On Fast and Accurate Detection of Unauthorized Wireless Access Points Using Clock Skews

Suman Jana Sneha K. Kasera

School of Computing University of Utah

Introduction

SSID: Mobicom 2008

MAC: 00:14:BF:7C:71:2F

SSID: Mobicom 2008 MAC: 00:14:BF:7C:71:2F

- fake AP masquerades original AP's identifiers
- also known as "Evil Twin" attack
- wireless nodes automatically connect to known APs
- public programs, e.g., rglueap, rfakeap, available

Fake AP: Serious Problem

- 802.11i supports use of digital certificates to check authenticity of AP
 - distribution across domains problematic
- alternate solution
 - AP fingerprinting
 - find unique device characteristics that cannot be fabricated

AP Fingerprint Options

- MAC address
 - easily spoofed
- device driver characteristics (Franklin et al.)
 - difficult to separate multiple devices with same device driver
- clock skew
 - can be used to fingerprint a device (Kohno et al.)
- we explore using clock skew as AP's fingerprint

Clock Skew: Origin

- a clock consists of
 - oscillator, controlled by crystal
- actual crystal frequency varies with
 - type of crystal
 - crystal cut
- even with same crystal type, cut
 - limited mechanical accuracy different clock skew

Kohno's Problem Context

- used TCP/ICMP timestamps to show clock skew of device (PC, laptop)
 - remains constant over time for same device
 - varies significantly across devices
- must deal with
 - millisecond resolution clock
 - variable delays
 - network congestion, different routing paths
 - between timestamp generation, packet transmission

Our Wireless LAN Scenario

- AP sends beacon packets periodically to advertise itself
- beacon packets
 - contain timestamp, microsecond accuracy
 - timestamped by hardware after winning MAC contention
 minimal delay variation
 - sent at 10-100 packets/second
- fast, fine granular clock skew determination possible

Our Solution

- use clock skew of AP as it's fingerprint
- maintain record of clock skews of authorized APs
- calculate clock skews of active APs from beacon packet timestamps
- check measured skews with known ones
- if no match declare fake AP
- note: clock skew estimates are relative to fingerprinter's clock

Clock Skew

- Clock offsets
 - (beacon transmit time beacon received time)
- Clock skew
 - rate of change of offset
 - expressed as parts per million (ppm)

Estimating Clock Skew from Clock Offset Set

- fit line through clock offset points, determine its slope
- two methods for fitting line
 - linear programming method (LPM)
 - least square fitting (LSF)

How LPM Works?

Receive Timestamp

How LSF Works?

Receive Timestamp

Separating packets from original, fake APs

- original, fake AP(s) can operate at same time
- need to separate packets to determine clock skew(s) of fake AP(s)
 - can help to identify attacker
- algorithm to fit separate lines through data
- LPM may fail to detect fake AP sometimes
 - fake AP packets considered outliers
- LSF always detects fake AP

Implementation

- capture beacon frames, record timestamps, compute clock skews of APs
- two laptops with Linksys WPC 55AG, Intel 3945ABG wireless cards
 - open source drivers
 - Madwifi
 - Intel's driver
 - monitor mode support

High Precision Receive Timestamp

- challenge how to obtain high precision (microsecond) receive time?
 - use do_gettimeofday() for microsecond resolution
 - timestamp field in Prism monitoring headers in Madwifi,
 Intel 3945ABG drivers only 4 bytes long
 - use Radiotap header 8 byte timestamp field

Experimental Data - 3 Traces

- ACM Sigcomm 2004 trace
- residential trace A, Boulder
- residential trace B, Salt Lake City

Results from Sigcomm 2004 Trace

- 5 APs
- low resolution receive timestamps (in milliseconds)
- clock skew estimate required ~300 packets using LPM, ~900 packets using LSF
- each AP had different clock skew (minimum difference 2 ppm)
- clock skew computed from different parts of data resulted in consistent values

Results from Residential Traces

- trace A: 8 APs (Boulder, CO)
- trace B: 21 APs (Salt Lake City, UT)
- only 50-100 packets to estimate clock skew
- takes only 2-3 minutes
- Kohno's measurements: 1000-2000 packets, 30 min
 1 hour to converge
- significant reduction in skew estimation time

Clock Offset Sets of Two Different Linksys APs

Clock Skew Estimates for Different APs (Res. Setting A)

Clock Skew Estimates for Different APs (Res. Setting B)

Clock Skew Estimates Using LPM and LSF (Res. Setting A)

Effect of Temparature on AP's Clock Skew

- Pasztor et al: for small time periods (<1000s), abs(clock skew variance) < 0.1 ppm
- compute clock skew frequently
- if (newskew currentskew) <= max then currentskew = newskew; else raise fake AP alarm
- *max* = 0.2 ppm

Clock Skew Fabrication

- attacker measures clock skew S
- needs to set its beacon time to TF_i = T_i + S*T_i, where T_i = actual beacon time at attacker
- in existing WNICs, hardware sets beacon timestamp just before transmitting
 - not possible to change timestamp without modifying hardware
- can use raw packet injection
 - actual transmission times are unpredictable fabrication extremely difficult

Clock Skews of Original AP and Fake AP Using Packet Injection

Deployment

- should be implemented in Wireless Intrusion
 Detection System (WIDS) nodes
- in a large network each WIDS node should monitor fixed set of APs

Summary

- explored use of clock skew to detect fake APs
- clock skew
 - appears to be a good AP fingerprint
 - difficult to fabricate without special hardware
- order of magnitude improvement in estimation time of clock skew (15-20 times)

Future Work

- collect more data, clock measurements with laptops running on battery power ?
- attacks using programmable devices (e.g., USRP)

Questions ??

http://www.cs.utah.edu/~suman

Thank You!!

Clock skew estimate of virtual APs

AP	Virtual AP1	Virtual AP2
1	23.66	23.66
2	17.53	17.54
3	28.55	28.56
4	32.45	32.46
5	21.24	21.28

- virtual APs
 - multiple identifiers using same hardware
 - have similar clock skew
 - seem to read from the same physical clock
- clock skew can be used to differentiate real and virtual APs