
Ensuring Fairness Beyond the Training Data

Debmalya Mandal
dm3557@columbia.edu

Columbia University

Samuel Deng
sd3013@columbia.edu

Columbia University

Suman Jana
suman@cs.columbia.edu

Columbia University

Jeannette M. Wing
wing@columbia.edu
Columbia University

Daniel Hsu
djhsu@cs.columbia.edu

Columbia University

Abstract

We initiate the study of fair classifiers that are robust to perturbations in the training
distribution. Despite recent progress, the literature on fairness has largely ignored
the design of fair and robust classifiers. In this work, we develop classifiers that
are fair not only with respect to the training distribution, but also for a class of
distributions that are weighted perturbations of the training samples. We formulate
a min-max objective function whose goal is to minimize a distributionally robust
training loss, and at the same time, find a classifier that is fair with respect to
a class of distributions. We first reduce this problem to finding a fair classifier
that is robust with respect to the class of distributions. Based on online learning
algorithm, we develop an iterative algorithm that provably converges to such a fair
and robust solution. Experiments on standard machine learning fairness datasets
suggest that, compared to the state-of-the-art fair classifiers, our classifier retains
fairness guarantees and test accuracy for a large class of perturbations on the test
set. Furthermore, our experiments show that there is an inherent trade-off between
fairness robustness and accuracy of such classifiers.

1 Introduction

Machine learning (ML) systems are often used for high-stakes decision-making, including bail
decision and credit approval. Often these applications use algorithms trained on past biased data,
and such bias is reflected in the eventual decisions made by the algorithms. For example, Bolukbasi
et al. [9] show that popular word embeddings implicitly encode societal biases, such as gender norms.
Similarly, Buolamwini and Gebru [10] find that several facial recognition softwares perform better
on lighter-skinned subjects than on darker-skinned subjects. To mitigate such biases, there have been
several approaches in the ML fairness community to design fair classifiers [4, 20, 37].

However, the literature has largely ignored the robustness of such fair classifiers. The “fairness”
of such classifiers are often evaluated on the sampled datasets, and are often unreliable because of
various reasons including biased samples, missing and/or noisy attributes. Moreover, compared to the
traditional machine learning setting, these problems are more prevalent in the fairness domain, as the
data itself is biased to begin with. As an example, we consider how the optimized pre-processing
algorithm [11] performs on ProPublica’s COMPAS dataset [1] in terms of demographic parity (DP),
which measures the difference in accuracy between the protected groups. Figure 1 shows two
situations – (1) unweighted training distribution (in blue), and (2) weighted training distributions
(in red). The optimized pre-processing algorithm [11] yields a classifier that is almost fair on the
unweighted training set (DP ≤ 0.02). However, it has DP of at least 0.2 on the weighted set, despite
the fact that the marginal distributions of the features look almost the same for the two scenarios.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Figure 1: Unweighted vs Reweighted COMPAS dataset. The marginals of the two distributions
are almost the same, but standard fair classifiers show demographic parity of at least 0.2 on the
reweighted dataset.

This example motivates us to design a fair classifier that is robust to such perturbations. We also show
how to construct such weighted examples using a few linear programs.

Contributions: In this work, we initiate the study of fair classifiers that are robust to perturbations
in the training distribution. The set of perturbed distributions are given by any arbitrary weighted
combinations of the training dataset, sayW . Our main contributions are the following:

• We develop classifiers that are fair not only with respect to the training distribution, but also for
the class of distributions characterized byW . We formulate a min-max objective whose goal is to
minimize a distributionally robust training loss, and simultaneously, find a classifier that is fair with
respect to the entire class.

• We first reduce this problem to finding a fair classifier that is robust with respect to the class of
distributions. Based on online learning algorithm, we develop an iterative algorithm that provably
converges to such a fair and robust solution.

• Experiments on standard machine learning fairness datasets suggest that, compared to the state-of-
the-art fair classifiers, our classifier retains fairness guarantees and test accuracy for a large class of
perturbations on the test set. Furthermore, our experiments show that there is an inherent trade-off
between fairness robustness and accuracy of such classifiers.

Related Work: Numerous proposals have been laid out to capture bias and discrimination in settings
where decisions are delegated to algorithms. Such formalization of fairness can be statistical
[14, 20, 22, 23, 30], individual [13, 33], causal [25, 27, 38], and even procedural [19]. We restrict
attention to statistical fairness, which fix a small number of groups in the population and then compare
some statistic (e.g., accuracy, false positive rate) across these groups. We mainly consider the notion
of demographic parity [14, 22, 23] and equalized odds [20] in this paper, but our method of designing
robust and fair classifiers can be adapted to any type of statistical fairness.

On the other hand, there are three main approaches for designing a fair classifier. The pre-processing
approach tries to transform training data and leverage standard classifiers [11, 14, 22, 37]. The
in-processing approach, on the other hand, directly modifies the learning algorithm to meet the
fairness criteria [4, 15, 24, 36]. The post-processing approach, however, modifies the decisions of a
classifier [20, 30] to make it fair. Ours is an in-processing approach and mostly related to [4, 5, 24].
Agarwal et al. [4] and Alabi et al. [5] show how binary classification problem with group fairness
constraints can be reduced to a sequence of cost-sensitive classification problems. Kearns et al. [24]
follow a similar approach, but instead consider a combinatorial class of subgroup fairness constraints.
Recently, [7] integrated and implemented a range of such fair classifiers in a GitHub project, which
we leverage in our work.

In terms of technique, our paper falls in the category of distributionally robust optimization (DRO),
where the goal is to minimize the worst-case training loss for any distribution that is close to the
training distribution by some metric. Various types of metrics have been considered including
bounded f -divergence [8, 28], Wasserstein distance [2, 18], etc. To the best of our knowledge,
prior literature has largely ignored enforcing constraints such as fairness in a distributionally robust
sense. Further afield, our work has similarity with recent work in fairness testing inspired by
the literature on program verification [6, 17, 34]. These papers attempt to automatically discover
discrimination in decision-making programs, whereas we develop tools based on linear program to
discover distributions that expose potential unfairness.

2

2 Problem and Definitions

We will write ((x, a), y) to denote a training instance where a ∈ A denotes the protected attributes,
x ∈ X denotes all the remaining attributes, and y ∈ {0, 1} denotes the outcome label. For a
hypothesis h, h(x, a) ∈ {0, 1} denotes the outcome predicted by it, on an input (x, a). We assume
that the set of hypothesis is given by a class H. Given a loss function ` : {0, 1} × {0, 1} → R,
the goal of a standard fair classifier is to find a hypothesis h∗ ∈ H that minimizes the training loss∑n
i=1 `(h(xi, ai), yi) and is also fair according to some notion of fairness.

We aim to design classifiers that are fair with respect to a class of distributions that are weighted
perturbations of the training distribution. Let W = {w ∈ Rn+ :

∑
i wi = 1} be the set of

all possible weights. For a hypothesis h and weight w, we define the weighted empirical risk,
`(h,w) =

∑n
i=1 wi`(h(xi, ai), yi). We will write δwF (h) to define the “unfairness gap” with respect

to the weighted empirical distribution defined by the weight w and fairness constraint F (e.g.,
demographic parity (DP) or equalized odds (EO)). For example, δwDP (h) is defined as

δwDP (h) = max
a,a′∈A

∣∣∣∣∣
∑
i:ai=a

wih(xi, a)∑
i:ai=a

wi
−
∑
i:ai=a′

wih(xi, a
′)∑

i:ai=a′
wi

∣∣∣∣∣ . (1)

Therefore, δwDP (h) measures the maximum weighted difference in acceptance rates between the two
groups with respect to the distribution that assigns weight w to the training examples. On the other
hand, δwEO(h) = 1/2(δwEO(h|0) + δ2EO(h|1))1, where δwEO(h|y) is defined as

δwEO(h|y) = max
a,a′∈A

∣∣∣∣∣
∑
i:ai=a,yi=y

wih(xi, a)∑
i:ai=a,yi=y

wi
−
∑
i:ai=a′,yi=y

wih(xi, a
′)∑

i:ai=a′,yi=y
wi

∣∣∣∣∣ .
Therefore, δwEO(h|0) (resp., δwEO(h|1)) measures the weighted difference in false (resp., true) positive
rates between the two groups with respect to the weight w. We will develop our theory using DP as
an example of a notion of fairness, but our experimental results will concern both DP and EO.

We are now ready to formally define our main objective. For a class of hypothesis H, let HW =
{h ∈ H : δwF (h) ≤ ε ∀w ∈ W} be the set of hypothesis that are ε-fair with respect to all the weights
in the setW . Our goal is to solve the following min-max problem:

min
h∈HW

max
w∈W

`(h,w) (2)

Therefore, we aim to minimize a robust loss with respect to a class of distributions indexed byW .
Additionally, we also aim to find a classifier that is fair with respect to such perturbations.

We allow our algorithm to output a randomized classifier, i.e., a distribution over the hypothesisH.
This is necessary if the spaceH is non-convex or if the fairness constraints are such that the set of
feasible hypothesisHW is non-convex. For a randomized classifier µ, its weighted empirical risk is
`(µ,w) =

∑
h µ(h)`(h,w), and its expected unfairness gap is δwF (µ) =

∑
h µ(h)δwF (h).

3 Design

Our algorithm follows a top-down fashion. First we design a meta algorithm that reduces the min-max
problem of Equation (2) to a loss minimization problem with respect to a sequence of weight vectors.
Then we show how we can design a fair classifier that performs well with respect a fixed weight
vector w ∈ W in terms of accuracy, but is fair with respect to the entire set of weightsW .

3.1 Meta Algorithm

Algorithm 1 provides a meta algorithm to solve the min-max optimization problem defined in
Equation (2). The algorithm is based on ideas presented in [12], which, given an α-approximate
Bayesian oracle for distributions over loss functions, provides an α-approximate robust solution.
The algorithm can be viewed as a two-player zero-sum game between the learner who picks the

1We consider the average of false positive rate and true positive rate for simplicity, and our method can also
handle more general definitions of EO. [30]

3

ALGORITHM 1: Meta-Algorithm
Input: Training Set: {xi, ai, yi}ni=1, set of weights: W , hypothesis classH, parameters T and η.
Set η =

√
2/Tm and w0(i) = 1/n for all i ∈ [n]

h0 = ApxFair(w0) /* Approximate solution of arg minh∈HW
∑n
i=1 `(h(xi, ai), yi). */

for each t ∈ [Tm] do
wt = wt−1 + η∇w`(ht−1, wt−1)
wt = ΠW(wt) /* Project wt onto the set of weights W. */
ht = ApxFair(wt) /* Approximate solution of minh∈HW

∑n
i=1 wt(i)`(h(xi, ai), yi)]. */

end
Output: hf : Uniform distribution over {h0, h1, . . . , hT }.

hypothesis ht, and an adversary who picks the weight vector wt. The adversary performs a projected
gradient descent every step to compute the best response. On the other hand, the learner solves a fair
classification problem to pick a hypothesis which is fair with respect to the weightsW and minimizes
weighted empirical risk with respect to the weight wt. However, it is infeasible to compute an exact
optima of the problem minh∈HW

∑n
i=1 wt(i)`(h(xi, ai), yi)]. So the learner uses an approximate

fair classifier ApxFair(·), which we define next.

Definition 1. ApxFair(·) is an α-approximate fair classifier, if for any weight w ∈ Rn+, ApxFair(w)

returns a hypothesis ĥ such that
n∑
i=1

wi`(ĥ(xi, ai), yi) ≤ min
h∈HW

n∑
i=1

wi`(h(xi, ai), yi) + α.

Using the α-approximate fair classifier, we have the following guarantee on the output of Algorithm 1.

Theorem 1. Suppose the loss function `(·, ·) is convex in its first argument and ApxFair(·) is an
α-approximate fair classifier. Then, the hypothesis hf , output by Algorithm 1 satisfies

max
w∈W

Eh∼hf

[
n∑
i=1

wi`(h(xi, ai), yi)

]
≤ min
h∈HW

max
w∈W

`(h,w) +

√
2

Tm
+ α

The proof uses ideas from [12], except that we use an additive approximate best response.2

3.2 Approximate Fair Classifier

We now develop an α-approximate fair and robust classifier. For the remainder of this subsection,
let us assume that the meta algorithm (Algorithm 1) has called the ApxFair(·) with a weight vector
w0 and our goal is to design a classifier that minimizes weighted empirical risk with respect to the
weight w0, but is fair with respect to the set of all weightsW , i.e., find f ∈ arg minh∈HW `(h,w0).
Our method applies the following three steps.

1. Discretize the set of weights W , so that it is sufficient to design an approximate fair classifier
with respect to the set of discretized weights. In particular, if we discretize each weight up
to a multiplicative error ε, then developing an α-approximate fair classifier with respect to the
discretized weights gives O(α+ ε)-fair classifier with respect to the setW .

2. Introduce a Lagrangian multiplier for each fairness constraint i.e. for each of the discretized
weights, and pair of protected attributes. This lets us set up a two-player zero-sum game for the
problem of designing an approximate fair classifier with respect to the set of discretized weights.
Here, the learner chooses a hypothesis, whereas an adversary picks the most “unfair” weight in the
set of discretized weights.

3. Design a learning algorithm for the learner’s learning algorithm, and design an approximate
solution to the adversary’s best response to the learner’s chosen hypothesis. This lets us write an
iterative algorithm where at every step, the learner choosed a hypothesis, and the adversary adjusts
the Lagrangian multipliers corresponding to the most violating fairness constraints.

2All the omitted proofs are provided in the supplementary material.

4

We point out that Agarwal et al. [4] was the first to show that the design of a fair classifier can be
formulated as a two-player zero-sum game (step 2). However, they only considered group-fairness
constraints with respect to the training distribution. The algorithm of Alabi et al. [5] has similar
limitations. On the other hand, we consider the design of robust and fair classifier and had to include
an additional discretization step (1). Finally, the design of our learning algorithm and the best
response oracle is significantly different than [4, 5, 24].

3.2.1 Discretization of the Weights

We first discretize the set of weightsW as follows. Divide the interval [0, 1] into buckets B0 = [0, δ),
Bj+1 = [(1 + γ1)jδ, (1 + γ1)j+1δ) for j = 0, 1, . . . ,M − 1 for M = dlog1+γ1(1/δ))e. For any
weight w ∈ W , construct a new weight w′ = (w′1, . . . , w

′
n) by setting w′i to be the upper-end point

of the bucket containing wi, for each i ∈ [n].

We now substitute δ = γ1
2n and writeN (γ1,W) to denote the set containing all the discretized weights

of the setW . The next lemma shows that a fair classifier for the set of weights N (γ1,W), is also a
fair classifier for the set of weightsW up to an error 4γ1.
Lemma 1. If ∀w ∈ N (γ1,W), δwDP (f) ≤ ε, then we have δwDP (f) ≤ ε+ 4γ1 for any w ∈ W .

Therefore, in order to ensure that δwDP (f) ≤ ε we discretize the set of weights W and enforce
ε − 4γ1 fairness for all the weights in the set N (γ1,W). This result makes our work easier as
we need to guarantee fairness with respect to a finite set of weights N (γ1,W), instead of a large
and continuous set of weightsW . However, note that, the number of weights in N (γ1,W) can be
O
(
logn1+γ1(2n/γ1)

)
, which is exponential in n. We next see how to avoid this problem.

3.3 Setting up a Two-Player Zero-Sum Game

We formulate the problem of designing a fair and robust classifier with respect to the set of weights

in N (γ1,W) as a two-player zero-sum game. Let R(w, a, f) =
∑

i:ai=a wif(xi,a)∑
i:ai=a wi

. Then δwDP (f) =

supa,a′ |R(w, a, f)−R(w, a′, f)|. Our aim is to solve the following problem.

min
h∈H

n∑
i=1

w0
i `(h(xi, ai), yi) (3)

s.t. R(w, a, h)−R(w, a′, h) ≤ ε− 4γ1 ∀w ∈ N (γ1,W) ∀a, a′ ∈ A
We form the following Lagrangian.

min
h∈H

max
‖λ‖1≤B

n∑
i=1

w0
i `(h(xi, ai), yi) +

∑
w∈N (γ1,W)

∑
a,a′∈A

λa,a
′

w (R(w, a, h)−R(w, a′, h)−ε+4γ1). (4)

Notice that we restrict the `1-norm of the Lagrangian multipliers by the parameter B. We will later
see how to choose this parameter B. We first convert the optimization problem define in Equation (4)
as a two-player zero-sum game. Here the learner’s pure strategy is to play a hypothesis h inH. Given
the learner’s hypothesis h ∈ H, the adversary picks the constraint (weight w and groups a, a′) that
violates fairness the most and sets the corresponding coordinate of λ to B. Therefore, for a fixed
hypothesis h, it is sufficient for the adversary to play a vector λ such that either all the coordinates of
λ are zero or exactly one is set to B. For such a pair (h, λ) of hypothesis and Largangian multipliers,
we define the payoff matrix as

U(h, λ) =

n∑
i=1

w0
i `(h(xi, ai), yi) +

∑
w∈N (γ1,W)

∑
a,a′∈A

λa,a
′

w (R(w, a, h)−R(w, a′, h)− ε+ 4γ1)

Now our goal is to compute a ν-approximate minimax equilibrium of this game. In the next subsection,
we design an algorithm based on online learning. The algorithm uses best responses of the h- and
λ-players, which we discuss next.

Best response of the h-player: For each i ∈ [n], we introduce the following notation

∆i =
∑

w∈N (γ1,W)

∑
a′ 6=ai

(
λai,a

′

w − λa
′,ai
w

) wi∑
j:aj=ai

wj

5

With this notation, the payoff becomes

U(h, λ) =

n∑
i=1

w0
i `(h(xi, ai), yi) + ∆ih(xi, ai)− (ε− 4γ1)

∑
w∈N (ε/5,W)

∑
a,a′∈A

λa,a
′

w

Let us introduce the following costs.

c0i =

{
`(0, 1)w0

i if yi = 1
`(0, 0)w0

i if yi = 0
c1i =

{
`(1, 1)w0

i + ∆i if yi = 1
`(1, 0)w0

i + ∆i if yi = 0
(5)

Then the h-player’s best response becomes the following cost-sensitive classification problem.

ĥ ∈ arg min
h∈H

n∑
i=1

{
c1ih(xi, ai) + c0i (1− h(xi, ai))

}
(6)

Therefore, as long as we have access to an oracle for the cost-sensitive classification problem, the
h-player can compute its best response. Note that, the notion of a cost-sensitive classification as an
oracle was also used by [4, 24]. In general, solving this problem is NP-hard, but there are several
efficient heuristics that perform well in practice. We provide further details about how we implement
this oracle in the section devoted to the experiments.

Best response of the λ-player: Since the fairness constraints depend on the weights non-linearly
(e.g., see Eq. (1)), finding the most violating constraint is a non-linear optimization problem. However,
we can guess the marginal probabilities over the protected groups. If we are correct, then the most
violating weight vector can be found by a linear program. Since we cannot exactly guess this
particular value, we instead discretize the set of marginal probabilities, iterate over them, and choose
the option with largest violation in fairness.

This intuition can be formalized as follows. We discretize the set of all marginals over |A| groups
by the following rule. First discretize [0, 1] as 0, δ, (1 + γ2)jδ for j = 1, 2, . . . ,M for M =
O(log1+γ2(1/δ)). This discretizes [0, 1]A into M |A| points, and then retain the discretized marginals
whose total sum is at most 1 +γ2, and discard all other points. Let us denote the set of such marginals
as Π(γ2,A). Algorithm 2 goes through all the marginals π in Π(γ2,A) and for each such tuple and
a pair of groups a, a′ finds the weight w which maximizes R(w, a, h)−R(w, a′, h). Note that this
can be solved using a linear Program as the weights assigned to a group is fixed by the marginal tuple
π. Out of all the solutions, the algorithm picks the one with the maximum value. Then it checks
whether this maximum violates the constraint (i.e., greater than ε). If so, it sets the corresponding λ
value to B and everything else to 0. Otherwise, it returns the zero vector. As the weight returned by
the LP need not correspond to a weight in N (γ1,W), it rounds the weight to the nearest weight in
N (γ1,W). For discretizing the marginals we will set δ = (1 + γ2)γ1n , which implies that the number

of LPs run by Algorithm 2 is at most O
(

log
|A|
1+γ2

(
n

(1+γ2)γ1

))
= O(poly(log n)), as the number of

groups is fixed.
Lemma 2. Algorithm 2 is an B(4γ1 + γ2)-approximate best response for the λ-player—i.e., for any
h ∈ H, it returns λ∗ such that U(h, λ∗) ≥ maxλ U(h, λ)−B(4γ1 + γ2).

Learning Algorithm: We now introduce our algorithm for the problem defined in Equation (4). In
this algorithm, the λ-player uses Algorithm 2 to compute an approximate best response, whereas
the h-player uses Regularized Follow the Leader (RFTL) algorithm [3, 32] as its learning algorithm.
RFTL is a classical algorithm for online convex optimization (OCO). In OCO, the decision maker
takes a decision xt ∈ K at round t, an adversary reveals a convex loss function ft : K → R, and
the decision maker suffers a loss of ft(xt). The goal is to minimize regret, which is defined as
maxu∈K{

∑T
t=1 ft(xt)− ft(u)}, i.e., the difference between the loss suffered by the learner and the

best fixed decision. RFTL requires a strongly convex regularization function R : K → R≥0, and
chooses xt according to the following rule:

xt = arg min
x∈K

η

t−1∑
s=1

∇fs(xs)Tx+R(x).

We use RFTL in our learning algorithm as follows. We set the regularization function R(x) =
1/2‖x‖22, and loss function ft(ht) = U(ht, λt) where λt is the approximate best-response to ht.

6

ALGORITHM 2: Best Response of the λ-player
Input: Training Set: {xi, ai, yi}ni=1, and hypothesis h ∈ H.
for each π ∈ Π(γ2,A) and a, a′ ∈ A do

Solve the following LP:

w(a, a′, π) = arg max
w

1

πa

∑
i:ai=a

wih(xi, a)− 1

πa′

∑
i:ai=a′

wih(xi, a
′)

s.t.
∑
i:ai=a

wi = πa
∑

i:ai=a′

wi = πa′ wi ≥ 0 ∀i ∈ [n]

n∑
i=1

wi = 1

Set val(a, a′, π) = 1
πa

∑
i:ai=a

w(a, a′, π)ih(xi, a)− 1
πa′

∑
i:ai=a′

w(a, a′, π)ih(xi, a
′)

end
Set (a∗1, a

∗
2, π
∗) = arg maxa,a′,π val(a, a′, π)

if val(a∗1, a
∗
2, π
∗) > ε then

Let w = w(a∗1, a
∗
2, π
∗).

For each i ∈ [n], let w′i be the upper-end point of the bucket containing wi.

return λa,a
′

w =

{
B if (a, a′, w) = (a∗1, a

∗
2, w

′)
0 o.w.

else
return ~0

Therefore, at iteration t the learner needs to solve the following optimization problem.

ht ∈ arg min
h∈H

η

t−1∑
s=1

∇hs
U(hs, λs)

Th+
1

2
‖h‖22. (7)

Here with slight abuse of notation we write H to include the set of randomized classifiers, so that
h(xi, ai) is interpreted as the probability that hypothesis h outputs 1 on an input (xi, ai). Now we
show that the optimization problem (Eq. (7)) can be solved as a cost-sensitive classification problem.
For a given λs, the best response of the learner is the following:

ĥ ∈ arg min
h∈H

n∑
i=1

c1i (λs)h(xi, ai) + c0i (λs)(1− h(xi, ai))

Writing Li(λs) = c1i (λs) − c0i (λs), the objective becomes
∑n
i=1 Li(λs)h(xi, ai). Hence,

∇hs
U(hs, λs) is linear in hs and equals the vector {Li(λs)}ni=1. With this observation, the ob-

jective in Equation (7) becomes

η
t∑

s=1

n∑
i=1

L(λs)h(xi, ai) +
1

2

n∑
i=1

(h(xi, ai))
2

≤ η
n∑
i=1

L

(
t∑

s=1

λs

)
h(xi, ai) +

1

2

n∑
i=1

h(xi, ai) =

n∑
i=1

(
ηL

(
t∑

s=1

λs

)
+

1

2

)
h(xi, ai).

The first inequality follows from two observations – L(λ) is linear in λ, and, since the predictions
h(xi, ai) ∈ [0, 1] we replace the quadratic term by a linear term, an upper bound.3

Finally, we observe that even though the number of weights in N (γ1,W) is exponential in n,
Algorithm 3 can be efficiently implemented. This is because the best response of the λ-player always
returns a solution where all the entries are zero or exactly one is set to B. Therefore, instead of
recording the entire λ vector the algorithm can just record the non-zero variables and there will be at
most T of them. The next lemma provides performance guarantees of Algorithm 3.
Theorem 2. Given a desired fairness level ε, if Algorithm 3 is run for T = O

(
n
ε2

)
rounds, then the

ensemble hypothesis ĥ provides the following guarantee:
n∑
i=1

w0
i `(ĥ(xi, ai), yi) ≤ min

h∈H

n∑
i=1

w0
i `(h(xi, ai), yi) +O(ε) and δwDP (ĥ) ≤ 2ε ∀w ∈ W.

3Without this relaxation we will have to solve a regularized version of cost-sensitive classification.

7

ALGORITHM 3: Approximate Fair Classifier (ApxFair)

Input: η > 0, weight w0 ∈ Rn+, number of rounds T
Set h1 = 0
for t ∈ [T] do

λt = Bestλ(ht)

Set λ̃t =
∑t
t′=1 λt′

ht+1 = arg minh∈H
∑n
i=1(ηLi(λ̃t) + 1/2)h(xi, ai)

end
return Uniform distribution over {h1, . . . , hT }.

4 Experiments

We used the following four datasets for our experiments.

• Adult. In this dataset [26], each example represents an adult individual, the outcome variable is
whether that individual makes over $50k a year, and the protected attribute is gender. We work
with a balanced and preprocessed version with 2,020 examples and 98 features, selected from the
original 48,882 examples.

• Communities and Crime. In this dataset from the UCI repository [31], each example represents a
community. The outcome variable is whether the community has a violent crime rate in the 70th
percentile of all communities, and the protected attribute is whether the community has a majority
white population. We used the full dataset of 1,994 examples and 123 features.

• Law School. Here each example represents a law student, the outcome variable is whether the law
student passed the bar exam or not, and the protected attribute is race (white or not white). We used
a preprocessed and balanced subset with 1,823 examples and 17 features [35].

• COMPAS. In this dataset, each example represents a defendant. The outcome variable is whether a
certain individual will recidivate, and the protected attribute is race (white or black). We used a
2,000 example sample from the full dataset.

For Adult, Communities and Crime, and Law School we used the preprocessed versions found in the
accompanying GitHub repo of [24]4. For COMPAS, we used a sample from the original dataset [1].

In order to evaluate different fair classifiers, we first split each dataset into five different random
80%-20% train-test splits. Then, we split each training set further into a 80%-20% train and validation
sets. Therefore, there were five random sets of 64%-16%-20% train-validation-test split. For each
split, we used the validation set to select the hyperparameters, train set to build a model, and the test
set to evaluate its performance (fairness and accuracy). Finally we aggregated these metrics across
the five different test sets to obtain average performance.

We compared our algorithm to: a pre-processing method of [22], an in-processing method of [4], a
post-processing method of [20]. For our algorithm 5, we use scikit-learn’s logistic regression [29]
as the learning algorithm in Algorithm 3. We also show the performance of unconstrained logistic
regression. To find the correct hyper-parameters (B, η, T , and Tm) for our algorithm, we fixed
T = 10 for EO, and T = 5 for DP, and used grid search for the hyper-parameters B, η, and Tm. The
tested values were {0.1, 0, 2, . . . , 1} for B, {0, 0.05, . . . , 1} for η, and {100, 200, . . . , 2000} for Tm.

Results. We computed the maximum violating weight by solving a LP that is the same as the one
used by the best response oracle (Algorithm 2), except that we restrict individual weights to be in the
range [(1− ε)/n, (1+ ε)/n], and keep protected group marginals the same. This keeps the `1 distance
between weighted and unweighted distributions within ε. Figure 2 compares the robustness of our
classifier against the other fair classifiers, and we see that for both DP and EO, the fairness violation
of our classifier grows more slowly as ε increases, compared to the others, suggesting robustness to
ε-perturbations of the distribution. Our algorithm also performs comparatively well in both accuracy
and fairness violation to the existing fair classifiers, though there is a trade-off between robustness
and test accuracy. The unweighted test accuracy of our algorithm drops by at most 5%-10% on all

4https://github.com/algowatchpenn/GerryFair
5Our code is available at this GitHub repo: https://github.com/essdeee/

Ensuring-Fairness-Beyond-the-Training-Data.

8

https://github.com/algowatchpenn/GerryFair
https://github.com/essdeee/Ensuring-Fairness-Beyond-the-Training-Data
https://github.com/essdeee/Ensuring-Fairness-Beyond-the-Training-Data

Figure 2: DP and EO Comparison. We vary the `1 distance ε on the x-axis and plot the fairness
violation on the y-axis. We use five random 80%-20% train-test splits to evaluate test accuracy and
fairness. The bands across each line show standard error. For both DP and EO fairness, our algorithm
is significantly more robust to reweightings that are within `1 distance ε on most datasets.

datasets, suggesting that robustness comes at the expense of test accuracy on the original distribution.
However, on the test set (which is typically obtained from the same source as the original training
data), the difference in fairness violation between our method and other methods is almost negligible
on all the datasets, except for the COMPAS dataset, where the difference it at most 12%. See the
supplementary material for full details of this trade-off.

5 Conclusion and Future Work

In this work, we study the design of fair classifiers that are robust to weighted perturbations of the
dataset. An immediate future work is to consider robustness against a broader class of distributions
like the set of distributions with a bounded f -divergence or Wasserstein distance from the training
distribution. We also considered statistical notions of fairness and it would be interesting to perform
a similar fairness vs robustness analysis for other notions of fairness.

6 Broader Impact

This paper addresses a topic of societal interest that has received considerable attention in the NeurIPS
community over the past several years. Two anticipated positive outcomes of our work include: (i)
increased awareness of the dataset robustness concerns when evaluating fairness criteria, and (ii)
algorithmic techniques for coping with these robustness concerns. Thus, we believe researchers and
practitioners who seek to develop classifiers that satisfy certain fairness criteria would be the primary
beneficiaries of this work. A possible negative outcome of the work is the use of the techniques to
declare some classifiers as “fair” without proper consideration of the semantics of the fairness criteria
or the underlying dataset used to evaluate these criteria. Thus, individuals subject to the decisions
made by such classifiers could be adversely affected. Finally, our experimental evaluations use “real
world” datasets, so the conclusions that we draw in our paper may have implications for individuals
associated with these data.

Acknowledgments: We thank Shipra Agrawal and Roxana Geambasu for helpful preliminary dis-
cussions. DM was supported through a Columbia Data Science Institute Post-Doctoral Fellowship.
DH was partially supported by NSF awards CCF-1740833 and IIS-15-63785 as well as a Sloan
Fellowship. SJ was partially supported by NSF award CNS-18-01426.

9

References
[1] Compas dataset. https://www.propublica.org/datastore/dataset/

compas-recidivism-risk-score-data-and-analysis, 2019. Accessed: 2019-10-26.

[2] Soroosh Shafieezadeh Abadeh, Peyman Mohajerin Mohajerin Esfahani, and Daniel Kuhn.
Distributionally robust logistic regression. In Advances in Neural Information Processing
Systems, pages 1576–1584, 2015.

[3] Jacob Abernethy, Elad E Hazan, and Alexander Rakhlin. Competing in the dark: An efficient
algorithm for bandit linear optimization. In 21st Annual Conference on Learning Theory, pages
263–273, 2008.

[4] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudik, John Langford, and Hanna Wallach. A
reductions approach to fair classification. In International Conference on Machine Learning,
pages 60–69, 2018.

[5] Daniel Alabi, Nicole Immorlica, and Adam Kalai. Unleashing linear optimizers for group-fair
learning and optimization. In Conference on Learning Theory, pages 2043–2066, 2018.

[6] Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V Nori. Fairsquare: probabilistic
verification of program fairness. Proceedings of the ACM on Programming Languages, 1
(OOPSLA):1–30, 2017.

[7] Rachel KE Bellamy, Kuntal Dey, Michael Hind, Samuel C Hoffman, Stephanie Houde,
Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilovic,
et al. Ai fairness 360: An extensible toolkit for detecting, understanding, and mitigating
unwanted algorithmic bias. arXiv preprint arXiv:1810.01943, 2018.

[8] Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen.
Robust solutions of optimization problems affected by uncertain probabilities. Management
Science, 59(2):341–357, 2013.

[9] Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man
is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. In
Advances in Neural Information Processing Systems, pages 4349–4357, 2016.

[10] Joy Buolamwini and Timnit Gebru. Gender Shades: Intersectional Accuracy Disparities in Com-
mercial Gender Classification. In Conference on Fairness, Accountability and Transparency,
pages 77–91, 2018.

[11] Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and
Kush R Varshney. Optimized pre-processing for discrimination prevention. In Advances in
Neural Information Processing Systems 30, pages 3992–4001, 2017.

[12] Robert S Chen, Brendan Lucier, Yaron Singer, and Vasilis Syrgkanis. Robust Optimization
for Non-Convex Objectives. In Advances in Neural Information Processing Systems, pages
4705–4714, 2017.

[13] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, pages 214–226, 2012.

[14] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkata-
subramanian. Certifying and removing disparate impact. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 259–268,
2015.

[15] Benjamin Fish, Jeremy Kun, and Ádám D Lelkes. A confidence-based approach for balancing
fairness and accuracy. In Proceedings of the 2016 SIAM International Conference on Data
Mining, pages 144–152. SIAM, 2016.

[16] Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29(1-2):79–103, 1999.

10

https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis

[17] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness testing: testing software for
discrimination. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 498–510, 2017.

[18] Rui Gao and Anton J Kleywegt. Distributionally robust stochastic optimization with wasserstein
distance. arXiv preprint arXiv:1604.02199, 2016.

[19] Nina Grgic-Hlaca, Muhammad Bilal Zafar, Krishna P Gummadi, and Adrian Weller. The case
for process fairness in learning: Feature selection for fair decision making. In NIPS Symposium
on Machine Learning and the Law, volume 1, page 2, 2016.

[20] Moritz Hardt, Eric Price, Nati Srebro, et al. Equality of Opportunity in Supervised Learning. In
Advances in Neural Information Processing Systems, pages 3315–3323, 2016.

[21] Elad Hazan. Introduction to online convex optimization. Foundations and Trends® in Opti-
mization, 2(3-4):157–325, 2016.

[22] Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without
discrimination. Knowledge and Information Systems, 33(1):1–33, 2012.

[23] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning through regu-
larization approach. In 2011 IEEE 11th International Conference on Data Mining Workshops,
pages 643–650. IEEE, 2011.

[24] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerryman-
dering: Auditing and learning for subgroup fairness. In International Conference on Machine
Learning, pages 2564–2572, 2018.

[25] Niki Kilbertus, Mateo Rojas Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik
Janzing, and Bernhard Schölkopf. Avoiding discrimination through causal reasoning. In
Advances in Neural Information Processing Systems, pages 656–666, 2017.

[26] Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In Kdd,
volume 96, pages 202–207, 1996.

[27] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In
Advances in Neural Information Processing Systems, pages 4066–4076, 2017.

[28] Hongseok Namkoong and John C Duchi. Stochastic gradient methods for distributionally robust
optimization with f-divergences. In Advances in Neural Information Processing Systems, pages
2208–2216, 2016.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[30] Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness
and calibration. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 5680–
5689. Curran Associates, Inc., 2017.

[31] Michael Redmond and Alok Baveja. A data-driven software tool for enabling cooperative
information sharing among police departments. European Journal of Operational Research,
141(3):660–678, 2002.

[32] Shai Shalev-Shwartz. Online learning: Theory, algorithms, and applications. PhD thesis, The
Hebrew University of Jerusalem, 2007.

[33] Saeed Sharifi-Malvajerdi, Michael Kearns, and Aaron Roth. Average individual fairness:
Algorithms, generalization and experiments. In Advances in Neural Information Processing
Systems, pages 8240–8249, 2019.

11

[34] Florian Tramer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, Jean-Pierre Hubaux,
Mathias Humbert, Ari Juels, and Huang Lin. Fairtest: Discovering unwarranted associations
in data-driven applications. In 2017 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 401–416. IEEE, 2017.

[35] Linda F Wightman. LSAC national longitudinal bar passage study. Technical report, LSAC
Research Report Series, 1998.

[36] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi.
Fairness beyond disparate treatment & disparate impact: Learning classification without dis-
parate mistreatment. In Proceedings of the 26th International Conference on World Wide Web,
pages 1171–1180, 2017.

[37] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning Fair Represen-
tations. In International Conference on Machine Learning, pages 325–333, 2013.

[38] Junzhe Zhang and Elias Bareinboim. Fairness in decision-making—the causal explanation
formula. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

12

A Appendix

A.1 Maximum violating weight linear program

In our experiments, we use the following linear program to find the maximum fairness violating
weighted distribution, while keeping individual weights to the range [(1− ε)/n, (1 + ε)/n], and keep
protected group marginals the same:

max
w

1

πa

∑
i:ai=a

wih(xi, a)− 1

π′a

∑
i:ai=a′

wih(xi, a
′)

s.t.
∑
i:ai=a

wi = πa ∀a ∈ A

1− ε
n
≤ wi ≤

1 + ε

n
∀i ∈ [n]∑

i

wi = 1.

Here, the πa are the original protected group marginal probabilities.

A.2 Proof of Theorem 1

The proof of this theorem is similar to the proof of Theorem 7 in [12] except that we use additive
approximate oracle. Let v∗ = minh∈HW maxw∈W `(h,w). Recall that the w-player plays projected
gradient descent algorithm, whereas the h-player uses ApxFair(·) to generate α-approximate best
response. By the guarantee of the projected gradient descent algorithm, we have

1

Tm

Tm∑
t=1

`(ht, wt) ≥ max
w∈W

1

Tm

Tm∑
t=1

`(ht, w)− max
w∈W
‖w‖2

√
2

Tm

≥ max
w∈W

1

Tm

Tm∑
t=1

`(ht, w)−
√

2

Tm

The last inequality follows because the weights always sum to one, so ‖w‖2 ≤
√
‖w‖1 ≤ 1.

v∗ = min
h∈HW

max
w∈W

`(h,w) ≥ min
h∈HW

1

Tm

Tm∑
t=1

`(h,wt) ≥
1

Tm

Tm∑
t=1

min
h∈HW

`(h,wt)

≥ 1

Tm

(
Tm∑
t=1

`(ht, wt)− α

)
=

1

Tm

Tm∑
t=1

`(ht, wt)− α

≥ max
w∈W

1

Tm

Tm∑
t=1

`(ht, w)−
√

2

Tm
− α

The third inequality follows from the α-approximate fairness of ApxFair(·). Now rearranging the
last inequality we get maxw∈W

1
Tm

∑Tm

t=1 `(ht, w) ≤ v∗ +
√

2/Tm + α, the desired result.

A.3 Proof of Lemma 1

Recall the definition of demographic parity with respect to a weight vector w.

δwDP (f) =

∣∣∣∣∣
∑
i:ai=a

wif(xi, a)∑
i:ai=a

wi
−
∑
i:ai=a′

wif(xi, a
′)∑

i:ai=a′
wi

∣∣∣∣∣
For a given weight w, we construct a new weight w′ = (w′1, . . . , w

′
n) as follows. For each i ∈ [n],

w′i is the upper-end point of the bucket containing wi. Note that this guarantees that either wi ≤ δ or
w′i

1+γ1
≤ wi ≤ w′i. We now establish the following lower bound.∑

i:ai=a
wif(xi, a)∑

i:ai=a
wi

≥ 1

1 + γ1

∑
i:ai=a

w′if(xi, a)∑
i:ai=a

w′i
≥ (1− γ1)

∑
i:ai=a

w′if(xi, a)∑
i:ai=a

w′i
(8)

13

Also note that,∑
i:ai=a

w′i ≤
∑

i:ai=a,wi>δ

wi +
∑

i:ai=a,wi≤δ

δ ≤ (1 + γ1)
∑

i:ai=a,wi>δ

w′i + nδ

This gives us the following.∑
i:ai=a

wif(xi, a)∑
i:ai=a

wi
≤

∑
i:ai=a

w′if(xi, a)
1

1+γ1

∑
i:ai=a

w′i − nδ
1+γ1

≤ (1 + γ1)

∑
i:ai=a

w′if(xi, a)∑
i:ai=a

w′i − nδ

Now we substitute, δ = γ1/(2n) and get the following upper bound.∑
i:ai=a

wif(xi, a)∑
i:ai=a

wi
≤ (1 + γ1)

∑
i:ai=a

w′if(xi, a)∑
i:ai=a

w′i − γ1/2

≤ 1 + γ1
1− γ1

∑
i:ai=a

w′if(xi, a)∑
i:ai=a

w′i
≤ (1 + 3γ1)

∑
i:ai=a

w′if(xi, a)∑
i:ai=a

w′i
(9)

Now we bound δwDP (f) using the results above. Suppose
∑

i:ai=a wif(xi,a)∑
i:ai=a wi

>
∑

i:ai=a′ wif(xi,a
′)∑

i:ai=a′ wi
.

Then we have,

δwDP (f) ≤ (1 + 3γ1)

∑
i:ai=a

w′if(xi, a)∑
i:ai=a

w′i
− (1− γ1)

∑
i:ai=a

w′if(xi, a)∑
i:ai=a

w′i

≤
∑
i:ai=a

w′if(xi, a)∑
i:ai=a

w′i
−
∑
i:ai=a

w′if(xi, a)∑
i:ai=a

w′i
+ 4γ1

≤ δw
′

DP (f) + 4γ1

The first inequality uses the upper bound for the first term (Eq. (9)) and the lower bound for the
second term (Eq. (8)). The proof when the first term is less than the second term in the definition of
δwDP (f) is similar. Therefore, if we guarantee that δw

′

DP (f) ≤ ε, we have δwDP (f) ≤ ε+ 4γ1.

A.4 Proof of Lemma 2

We need to consider two cases. First, suppose that R(w, a, h) − R(w, a′, h) ≤ ε − 4γ1 for all
w ∈ N (γ1,W) and a, a′ ∈ A. Then, δwDP (h) = supa,a′∈A |R(w, a, h)−R(w, a′, h)| ≤ ε − 4γ1
for any weightw ∈ N (γ1,W). Therefore, by Lemma 1, for any weightw ∈ W , we have δwDP (h) ≤ ε.
Now, for any marginal π ∈ Π(γ2,A), and a, a′ consider the corresponding linear program. We
show that the optimal value of the LP is bounded by ε. Indeed, consider any weight w satisfying the
marginal conditions, i.e.,

∑
i:ai=a

wi = πa and
∑
i:ai=a′

wi = πa′ . Then, the objective of the LP is

1

πa

∑
i:ai=a

wih(xi, a)− 1

πa′

∑
i:ai=a′

wih(xi, a
′) ≤ sup

w∈W
δwDP (h) ≤ ε.

This implies that the optimal value of the LP is always less than ε. So Algorithm 2 returns the zero
vector, which is also the optimal solution in this case.

Second, there exists w ∈ N (γ1,W) and groups a, a′ such that R(w, a, h)−R(w, a′, h) > ε− 4γ1
and in particular let (w∗, a∗1, a

∗
2) ∈ arg maxw,a,a′ T (w, a, h)−T (w, a′, h). Then the optimal solution

sets λa
∗
1 ,a
∗
2

w∗ to B and everything else to zero. Let πa∗1 and πa∗2 be the corresponding marginals for
groups a∗1 and a∗2, and let π′a∗1 and π′a∗2 be the upper-end points of the buckets containing πa∗1 and
πa∗2 respectively. As πa∗1 is marginal for a weight belonging to the set N (γ1,W) and any weight in
N (γ1,W) puts at least 2γ1/n on any training instance, we are always guaranteed that

πa∗1 ≥
2γ1
n
≥ δ

1 + γ2
.

This guarantees the following inequalities

π′a∗1
1 + γ2

≤ πa∗1 ≤ π
′
a∗1
.

14

Similarly, we can show that
π′a∗2

1 + γ2
≤ πa∗2 ≤ π

′
a∗2
.

Now, consider the LP corresponding to the marginal π′ and subgroups a∗1 and a∗2.

1

π′a∗1

∑
i:ai=a∗1

wih(xi, a
∗
1)− 1

π′a∗2

∑
i:ai=a∗2

wih(xi, a
∗
2)

≥ 1

(1 + γ2)πa∗1

∑
i:ai=a∗1

wih(xi, a
∗
1)− 1

πa∗2

∑
i:ai=a∗2

wih(xi, a
∗
2)

≥ (1− γ2)R(w, a∗1, h)−R(w, a∗2, h)

≥ R(w, a∗1, h)−R(w, a∗2, h)− γ2
Therefore, if the maximum value of R(w, a, h)−R(w, a′, h) over all weights w and subgroups a, a′
is larger than ε+γ2, the value of the corresponding LP will be larger than ε and the algorithm will set
the correct coordinate of λ toB. On the other hand, if the maximum value ofR(w, a, h)−R(w, a′, h)
is between ε− 4γ1 and ε+ γ2. In that case, the algorithm might return the zero vector with value
zero. However, the optimal value in that case can be as large as B × (4γ1 + γ2).

A.5 Proof of Theorem 2

We first recall the following guarantee about the performance of the RFTL algorithm.
Lemma 3 (Restated Theorem 5.6 from [21]). The RFTL algorithm achieves the following regret
bound for any u ∈ K

T∑
t=1

ft(xt)− ft(u) ≤ η

4

T∑
t=1

‖∇ft(xt)‖2∞ +
R(u)−R(x1)

2η

Moreover, if ‖∇ft(xt)‖∞ ≤ GR for all t and R(u) − R(x1) ≤ DR for all u ∈ K, then we can
optimize η to get the following bound:

∑T
t=1 ft(xt)− ft(u) ≤ DRGR

√
T .

The statement of this theorem follows from two lemmas. Lemma 4 proves that if Algorithm 3 is
run for T rounds, it computes a (2M +B)

√
n/T +B(4γ1 + γ2)-minmax equilibrium of the game

U(h, λ). On the other hand, Lemma 5 proves that any ν-approximate solution (ĥ, λ̂) of the game
U(h, λ) has two properties

1. ĥ minimizes training loss with respect to the weight w0 up to an additive error of 2ν.
2. ĥ provides ε-fairness guarantee with respect to the set of all weights inW upto an additive error fo

M+2ν
B .

Now substituting ν = (2M +B)
√
n/T +B(4γ1 + γ2) we get the following two guarantees:

n∑
i=1

w0
i `(ĥ(xi, ai), yi) ≤ min

h∈H

n∑
i=1

w0
i `(h(xi, ai), yi) + 2(2M +B)

√
n

T
+ 2B(4γ1 + γ2)

and

∀w ∈ W δwDP (ĥ) ≤ ε+
M

B
+ 2(4γ1 + γ2) +

(
1 +

2M

B

)√
n

T
.

Now we can set the following values for the parameters B = 3M/ε, T = 36n/ε2, 4γ1 + γ2 = ε/6,
and get the desired result.

Lemma 4. Suppose |`(y, ŷ)| ≤ M for all y, ŷ. Then Algorithm 3 computes a (2M + B)
√
n/T +

B(4γ1 + γ2)-approximate minmax equilibrium of the game U(h, λ) for h ∈ H and λ ∈
R|N(γ1,W)|×|A|2

+ , ‖λ‖1 ≤ B.

Proof. At round t, the cost is linear in ht, i.e., ft(ht) =
∑n
i=1 L(λt)iht(xi, ai). Let us write

λ̄ = 1
T λt and D to be the uniform distribution over h1, . . . , hT . Since we chose R(x) = 1

2‖x‖
2
2 as

15

the regularization function and the actions are [0, 1] vectors in n-dimensional space, the diameter DR

is bounded by
√
n. On the other hand, ‖∇ft(ht)‖∞ = maxi |L(λt)i|. We now bound |L(λt)i| for

an arbitrary i. Suppose yi = 1. The proof when y = 0 is identical.

|L(λt)i| =
∣∣c1i − c0i ∣∣ =

∣∣w0
i

∣∣ |`(0, 1)− `(1, 1)|+ |∆i|
≤ 2M +B

The last line follows as w0
i ≤ 1 and since λt is an approximate best reponse computed by Algorithm 2,

exactly one λ variable is set to B. Therefore, by Theorem 3, for any hypothesis h ∈ H,
T∑
t=1

n∑
i=1

L(λt)iht(xi, ai)−
n∑
i=1

L(λt)ih(xi, ai) ≤ (2M +B)
√
nT

⇔
T∑
t=1

U(ht, λt)− U(h, λt) ≤ (2M +B)
√
nT

⇔ 1

T

T∑
t=1

U(ht, λt) ≤ U(h, λ̄) +
(2M +B)

√
n√

T
(10)

On the other hand, λt is an approximate B(4γ1 + γ2)-approximate best response to ht for each round
t. Therefore, for any λ we have,

T∑
t=1

U(ht, λt) ≥
T∑
t=1

U(ht, λ)−BT (4γ1 + γ2)

⇔ 1

T

T∑
t=1

U(ht, λt) ≥ Eh∼DU(h, λ)−B(4γ1 + γ2) (11)

Equations (10) and (11) immediately imply that the distribution D and λ̄ is a (2M + B)
√
n/T +

B(4γ1 + γ2)-approximate equilibrium of the game U(h, λ) [16].

Lemma 5. Let (ĥ, λ̂) be a ν-approximate minmax equilibrium of the game U(h, λ). Then,
n∑
i=1

w0
i `(ĥ(xi, ai), yi) ≤ min

h∈H

n∑
i=1

w0
i `(h(xi, ai), yi) + 2ν

and
∀w ∈ W δwDP (ĥ) ≤ ε+

M + 2ν

B

Proof. Let (ĥ, λ̂) be a ν-approximate minmax equilibrium of the game U(h, λ), i.e.,

∀h U(ĥ, λ̂) ≤ U(h, λ̂) + ν and ∀λ U(ĥ, λ̂) ≥ U(ĥ, λ)− ν

Let h∗ be the optimal feasible hypothesis. First suppose that ĥ is feasible, i.e., T (w, a, ĥ) −
T (w, a′, ĥ) ≤ ε− 4γ1 for all w ∈ N(γ1,W) and a, a′ ∈ A. In that case, the optimal λ is the zero
vector and maxλ U(ĥ, λ) =

∑n
i=1 w

0
i `(h(xi, ai), yi). Therefore,

n∑
i=1

w0
i `(ĥ(xi, ai), yi) = max

λ
U(ĥ, λ) ≤ U(ĥ, λ̂) + ν ≤ U(h∗, λ̂) + 2ν ≤

n∑
i=1

w0
i `(h

∗(xi, ai), yi) + 2ν

The last inequality follows because h∗ is feasible and λ is non-negative. Now consider the case when
ĥ is not feasible, i.e., there exists w, a, a′ such that T (w, a, ĥ)− T (w, a′, ĥ) > ε− 4γ1. In that case,
let (ŵ, â, â′) be the tuple with maximum violation and the optimal λ, say λ∗, sets this coordinate to
B and everything else to zero. Then
n∑
i=1

w0
i `(ĥ(xi, ai), yi) = U(ĥ, λ∗)−B(T (ŵ, â, ĥ)− T (ŵ, â′, ĥ)− ε+ 4γ1)

≤ U(ĥ, λ∗) ≤ U(ĥ, λ̂) + ν ≤ U(h∗, λ̂) + 2ν ≤
n∑
i=1

w0
i `(h

∗(xi, ai), yi) + 2ν.

16

Figure 3: Fairness v. Accuracy. We plot the accuracy (x-axis) vs. the fairness violation (y-axis) for
demographic parity and equalized odds for our robust and fair classifier. The reported values are
averages over five random 80%-20% train-test splits, with standard error bars. We observe that the
fairness violation is mostly comparable to existing state-of-the-art fair classifiers, though robustness
comes at the expense of somewhat lower test accuracy.

The previous chain of inequalities also give

B

(
max

(w,a,a′)
T (w, a, ĥ)− T (w, a′, ĥ)− ε+ 4γ1

)
≤

n∑
i=1

w0
i `(h

∗(xi, ai), yi) + 2ν ≤M + 2ν.

This implies that for all weights w ∈ N(γ1,W) the maximum violation of the fairness constraint is
(M + 2ν)/B, which in turn implies a bound of at most (M + 2ν)/B + ε on the fairness constraint
with respect to any weight w ∈ W .

B Fairness vs. Accuracy Tradeoff

In Figure 3, we see the accuracy and fairness violation of our algorithm against the other state-of-the-
art fair classifiers. We find that, though the fairness violation is mostly competitive with the existing
fair classifiers, robustness against weighted perturbations comes at the expense of somewhat lower
test accuracy.

17

	Introduction
	Problem and Definitions
	Design
	Meta Algorithm
	Approximate Fair Classifier
	Discretization of the Weights

	Setting up a Two-Player Zero-Sum Game

	Experiments
	Conclusion and Future Work
	Broader Impact
	Appendix
	Maximum violating weight linear program
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 2

	Fairness vs. Accuracy Tradeoff

