] are other examples of Linux system call fuzzers

built with hard-coded rules and grammars. In addi-

tion, there also exists another class of evolutionary ker-

nel fuzzers built on or inspired by AFL [1]. These are

TriforceLinuxSyscallFuzzer [10], TriforceAFL [23], and

kAFL [33], the latter two of which are OS agnostic. Like

Syzkaller, all of these OS fuzzers can potentially benefit

from the coverage improvements offered by the Moon-

Shine framework.

Finally, the class of evolutionary fuzzers that tar-

get semantic bugs (e.g., SlowFuzz [35], NEZHA [30],

Frankencerts [17], and Mucerts [41]) may also similarly

benefit from domain-specific seed distillation techniques

that maximize coverage or path diversity.

Implicit Dependencies. MoonShine’s approach of

identifying implicit dependencies across system calls is

conceptually similar to the dependency tracking mecha-

nisms used in record-replay systems that can replay an

application’s execution trace. Deterministic replay re-

quires identification of the system calls that access some

shared resources to ensure preserving their relative or-

dering during replay. To do this, record-replay systems

like Dora [25] and Scribe [26] log serialized access to

shared kernel resources, e.g., inodes and memory tables.

However, MoonShine, unlike these systems, uses static

analysis to track implicit dependencies.

9 Developer Responses

We have responsibly disclosed all the vulnerabilities

identified in this work to the appropriate subsystem

maintainers and vendors. In total, 9 of the 17 vulnera-

bilities have already been fixed and we are working with

the developers to fix the rest. Our reports include a de-

scription of the bug, our kernel configs, and a Proof-of-

Concept (POC) test input. The inotify buffer overflow

vulnerability was assigned CVE-2017-7533 and the fix

was applied to the 4.12 kernel and backported to all sta-

ble kernels versions after 3.14. The JFS memory corrup-

tion and socket_setattr bugs were addressed within a

week of disclosure and have been assigned CVE-2018-

12233 and CVE-2018-12232 respectively. The fixes for

both of these bugs are currently being tested and will be

backported to the affected stable kernels after the 4.18-

rc2 release.

10 Conclusion

In this paper we designed, implemented and evaluated

Moonshine, a framework that automatically generates

seeds for OS fuzzers by distilling system call traces gath-

ered from the execution of real programs. Our exper-

imental results demonstrated that Moonshine is able to

efficiently distill a trace of over 2.8 million system calls

into just over 14,000 calls while preserving 86% of the

coverage. Moreover, the seeds generated by Moonshine

improved the coverage of Syzkaller by over 13%, and re-

sulted in the discovery of 17 new vulnerabilities in the

Linux kernel that the default Syzkaller could not find by

itself.
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