
DeepXplore: Automated Whitebox Testing
of Deep Learning Systems

Kexin Pei⋆, Yinzhi Cao†, Junfeng Yang⋆, Suman Jana⋆
⋆Columbia University, †Lehigh University

ABSTRACT
Deep learning (DL) systems are increasingly deployed in
safety- and security-critical domains including self-driving
cars and malware detection, where the correctness and pre-
dictability of a system’s behavior for corner case inputs are
of great importance. Existing DL testing depends heavily
on manually labeled data and therefore often fails to expose
erroneous behaviors for rare inputs.

We design, implement, and evaluate DeepXplore, the first
whitebox framework for systematically testing real-world DL
systems. First, we introduce neuron coverage for systemati-
cally measuring the parts of a DL system exercised by test
inputs. Next, we leverage multiple DL systems with similar
functionality as cross-referencing oracles to avoid manual
checking. Finally, we demonstrate how finding inputs for
DL systems that both trigger many differential behaviors and
achieve high neuron coverage can be represented as a joint
optimization problem and solved efficiently using gradient-
based search techniques.

DeepXplore efficiently finds thousands of incorrect cor-
ner case behaviors (e.g., self-driving cars crashing into guard
rails and malware masquerading as benign software) in state-
of-the-art DL models with thousands of neurons trained on
five popular datasets including ImageNet and Udacity self-
driving challenge data. For all tested DL models, on average,
DeepXplore generated one test input demonstrating incorrect
behavior within one second while running only on a commod-
ity laptop. We further show that the test inputs generated by
DeepXplore can also be used to retrain the corresponding DL
model to improve the model’s accuracy by up to 3%.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5085-3/17/10. . . $15.00
https://doi.org/10.1145/3132747.3132785

CCS CONCEPTS
• Computing methodologies → Neural networks; • Com-
puter systems organization → Neural networks; Reliabil-
ity; • Software and its engineering → Software testing and
debugging;

KEYWORDS
Deep learning testing, differential testing, whitebox testing

ACM Reference Format:
Kexin Pei, Yinzhi Cao, Junfeng Yang, Suman Jana. 2017. Deep-
Xplore: Automated Whitebox Testing of Deep Learning Systems.
In Proceedings of ACM Symposium on Operating Systems Prin-
ciples (SOSP ’17). ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3132747.3132785

1 INTRODUCTION
Over the past few years, Deep Learning (DL) has made
tremendous progress, achieving or surpassing human-level
performance for a diverse set of tasks including image classi-
fication [31, 66], speech recognition [83], and playing games
such as Go [64]. These advances have led to widespread adop-
tion and deployment of DL in security- and safety-critical
systems such as self-driving cars [10], malware detection [88],
and aircraft collision avoidance systems [35].

This wide adoption of DL techniques presents new chal-
lenges as the predictability and correctness of such systems
are of crucial importance. Unfortunately, DL systems, despite
their impressive capabilities, often demonstrate unexpected or
incorrect behaviors in corner cases for several reasons such as
biased training data, overfitting, and underfitting of the mod-
els. In safety- and security-critical settings, such incorrect
behaviors can lead to disastrous consequences such as a fatal
collision of a self-driving car. For example, a Google self-
driving car recently crashed into a bus because it expected
the bus to yield under a set of rare conditions but the bus
did not [27]. A Tesla car in autopilot crashed into a trailer
because the autopilot system failed to recognize the trailer as
an obstacle due to its “white color against a brightly lit sky”
and the “high ride height” [73]. Such corner cases were not
part of Google’s or Tesla’s test set and thus never showed up
during testing.

https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785

SOSP ’17, October 28, 2017, Shanghai, China K. Pei, Y. Cao, J. Yang, S. Jana

Therefore, safety- and security-critical DL systems, just
like traditional software, must be tested systematically for diff-
erent corner cases to detect and fix ideally any potential flaws
or undesired behaviors. This presents a new systems problem
as automated and systematic testing of large-scale, real-world
DL systems with thousands of neurons and millions of param-
eters for all corner cases is extremely challenging.

The standard approach for testing DL systems is to gather
and manually label as much real-world test data as possi-
ble [1, 3]. Some DL systems such as Google self-driving cars
also use simulation to generate synthetic training data [4].
However, such simulation is completely unguided as it does
not consider the internals of the target DL system. Therefore,
for the large input spaces of real-world DL systems (e.g., all
possible road conditions for a self-driving car), none of these
approaches can hope to cover more than a tiny fraction (if any
at all) of all possible corner cases.

Recent works on adversarial deep learning [26, 49, 72]
have demonstrated that carefully crafted synthetic images by
adding minimal perturbations to an existing image can fool
state-of-the-art DL systems. The key idea is to create synthetic
images such that they get classified by DL models differently
than the original picture but still look the same to the human
eye. While such adversarial images expose some erroneous
behaviors of a DL model, the main restriction of such an
approach is that it must limit its perturbations to tiny invisible
changes or require manual checks. Moreover, just like other
forms of existing DL testing, the adversarial images only
cover a small part (52.3%) of DL system’s logic as shown in
§ 6. In essence, the current machine learning testing practices
for finding incorrect corner cases are analogous to finding
bugs in traditional software by using test inputs with low code
coverage and thus are unlikely to find many erroneous cases.

The key challenges in automated systematic testing of large-
scale DL systems are twofold: (1) how to generate inputs that
trigger different parts of a DL system’s logic and uncover
different types of erroneous behaviors, and (2) how to identify
erroneous behaviors of a DL system without manual label-
ing/checking. This paper describes how we design and build
DeepXplore to address both challenges.

First, we introduce the concept of neuron coverage for
measuring the parts of a DL system’s logic exercised by a set
of test inputs based on the number of neurons activated (i.e.,
the output values are higher than a threshold) by the inputs.
At a high level, neuron coverage of DL systems is similar to
code coverage of traditional systems, a standard empirical
metric for measuring the amount of code exercised by an
input in a traditional software. However, code coverage itself
is not a good metric for estimating coverage of DL systems
as most rules in DL systems, unlike traditional software, are
not written manually by a programmer but rather are learned
from training data. In fact, we find that for most of the DL

(a) Input 1 (b) Input 2 (darker version of 1)
Figure 1: An example erroneous behavior found by DeepXplore
in Nvidia DAVE-2 self-driving car platform. The DNN-based
self-driving car correctly decides to turn left for image (a) but
incorrectly decides to turn right and crashes into the guardrail
for image (b), a slightly darker version of (a).

systems that we tested, even a single randomly picked test
input was able to achieve 100% code coverage while the
neuron coverage was less than 10%.

Next, we show how multiple DL systems with similar func-
tionality (e.g., self-driving cars by Google, Tesla, and GM)
can be used as cross-referencing oracles to identify erroneous
corner cases without manual checks. For example, if one self-
driving car decides to turn left while others turn right for the
same input, one of them is likely to be incorrect. Such differ-
ential testing techniques have been applied successfully in the
past for detecting logic bugs without manual specifications in
a wide variety of traditional software [6, 11, 14, 15, 45, 86].
In this paper, we demonstrate how differential testing can be
applied to DL systems.

Finally, we demonstrate how the problem of generating test
inputs that maximize neuron coverage of a DL system while
also exposing as many differential behaviors (i.e., differences
between multiple similar DL systems) as possible can be for-
mulated as a joint optimization problem. Unlike traditional
programs, the functions approximated by most popular Deep
Neural Networks (DNNs) used by DL systems are differen-
tiable. Therefore, their gradients with respect to inputs can
be calculated accurately given whitebox access to the corre-
sponding model. In this paper, we show how these gradients
can be used to efficiently solve the above-mentioned joint
optimization problem for large-scale real-world DL systems.

We design, implement, and evaluate DeepXplore, to the
best of our knowledge, the first efficient whitebox testing
framework for large-scale DL systems. In addition to maxi-
mizing neuron coverage and behavioral differences between
DL systems, DeepXplore also supports adding custom con-
straints by the users for simulating different types of realistic
inputs (e.g., different types of lighting and occlusion for im-
ages/videos). We demonstrate that DeepXplore efficiently
finds thousands of unique incorrect corner case behaviors
(e.g., self-driving cars crashing into guard rails) in 15 state-
of-the-art DL models trained using five real-world datasets

DeepXplore SOSP ’17, October 28, 2017, Shanghai, China

including Udacity self-driving car challenge data, image data
from ImageNet and MNIST, Android malware data from
Drebin, and PDF malware data from Contagio/VirusTotal.
For all of the tested DL models, on average, DeepXplore
generated one test input demonstrating incorrect behavior
within one second while running on a commodity laptop. The
inputs generated by DeepXplore achieved 34.4% and 33.2%
higher neuron coverage on average than the same number of
randomly picked inputs and adversarial inputs [26, 49, 72]
respectively. We further show that the test inputs generated
by DeepXplore can be used to retrain the corresponding DL
model to improve classification accuracy as well as identify
potentially polluted training data. We achieve up to 3% im-
provement in classification accuracy by retraining a DL model
on inputs generated by DeepXplore compared to retraining
on the same number of random or adversarial inputs.

Our main contributions are:
∙ We introduce neuron coverage as the first whitebox

testing metric for DL systems that can estimate the
amount of DL logic explored by a set of test inputs.

∙ We demonstrate that the problem of finding a large
number of behavioral differences between similar DL
systems while maximizing neuron coverage can be for-
mulated as a joint optimization problem. We present
a gradient-based algorithm for solving this problem
efficiently.

∙ We implement all of these techniques as part of Deep-
Xplore, the first whitebox DL-testing framework that
exposed thousands of incorrect corner case behaviors
(e.g., self-driving cars crashing into guard rails as
shown in Figure 1) in 15 state-of-the-art DL models
with a total of 132, 057 neurons trained on five popular
datasets containing around 162 GB of data.

∙ We show that the tests generated by DeepXplore can
also be used to retrain the corresponding DL systems
to improve classification accuracy by up to 3%.

2 BACKGROUND
2.1 DL Systems
We define a DL system to be any software system that in-
cludes at least one Deep Neural Network (DNN) component.
Note that some DL systems might comprise solely of DNNs
(e.g., self-driving car DNNs predicting steering angles with-
out any manual rules) while others may have some DNN
components interacting with other traditional software com-
ponents to produce the final output.

The development process of the DNN components of a
DL system is fundamentally different from traditional soft-
ware development. Unlike traditional software, where the
developers directly specify the logic of the system, the DNN
components learn their rules automatically from data. The

Traditional software development ML system development
Figure 2: Comparison between traditional and ML system de-
velopment processes.

developers of DNN components can indirectly influence the
rules learned by a DNN by modifying the training data, fea-
tures, and the model’s architectural details (e.g., number of
layers) as shown in Figure 2.

As a DNN’s rules are mostly unknown even to its develop-
ers, testing and fixing of erroneous behaviors of DNNs are
crucial in safety-critical settings. In this paper, we primarily
focus on automatically finding inputs that trigger erroneous
behaviors in DL systems and provide preliminary evidence
about how these inputs can be used to fix the buggy behavior
by augmenting or filtering the training data in § 7.3.

2.2 DNN Architecture
DNNs are inspired by human brains with millions of inter-
connected neurons. They are known for their amazing abil-
ity to automatically identify and extract the relevant high-
level features from raw inputs without any human guidance
besides labeled training data. In recent years, DNNs have
surpassed human performance in many application domains
due to increasing availability of large datasets [20, 38, 47],
specialized hardware [34, 50], and efficient training algo-
rithms [31, 39, 66, 71].

A DNN consists of multiple layers, each containing multi-
ple neurons as shown in Figure 3. A neuron is an individual
computing unit inside a DNN that applies an activation func-
tion on its inputs and passes the result to other connected
neurons (see Figure 3). The common activation functions in-
clude sigmoid, hyperbolic tangent, or ReLU (Rectified Linear
Unit) [48]. A DNN usually has at least three (often more)
layers: one input, one output, and one or more hidden layers.
Each neuron in one layer has directed connections to the neu-
rons in the next layer. The numbers of neurons in each layer
and the connections between them vary significantly across
DNNs. Overall, a DNN can be defined mathematically as a
multi-input, multi-output parametric function 𝐹 composed
of many parametric sub-functions representing different neu-
rons.

Each connection between the neurons in a DNN is bound
to a weight parameter characterizing the strength of the con-
nection between the neurons. For supervised learning, the

SOSP ’17, October 28, 2017, Shanghai, China K. Pei, Y. Cao, J. Yang, S. Jana

weights of the connections are learned during training by
minimizing a cost function over the training data. DNNs can
be trained using different training algorithms, but gradient
descent using backpropagation is by far the most popular
training algorithm for DNNs [60].

Each layer of the network transforms the information con-
tained in its input to a higher-level representation of the data.
For example, consider a pre-trained network shown in Fig-
ure 4b for classifying images into two categories: human faces
and cars. The first few hidden layers transform the raw pixel
values into low-level texture features like edges or colors and
feed them to the deeper layers [87]. The last few layers, in
turn, extract and assemble the meaningful high-level abstrac-
tions like noses, eyes, wheels, and headlights to make the
classification decision.

2.3 Limitations of Existing DNN Testing
Expensive labeling effort. Existing DNN testing techniques
require prohibitively expensive human effort to provide cor-
rect labels/actions for a target task (e.g., self-driving a car,
image classification, and malware detection). For complex
and high-dimensional real-world inputs, human beings, even
domain experts, often have difficulty in efficiently performing
a task correctly for a large dataset. For example, consider a
DNN designed to identify potentially malicious executable
files. Even a security professional will have trouble determin-
ing whether an executable is malicious or benign without
executing it. However, executing and monitoring a malware
inside a sandbox incur significant performance overhead and
therefore makes manual labeling significantly harder to scale
to a large number of inputs.
Low test coverage. None of the existing DNN testing
schemes even try to cover different rules of the DNN. There-
fore, the test inputs often fail to uncover different erroneous
behaviors of a DNN.

For example, DNNs are often tested by simply dividing a
whole dataset into two random parts—one for training and the
other for testing. The testing set in such cases may only exer-
cise a small subset of all rules learned by a DNN. Recent re-
sults involving adversarial evasion attacks against DNNs have

Figure 3: A simple DNN and the computations performed by
each of its neurons.

(a) A program with a rare branch (b) A DNN for detecting cars and faces
Figure 4: Comparison between program flows of a traditional
program and a neural network. The nodes in gray denote the
corresponding basic blocks or neurons that participated while
processing an input.
demonstrated the existence of some corner cases where DNN-
based image classifiers (with state-of-the-art performance on
randomly picked testing sets) still incorrectly classify syn-
thetic images generated by adding humanly imperceptible
perturbations to a test image [26, 29, 52, 63, 79, 85]. How-
ever, the adversarial inputs, similar to random test inputs, also
only cover a small part the rules learned by a DNN as they are
not designed to maximize coverage. Moreover, they are also
inherently limited to small imperceptible perturbations around
a test input as larger perturbations will visually change the
input and therefore will require manual inspection to ensure
correctness of the DNN’s decision.
Problems with low-coverage DNN tests. To better under-
stand the problem of low test coverage of rules learned by a
DNN, we provide an analogy to a similar problem in testing
traditional software. Figure 4 shows a side-by-side compari-
son of how a traditional program and a DNN handle inputs
and produce outputs. Specifically, the figure shows the sim-
ilarity between traditional software and DNNs: in software
program, each statement performs a certain operation to trans-
form the output of previous statement(s) to the input to the
following statement(s), while in DNN, each neuron trans-
forms the output of previous neuron(s) to the input of the
following neuron(s). Of course, unlike traditional software,
DNNs do not have explicit branches but a neuron’s influ-
ence on the downstream neurons decreases as the neuron’s
output value gets lower. A lower output value indicates less
influence and vice versa. When the output value of a neuron
becomes zero, the neuron does not have any influence on the
downstream neurons.

As demonstrated in Figure 4a, the problem of low cover-
age in testing traditional software is obvious. In this case,
the buggy behavior will never be seen unless the test input
is 0xdeadbeef. The chances of randomly picking such a
value is very small. Similarly, low-coverage test inputs will

DeepXplore SOSP ’17, October 28, 2017, Shanghai, China

also leave different behaviors of DNNs unexplored. For ex-
ample, consider a simplified neural network, as shown in
Figure 4b, that takes an image as input and classifies it into
two different classes: cars and faces. The text in each neuron
(represented as a node) denotes the object or property that the
neuron detects1, and the number in each neuron is the real
value outputted by that neuron. The number indicates how
confident the neuron is about its output. Note that randomly
picked inputs are highly unlikely to set high output values
for the unlikely combination of neurons. Therefore, many
incorrect DNN behaviors will remain unexplored even after
performing a large number of random tests. For example, if
an image causes neurons labeled as “Nose” and “Red” to
produce high output values and the DNN misclassifies the
input image as a car, such a behavior will never be seen during
regular testing as the chances of an image containing a red
nose (e.g., a picture of a clown) is very small.

3 OVERVIEW
In this section, we provide a general overview of DeepXplore,
our whitebox framework for systematically testing DNNs for
erroneous corner case behaviors. The main components of
DeepXplore are shown in Figure 5. DeepXplore takes unla-
beled test inputs as seeds and generates new tests that cover a
large number of neurons (i.e., activates them to a value above
a customizable threshold) while causing the tested DNNs to
behave differently. Specifically, DeepXplore solves a joint op-
timization problem that maximizes both differential behaviors
and neuron coverage. Note that both goals are crucial for thor-
ough testing of DNNs and finding diverse erroneous corner
case behaviors. High neuron coverage alone may not induce
many erroneous behaviors while just maximizing different
behaviors might simply identify different manifestations of
the same underlying root cause.

DeepXplore also supports enforcing of custom domain-
specific constraints as part of the joint optimization process.
For example, the value of an image pixel has to be between 0
and 255. Such domain-specific constraints can be specified
by the users of DeepXplore to ensure that the generated test
inputs are valid and realistic.

We designed an algorithm for efficiently solving the joint
optimization problem mentioned above using gradient ascent.
First, we compute the gradient of the outputs of the neurons
in both the output and hidden layers with the input value
as a variable and the weight parameter as a constant. Such
gradients can be computed efficiently for most DNNs. Note
that DeepXplore is designed to operate on pre-trained DNNs.
The gradient computation is efficient because our whitebox

1Note that one cannot always map each neuron to a particular task, i.e., detecting spe-
cific objects/properties. Figure 4b simply highlights that different neurons often tend
to detect different features.

Figure 5: DeepXplore workflow.

approach has access to the pre-trained DNNs’ weights and
the intermediate neuron values. Next, we iteratively perform
gradient ascent to modify the test input toward maximizing
the objective function of the joint optimization problem de-
scribed above. Essentially, we perform a gradient-guided local
search starting from the seed inputs and find new inputs that
maximize the desired goals. Note that, at a high level, our
gradient computation is similar to the backpropagation per-
formed during the training of a DNN, but the key difference
is that, unlike our algorithm, backpropagation treats the input
value as a constant and the weight parameter as a variable.
A working example. We use Figure 6 as an example to show
how DeepXplore generates test inputs. Consider that we have
two DNNs to test—both perform similar tasks, i.e., classifying
images into cars or faces, as shown in Figure 6, but they are
trained independently with different datasets and parameters.
Therefore, the DNNs will learn similar but slightly different
classification rules. Let us also assume that we have a seed
test input, the image of a red car, which both DNNs identify
as a car as shown in Figure 6a.

DeepXplore tries to maximize the chances of finding dif-
ferential behavior by modifying the input, i.e., the image of
the red car, towards maximizing its probability of being clas-
sified as a car by one DNN but minimizing corresponding
probability of the other DNN. DeepXplore also tries to cover
as many neurons as possible by activating (i.e., causing a neu-
ron’s output to have a value greater than a threshold) inactive
neurons in the hidden layer. We further add domain-specific
constraints (e.g., ensure the pixel values are integers within
0 and 255 for image input) to make sure that the modified

(a) DNNs produce same output (b) DNNs produce different output
Figure 6: Inputs inducing different behaviors in two similar
DNNs.

SOSP ’17, October 28, 2017, Shanghai, China K. Pei, Y. Cao, J. Yang, S. Jana

Figure 7: Gradient ascent starting from a seed input and grad-
ually finding the difference-inducing test inputs.

inputs still represent real-world images. The joint optimiza-
tion algorithm will iteratively perform a gradient ascent to
find a modified input that satisfies all of the goals described
above. DeepXplore will eventually generate a set of test inputs
where the DNNs’ outputs differ, e.g., one DNN thinks it is a
car while the other thinks it is a face as shown in Figure 6b.

Figure 7 illustrates the basic concept of our technique us-
ing gradient ascent. Starting from a seed input, DeepXplore
performs the guided search by the gradient in the input space
of two similar DNNs supposed to perform the same task such
that it finally uncovers the test inputs that lie between the
decision boundaries of these DNNs. Such test inputs will
be classified differently by the two DNNs. Note that while
the gradient provides the rough direction toward reaching
the goal (e.g., finding difference-inducing inputs), it does not
guarantee the fastest convergence. Thus as shown in Figure 7,
the gradient ascent process often does not follow a straight
path towards reaching the target.

4 METHODOLOGY
In this section, we provide a detailed technical description
of our algorithm. First, we define and explain the concepts
of neuron coverage and gradient for DNNs. Next, we de-
scribe how the testing problem can be formulated as a joint
optimization problem. Finally, we provide the gradient-based
algorithm for solving the joint optimization problem.

4.1 Definitions
Neuron coverage. We define neuron coverage of a set of test
inputs as the ratio of the number of unique activated neurons
for all test inputs and the total number of neurons in the DNN.
We consider a neuron to be activated if its output is higher
than a threshold value (e.g., 0).

More formally, let us assume that all neurons of a DNN are
represented by the set 𝑁 = {𝑛1, 𝑛2, ...}, all test inputs are
represented by the set 𝑇 = {𝑥1,𝑥2, ...}, and 𝑜𝑢𝑡(𝑛,𝑥) is a
function that returns the output value of neuron 𝑛 in the DNN
for a given test input 𝑥. Note that the bold 𝑥 signifies that
𝑥 is a vector. Let 𝑡 represent the threshold for considering a

neuron to be activated. In this setting, neuron coverage can
be defined as follows.

𝑁𝐶𝑜𝑣(𝑇,𝑥) = |{𝑛|∀𝑥∈𝑇,𝑜𝑢𝑡(𝑛,𝑥)>𝑡}|
|𝑁 |

To demonstrate how neuron coverage is calculated in prac-
tice, consider the DNN showed in Figure 4b. The neuron
coverage (with threshold 0) for the input picture of the red
car shown in Figure 4b will be 5/8 = 0.625.
Gradient. The gradients or forward derivatives of the outputs
of neurons of a DNN with respect to the input are well known
in deep learning literature. They have been extensively used
both for crafting adversarial examples [26, 29, 52, 72] and
visualizing/understanding DNNs [44, 65, 87]. We provide
a brief definition here for completeness and refer interested
readers to [87] for more details.

Let 𝜃 and 𝑥 represent the parameters and the test input
of a DNN respectively. The parametric function performed
by a neuron can be represented as 𝑦 = 𝑓(𝜃,𝑥) where 𝑓 is
a function that takes 𝜃 and 𝑥 as input and output 𝑦. Note
that 𝑦 can be the output of any neuron defined in the DNN
(e.g., neuron from output layer or intermediate layers). The
gradient of 𝑓(𝜃,𝑥) with respect to input 𝑥 can be defined as:

𝐺 = ∇𝑥𝑓(𝜃,𝑥) = 𝜕𝑦/𝜕𝑥 (1)

The computation inside 𝑓 is essentially a sequence of
stacked functions that compute the input from previous layers
and forward the output to next layers. Thus, 𝐺 can be calcu-
lated by utilizing the chain rule in calculus, i.e., by computing
the layer-wise derivatives starting from the layer of the neuron
that outputs 𝑦 until reaching the input layer that takes 𝑥 as
input. Note that the dimension of the gradient 𝐺 is identical
to that of the input 𝑥.

4.2 DeepXplore algorithm
The main advantage of the test input generation process for a
DNN over traditional software is that the test generation pro-
cess, once defined as an optimization problem, can be solved
efficiently using gradient ascent. In this section, we describe
the details of the formulation and finding solutions to the
optimization problem. Note that solutions to the optimization
problem can be efficiently found for DNNs as the gradients of
the objective functions of DNNs, unlike traditional software,
can be easily computed.

As discussed earlier in § 3, the objective of the test gen-
eration process is to maximize both the number of observed
differential behaviors and the neuron coverage while pre-
serving domain-specific constraints provided by the users.
Algorithm 1 shows the algorithm for generating test inputs
by solving this joint optimization problem. Below, we define
the objectives of our joint optimization problem formally and
explain the details of the algorithm for solving it.
Maximizing differential behaviors. The first objective of
the optimization problem is to generate test inputs that can

DeepXplore SOSP ’17, October 28, 2017, Shanghai, China

induce different behaviors in the tested DNNs, i.e., different
DNNs will classify the same input into different classes. Sup-
pose we have 𝑛 DNNs 𝐹𝑘∈1..𝑛 : 𝑥 → 𝑦, where 𝐹𝑘 is the
function modeled by the 𝑘-th neural network. 𝑥 represents
the input and 𝑦 represents the output class probability vectors.
Given an arbitrary 𝑥 as seed that gets classified to the same
class by all DNNs, our goal is to modify 𝑥 such that the mod-
ified input 𝑥′ will be classified differently by at least one of
the 𝑛 DNNs.

Algorithm 1 Test input generation via joint optimization
Input: seed_set← unlabeled inputs as the seeds

dnns← multiple DNNs under test
𝜆1 ← parameter to balance output differences of DNNs (Equa-
tion 2)
𝜆2← parameter to balance coverage and differential behavior
s← step size in gradient ascent
t← threshold for determining if a neuron is activated
p← desired neuron coverage
cov_tracker← tracks which neurons have been activated

1: /* main procedure */
2: gen_test := empty set
3: for cycle(x ∈ seed_set) do // infinitely cycling through seed_set
4: /* all dnns should classify the seed input to the same class */
5: c = dnns[0].predict(x)
6: d = randomly select one dnn from dnns
7: while True do
8: obj1 = COMPUTE_OBJ1(x, d, c, dnns, 𝜆1)
9: obj2 = COMPUTE_OBJ2(x, dnns, cov_tracker)

10: obj = obj1 + 𝜆2 · obj2
11: grad = 𝜕obj / 𝜕x
12: /*apply domain specific constraints to gradient*/
13: grad = DOMAIN_CONSTRNTS(grad)
14: x = x + s · grad //gradient ascent
15: if d.predict(x) ̸= (dnns-d).predict(x) then
16: /* dnns predict x differently */
17: gen_test.add(x)
18: update cov_tracker
19: break
20: if DESIRED_COVERAGE_ACHVD(cov_tracker) then
21: return gen_test
22: /* utility functions for computing obj1 and obj2 */
23: procedure COMPUTE_OBJ1(x, d, c, dnns, 𝜆1)
24: rest = dnns - d
25: loss1 := 0
26: for dnn in rest do
27: loss1 += dnn𝑐(x) //confidence score of x being in class c
28: loss2 := d𝑐(x) //d’s output confidence score of x being in class c
29: return (loss1 - 𝜆1·loss2)
30: procedure COMPUTE_OBJ2(x, dnns, cov_tracker)
31: loss := 0
32: for dnn ∈ dnns do
33: select a neuron 𝑛 inactivated so far using cov_tracker
34: loss += n(x) //the neuron n’s output when x is the dnn’s input
35: return loss

Let 𝐹𝑘(𝑥)[𝑐] be the class probability that 𝐹𝑘 predicts 𝑥 to
be 𝑐. We randomly select one neural network 𝐹𝑗 (Algorithm 1
line 6) and maximize the following objective function:

𝑜𝑏𝑗1(𝑥) = Σ𝑘 ̸=𝑗𝐹𝑘(𝑥)[𝑐]− 𝜆1 · 𝐹𝑗(𝑥)[𝑐] (2)

where 𝜆1 is a parameter to balance the objective terms be-
tween the DNNs 𝐹𝑘 ̸=𝑗 that maintain the same class outputs as
before and the DNN 𝐹𝑗 that produce different class outputs.
As all of 𝐹𝑘∈1..𝑛 are differentiable, Equation 2 can be easily
maximized using gradient ascent by iteratively changing 𝑥

based on the computed gradient: 𝜕𝑜𝑏𝑗1(𝑥)
𝜕𝑥 (Algorithm 1 line

8-14 and procedure COMPUTE_OBJ1).
Maximizing neuron coverage. The second objective is to
generate inputs that maximize neuron coverage. We achieve
this goal by iteratively picking inactivated neurons and modi-
fying the input such that output of that neuron goes above the
neuron activation threshold. Let us assume that we want to
maximize the output of a neuron 𝑛, i.e., we want to maximize
𝑜𝑏𝑗2(𝑥) = 𝑓𝑛(𝑥) such that 𝑓𝑛(𝑥) > 𝑡, where 𝑡 is the neuron
activation threshold, and we write 𝑓𝑛(𝑥) as the function mod-
eled by neuron 𝑛 that takes 𝑥 (the original input to the DNN)
as input and produce the output of neuron 𝑛 (as defined in
Equation 1). We can again leverage the gradient ascent mech-
anism as 𝑓𝑛(𝑥) is a differentiable function whose gradient is
𝜕𝑓𝑛(𝑥)

𝜕𝑥 .
Note that we can also potentially jointly maximize multiple

neurons simultaneously, but we choose to activate one neuron
at a time in this algorithm for clarity (Algorithm 1 line 8-14
and procedure COMPUTE_OBJ2).
Joint optimization. We jointly maximize 𝑜𝑏𝑗1 and 𝑓𝑛 de-
scribed above and maximize the following function:

𝑜𝑏𝑗𝑗𝑜𝑖𝑛𝑡 = (Σ𝑖 ̸=𝑗𝐹𝑖(𝑥)[𝑐]− 𝜆1𝐹𝑗(𝑥)[𝑐]) + 𝜆2 · 𝑓𝑛(𝑥) (3)

where 𝜆2 is a parameter for balancing between the two objec-
tives of the joint optimization process and 𝑛 is the inactivated
neuron that we randomly pick at each iteration (Algorithm 1
line 33). As all terms of 𝑜𝑏𝑗𝑗𝑜𝑖𝑛𝑡 are differentiable, we jointly
maximize them using gradient ascent by modifying 𝑥 (Algo-
rithm 1 line 14).
Domain-specific constraints. One important aspect of the
optimization process is that the generated test inputs need to
satisfy several domain-specific constraints to be physically
realistic [63]. In particular, we want to ensure that the changes
applied to 𝑥𝑖 during the 𝑖-th iteration of gradient ascent pro-
cess satisfy all the domain-specific constraints for all 𝑖. For
example, for a generated test image 𝑥 the pixel values must
be within a certain range (e.g., 0 to 255).

While some such constraints can be efficiently embedded
into the joint optimization process using the Lagrange Multi-
pliers similar to those used in support vector machines [76],
we found that the majority of them cannot be easily han-
dled by the optimization algorithm. Therefore, we designed a
simple rule-based method to ensure that the generated tests
satisfy the custom domain-specific constraints. As the seed
input 𝑥𝑠𝑒𝑒𝑑 = 𝑥0 always satisfy the constraints by definition,
our technique must ensure that after 𝑖-th (𝑖 > 0) iteration
of gradient ascent, 𝑥𝑖 still satisfies the constraints. Our algo-
rithm ensures this property by modifying the gradient 𝑔𝑟𝑎𝑑
(line 13 in Algorithm 1) such that 𝑥𝑖+1 = 𝑥𝑖 + 𝑠 · 𝑔𝑟𝑎𝑑
still satisfies the constraints (𝑠 is the step size in the gradient
ascent).

SOSP ’17, October 28, 2017, Shanghai, China K. Pei, Y. Cao, J. Yang, S. Jana

For discrete features, we round the gradient to an inte-
ger. For DNNs handling visual input (e.g., images), we add
different spatial restrictions such that only part of the input
images is modified. A detailed description of the domain-
specific constraints that we implemented can be found in
§ 6.2.
Hyperparameters in Algorithm 1. To summarize, there are
four major hyperparameters that control different aspects of
DeepXplore as described below. (1) 𝜆1 balances the objec-
tives between minimizing one DNN’s prediction for a certain
label and maximizing the rest of DNNs’ predictions for the
same label. Larger 𝜆1 puts higher priority on lowering the pre-
diction value/confidence of a particular DNN while smaller
𝜆1 puts more weight on maintaining the other DNNs’ pre-
dictions. (2) 𝜆2 provides balance between finding differential
behaviors and neuron coverage. Larger 𝜆2 focuses more on
covering different neurons while smaller 𝜆2 generates more
difference-inducing test inputs. (3) 𝑠 controls the step size
used during iterative gradient ascent. Larger 𝑠 may lead to os-
cillation around the local optimum while smaller 𝑠 may need
more iterations to reach the objective. (4) 𝑡 is the threshold
to determine whether each individual neuron is activated or
not. Finding inputs that activate a neuron become increasingly
harder as 𝑡 increases.

5 IMPLEMENTATION
We implement DeepXplore using TensorFlow 1.0.1 [5] and
Keras 2.0.3 [16] DL frameworks. Our implementation con-
sists of around 7, 086 lines of Python code. Our code is built
on TensorFlow/Keras but does not require any modifications
to these frameworks. We leverage TensorFlow’s efficient im-
plementation of gradient computations in our joint optimiza-
tion process. TensorFlow also supports creating sub-DNNs
by marking any arbitrary neuron’s output as the sub-DNN’s
output while keeping the input same as the original DNN’s
input. We use this feature to intercept and record the output of
neurons in the intermediate layers of a DNN and compute the
corresponding gradients with respect to the DNN’s input. All
our experiments were run on a Linux laptop running Ubuntu
16.04 (one Intel i7-6700HQ 2.60GHz processor with 4 cores,
16GB of memory, and a NVIDIA GTX 1070 GPU).

6 EXPERIMENTAL SETUP
6.1 Test datasets and DNNs
We adopt five popular public datasets with different types
of data—MNIST, ImageNet, Driving, Contagio/VirusTotal,
and Drebin—and then evaluate DeepXplore on three DNNs
for each dataset (i.e., a total of fifteen DNNs). We provide a
summary of the five datasets and the corresponding DNNs in
Table 1. All the evaluated DNNs are either pre-trained (i.e.,
we use public weights reported by previous researchers) or

trained by us using public real-world architectures to achieve
comparable performance to that of the state-of-the-art mod-
els for the corresponding dataset. For each dataset, we used
DeepXplore to test three DNNs with different architectures
as described in Table 1.
MNIST [41] is a large handwritten digit dataset containing
28x28 pixel images with class labels from 0 to 9 The dataset
includes 60, 000 training samples and 10, 000 testing samples.
We follow Lecun et al. [40] and construct three different
neural networks based on the LeNet family [40], i.e., the
LeNet-1, LeNet-4, and LeNet-5.
ImageNet [20] is a large image dataset with over 10, 000, 000
hand-annotated images that are crowdsourced and labeled
manually. We test three well-known pre-trained DNNs: VGG-
16 [66], VGG-19 [66], and ResNet50 [31]. All three DNNs
achieved competitive performance in the ILSVRC [61] com-
petition.
Driving [75] is the Udacity self-driving car challenge dataset
that contains images captured by a camera mounted behind
the windshield of a driving car and the simultaneous steer-
ing wheel angle applied by the human driver for each im-
age. The dataset has 101,396 training and 5,614 testing sam-
ples. We then used three DNNs [8, 18, 78] based on the
DAVE-2 self-driving car architecture from Nvidia [10] with
slightly different configurations, which are called DAVE-orig,
DAVE-norminit, and DAVE-dropout respectively. Specifi-
cally, DAVE-orig [8] fully replicates the original architecture
from the Nvidia’s paper [10]. DAVE-norminit [78] removes
the first batch normalization layer [33] and normalizes the
randomly initialized network weights. DAVE-dropout [18]
simplifies DAVE-orig by cutting down the numbers of convo-
lutional layers and fully connected layers. DAVE-dropout
also adds two dropout layer [70] between the final three
fully-connected layers. We trained all three implementations
with the Udacity self-driving car challenge dataset mentioned
above.
Contagio/VirusTotal [19, 77] is a dataset containing diff-
erent benign and malicious PDF documents. We use 5, 000
benign and 12, 205 malicious PDF documents from Contagio
database as the training set, and then use 5, 000 malicious
PDFs collected by VirusTotal [77] and 5, 000 benign PDFs
crawled from Google as the test set. To the best of our knowl-
edge, there is no publicly available DNN-based PDF malware
detection system. Therefore, we define and train three diff-
erent DNNs using 135 static features from PDFrate [54, 68],
an online service for PDF malware detection. Specifically,
we construct neural networks with one input layer, one soft-
max output layer, and 𝑁 fully-connected hidden layers with
200 neurons where 𝑁 ranges from 2 to 4 for the three tested
DNNs. All our models achieve similar performance to the
ones reported by a prior work using SVM models on the same
dataset [79].

DeepXplore SOSP ’17, October 28, 2017, Shanghai, China

Table 1: Details of the DNNs and datasets used to evaluate DeepXplore

Dataset
Dataset
Description

DNN
Description

DNN Name
of
Neurons

Architecture
Reported
Acc.

Our
Acc.

MNIST Hand-written digits LeNet variations
MNI_C1 52 LeNet-1, LeCun et al. [40, 42] 98.3% 98.33%
MNI_C2 148 LeNet-4, LeCun et al. [40, 42] 98.9% 98.59%
MNI_C3 268 LeNet-5, LeCun et al. [40, 42] 99.05% 98.96%

Imagenet General images
State-of-the-art
image classifiers
from ILSVRC

IMG_C1 14,888 VGG-16, Simonyan et al. [66] 92.6%** 92.6%**

IMG_C2 16,168 VGG-19, Simonyan et al. [66] 92.7%** 92.7%**

IMG_C3 94,059 ResNet50, He et al. [31] 96.43%** 96.43%**

Driving Driving video frames
Nvidia DAVE
self-driving systems

DRV_C1 1,560 Dave-orig [8], Bojarski et al. [10] N/A 99.91%#

DRV_C2 1,560 Dave-norminit [78] N/A 99.94%#

DRV_C3 844 Dave-dropout [18] N/A 99.96%#

Contagio/Virustotal PDFs
PDF
malware detectors

PDF_C1 402 <200, 200>+ 98.5%− 96.15%
PDF_C2 602 <200, 200, 200>+ 98.5%− 96.25%
PDF_C3 802 <200, 200, 200, 200>+ 98.5%− 96.47%

Drebin Android apps
Android app
malware detectors

APP_C1 402 <200, 200>+, Grosse et al. [29] 98.92% 98.6%
APP_C2 102 <50, 50>+, Grosse et al. [29] 96.79% 96.82%
APP_C3 212 <200, 10>+, Grosse et al. [29] 92.97% 92.66%

** top-5 test accuracy; we exactly match the reported performance as we use the pretrained networks
we report 1-MSE (Mean Squared Error) as the accuracy because steering angle is a continuous value
+ <x,y,...> denotes three hidden layers with 𝑥 neurons in first layer, 𝑦 neurons in second layer and so on
- accuracy using SVM as reported by Šrndic et al. [79]

Drebin [7, 69] is a dataset with 129, 013 Android applications
among which 123, 453 are benign and 5, 560 are malicious.
There is a total of 545, 333 binary features categorized into
eight sets including the features captured from manifest files
(e.g., requested permissions and intents) and disassembled
code (e.g., restricted API calls and network addresses). We
adopt the architecture of 3 out of 36 DNNs constructed by
Grosse et al. [29]. As the DNNs’ weights are not available, we
train these three DNNs with 66% randomly picked Android
applications from the dataset and use the rest as the test set.

6.2 Domain-specific constraints
As discussed earlier, to be useful in practice, we need to en-
sure that the generated tests are valid and realistic by applying
domain-specific constraints. For example, generated images
should be physically producible by a camera. Similarly, gen-
erated PDFs need to follow the PDF specification to ensure
that a PDF viewer can open the test file. Below we describe
two major types of domain-specific constraints (i.e., image
and file constraints) that we use in this paper.
Image constraints (MNIST, ImageNet, and Driving).
DeepXplore used three different types of constraints for simu-
lating different environment conditions of images: (1) lighting
effects for simulating different intensities of lights, (2) occlu-
sion by a single small rectangle for simulating an attacker
potentially blocking some parts of a camera, and (3) occlusion
by multiple tiny black rectangles for simulating effects of dirt
on camera lens.

The first constraint restricts image modifications so that
DeepXplore can only make the image darker or brighter with-
out changing its content. Specifically, the modification can

only increase or decrease all pixel values by the same amount
(e.g., 1 * 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 in line 14 of Algorithm 1)—the decision
to increase or decrease depends on the value of 𝑚𝑒𝑎𝑛(𝐺)
where 𝐺 denotes the gradients calculated at each iteration
of gradient ascent. Note that 𝑚𝑒𝑎𝑛(𝐺) simply denotes the
mean of all entries in the multi-dimensional array 𝐺. The
first and second rows of Figure 8 show some examples of
the difference-inducing inputs generated by DeepXplore with
these constraints.

The second constraint simulates the effect of the camera
lens that may be accidentally or deliberately occluded by a
single small rectangle 𝑅 (𝑚 × 𝑛 pixels). Specifically, we
apply only 𝐺𝑖:𝑖+𝑚,𝑗:𝑗+𝑛 to the original image (𝐼) where
𝐼𝑖:𝑖+𝑚,𝑗:𝑗+𝑛 is the location of 𝑅. Note that DeepXplore is
free to choose any values of 𝑖 and 𝑗 to place the rectangle 𝑅 at
any arbitrary position within the image. The third and fourth
rows of Figure 8 show some examples DeepXplore generated
while running with such occlusion constraints.

The third constraint restricts the modifications so that Deep-
Xplore only selects a tiny 𝑚×𝑚 size patch, 𝐺𝑖:𝑖+𝑚,𝑗:𝑗+𝑚,
from 𝐺 with upper-left corner at (𝑖, 𝑗) during each iteration of
the gradient ascent. If the average value 𝑚𝑒𝑎𝑛(𝐺𝑖:𝑖+𝑚,𝑗:𝑗+𝑚)
of this patch is greater than 0, we set 𝐺𝑖:𝑖+𝑚,𝑗:𝑗+𝑚 = 0, i.e.,
we only allow the pixel values to be decreased. Unlike the
second constraint described above, here DeepXplore will pick
multiple positions (i.e., multiple (𝑖, 𝑗) pairs) to place the black
rectangles simulating pieces of dirt on the camera lens. The
fifth and sixth rows of Figure 8 show some generated exam-
ples with these constraints.
Other constraints (Drebin and Contagio/VirusTotal). For
Drebin dataset, DeepXplore enforces a constraint that only

SOSP ’17, October 28, 2017, Shanghai, China K. Pei, Y. Cao, J. Yang, S. Jana

Different lighting conditions:

all:right all:right all:right all:1 all:3 all:5 all:diver all:cheeseburger all:flamingo

DRV_C1:left DRV_C2:left DRV_C3:left MNI_C1:8 MNI_C2:5 MNI_C3:7 IMG_C1:ski IMG_C2:icecream IMG_C3:goldfish
Occlusion with a single small rectangle:

all:right all:right all:left all:5 all:7 all: 9 all:cauliflower all:dhole all:hay

DRV_C1:left DRV_C2:left DRV_C3:right MNI_C1:3 MNI_C2:4 MNI_C3:2 IMG_C1:carbonaraIMG_C2:umbrella IMG_C3:stupa
Occlusion with multiple tiny black rectangles:

all:left all:left all:left all:1 all:5 all:7 all:castle all:cock all:groom

DRV_C1:right DRV_C2:right DRV_C3:right MNI_C1:2 MNI_C2:4 MNI_C3:4 IMG_C1:beacon IMG_C2:hen IMG_C3:vestment
Figure 8: Odd rows show the seed test inputs and even rows show the difference-inducing test inputs generated by DeepXplore. The
left three columns show inputs for self-driving car, the middle three are for MNIST, and the right three are for ImageNet.

allows modifying features related to the Android manifest
file and thus ensures that the application code is unaffected.
Moreover, DeepXplore only allows adding features (changing
from zero to one) but do not allow deleting features (changing
from one to zero) from the manifest files to ensure that no
application functionality is changed due to insufficient permis-
sions. Thus, after computing the gradient, DeepXplore only
modifies the manifest features whose corresponding gradients
are greater than zero.

For Contagio/VirusTotal dataset, DeepXplore follows the
restrictions on each feature as described by Šrndic et al. [79].

7 RESULTS
Summary. DeepXplore found thousands of erroneous behav-
iors in all the tested DNNs. Table 2 summarizes the numbers
of erroneous behaviors found by DeepXplore for each tested

DNN while using 2,000 randomly selected seed inputs from
the corresponding test sets. Note that as the testing set has
similar number of samples for each class, these randomly-
chosen 2,000 samples also follow that distribution. The hyper-
parameter values for these experiments, as shown in Table 2,
are empirically chosen to maximize both the rate of finding
difference-inputs as well as the neuron coverage achieved by
these inputs.

For the experimental results shown in Figure 8, we apply
three domain-specific constraints (lighting effects, occlusion
by a single rectangle, and occlusion by multiple rectangles) as
described in § 6.2. For all other experiments involving vision-
related tasks, we only use the lighting effects as the domain-
specific constraints. For all malware-related experiments, we
apply all the relevant domain-specific constraints described

DeepXplore SOSP ’17, October 28, 2017, Shanghai, China

Table 2: Number of difference-inducing inputs found by DeepX-
plore for each tested DNN obtained by randomly selecting 2,000
seeds from the corresponding test set for each run.

DNN name Hyperparams (Algorithm 1) # Differences
Found𝜆1 𝜆2 𝑠 𝑡

MNI_C1
1 0.1 10 0

1,073
MNI_C2 1,968
MNI_C3 827
IMG_C1

1 0.1 10 0
1,969

IMG_C2 1,976
IMG_C3 1,996
DRV_C1

1 0.1 10 0
1,720

DRV_C2 1,866
DRV_C3 1,930
PDF_C1

2 0.1 0.1 0
1,103

PDF_C2 789
PDF_C3 1,253
APP_C1

1 0.5 N/A 0
2,000

APP_C2 2,000
APP_C3 2,000

Table 3: The features added to the manifest file by DeepXplore
for generating two sample malware inputs which Android app
classifiers (Drebin) incorrectly mark as benign.

input 1
feature feature::

bluetooth
activity::
.SmartAlertTerms

service_receiver::
.rrltpsi

before 0 0 0
after 1 1 1

input 2
feature provider::

xclockprovider
permission::
CALL_PHONE

provider::
contentprovider

before 0 0 0
after 1 1 1

Table 4: The top-3 most in(de)cremented features for gener-
ating two sample malware inputs which PDF classifiers incor-
rectly mark as benign.

input 1
feature size count_action count_endobj
before 1 0 1
after 34 21 20

input 2
feature size count_font author_num
before 1 0 10
after 27 15 5

in § 6.2. We use the hyperparameter values listed in Table 2
in all the experiments unless otherwise specified.

Figure 8 shows some difference-inducing inputs generated
by DeepXplore (with different domain-specific constraints)
for MNIST, ImageNet, and Driving dataset along with the cor-
responding erroneous behaviors. Table 3 (Drebin) and Table 4
(Contagio/VirusTotal) show two sample difference-inducing
inputs generated by DeepXplore that caused erroneous behav-
iors in the tested DNNs. We highlight the differences between
the seed input features and the features modified by DeepX-
plore. Note that we only list the top three modified features
due to space limitations.

7.1 Benefits of neuron coverage
In this subsection, we evaluate how effective, neuron cover-
age, our new metric, is in measuring the comprehensiveness of

DNN testing. It has recently been shown that each neuron in
a DNN tends to independently extract a specific feature of the
input instead of collaborating with other neurons for feature
extraction [58, 87]. Essentially, each neuron tends to learn a
different set of rules than others. This finding intuitively ex-
plains why neuron coverage is a good metric for DNN testing
comprehensiveness. To empirically confirm this observation,
we perform two different experiments as described below.

First, we show that neuron coverage is a significantly better
metric than code coverage for measuring comprehensiveness
of the DNN test inputs. More specifically, we find that a small
number of test inputs can achieve 100% code coverage for
all DNNs where neuron coverage is actually less than 34%.
Second, we evaluate neuron activations for test inputs from
different classes. Our results show that inputs from different
classes tend to activate more unique neurons than inputs from
the same class. Both findings confirm that neuron coverage
provides a good estimation of the numbers and types of DNN
rules exercised by an input.
Neuron coverage vs. code coverage. We compare both code
and neuron coverages achieved by the same number of inputs
by evaluating the test DNNs on ten randomly picked testing
samples as described in § 6.1. We measure a DNN’s code
coverage in terms of the line coverage of the Python code
used in the training and testing process. We set the threshold 𝑡
in neuron coverage 0.75, i.e., a neuron is considered covered
only if its output is greater than 0.75 for at least one input.

Note that for the DNNs where the outputs of intermediate
layers produce values in a different range than those of the
final layers, we scale the neuron outputs to be within [0, 1]
by computing (𝑜𝑢𝑡−𝑚𝑖𝑛(𝑜𝑢𝑡)/(𝑚𝑎𝑥(𝑜𝑢𝑡)−𝑚𝑖𝑛(𝑜𝑢𝑡))
where 𝑜𝑢𝑡 is the vector denoting the output of all neurons of
a given layer.

The results, as shown in Table 6, clearly demonstrate that
neuron coverage is a significantly better metric than code cov-
erage for measuring DNN testing comprehensiveness. Even
10 randomly picked inputs result in 100% code coverage for
all DNNs while the neuron coverage never goes above 34%
for any of the DNNs. Moreover, neuron coverage changes
significantly based on the tested DNNs and the test inputs. For
example, the neuron coverage for the complete MNIST testing
set (i.e., 10,000 testing samples) only reaches 57.7%, 76.4%,
and 83.6% for C1, C2, and C3 respectively. By contrast, the
neuron coverage for the complete Contagio/Virustotal test set
reaches 100%.
Effect of neuron coverage on the difference-inducing in-
puts found by DeepXplore. The primary goal behind maxi-
mizing neuron coverage as one of the objectives during the
joint optimization process is to generate diverse difference-
inducing inputs as discussed in § 3. In this experiment, we
evaluate the effectiveness of neuron coverage at achieving
this goal.

SOSP ’17, October 28, 2017, Shanghai, China K. Pei, Y. Cao, J. Yang, S. Jana

Table 5: The increase in diversity (L1-distance) in the difference-
inducing inputs found by DeepXplore while using neuron cov-
erage as part of the optimization goal (Equation 2). This exper-
iment uses 2,000 randomly picked seed inputs from the MNIST
dataset. Higher values denote larger diversity. NC denotes the
neuron coverage (with 𝑡 = 0.25) achieved under each setting.

Exp. #
𝜆2 = 0 (w/o neuron coverage) 𝜆2 = 1 (with neuron coverage)
Avg. diversity NC # Diffs Avg. diversity NC # Diffs

1 237.9 69.4% 871 283.3 70.6% 776
2 194.6 66.7% 789 253.2 67.8% 680
3 170.8 68.9% 734 182.7 70.2% 658

Table 6: Comparison of code coverage and neuron coverage for
10 randomly selected inputs from the original test set of each
DNN.

Dataset Code Coverage Neuron Coverage
C1 C2 C3 C1 C2 C3

MNIST 100% 100% 100% 32.7% 33.1% 25.7%
ImageNet 100% 100% 100% 1.5% 1.1% 0.3%
Driving 100% 100% 100% 2.5% 3.1% 3.9%
VirusTotal 100% 100% 100% 19.8% 17.3% 17.3%
Drebin 100% 100% 100% 16.8% 10% 28.6%

We randomly pick 2,000 seed inputs from MNIST test
dataset and use DeepXplore to generate difference-inducing
inputs with and without neuron coverage by setting 𝜆2 in
Equation 2 to 1 and 0 respectively. We measure the diver-
sity of the generated difference-inducing inputs in terms of
averaged L1 distance between all difference-inducing inputs
generated from the same seed and the original seed. The L1-
distance calculates the sum of absolute differences of each
pixel values between the generated image and the original
one. Table 5 shows the results of three such experiments. The
results clearly show that neuron coverage helps in increasing
the diversity of generated inputs.

Note that even though the absolute value of the increase
in neuron coverage achieved by setting 𝜆2 = 1 instead of
𝜆2 = 0 may seem small (e.g., 1-2 percentage points), it has
a significant effect on increasing the diversity of the gener-
ated difference-inducing images as shown in Table 5. These
results show that increasing neuron coverage, similar to code
coverage, becomes increasingly harder for higher values but
even small increases in neuron coverage can improve the
test diversity significantly. Also, the numbers of difference-
inducing inputs generated with 𝜆2 = 1 are less than those
for 𝜆2 = 0 as setting 𝜆2 = 1 causes DeepXplore to focus on
finding diverse differences rather than simply increasing the
number of differences with the same underlying root cause.
In general, the number of difference-inducing inputs alone is
a not a good metric for measuring the quality of the generated
tests for vision-related tasks as one can create a large num-
ber of difference-inducing images with the same root cause
by making tiny changes to an existing difference-inducing
image.

Table 7: Average number of overlaps among activated neurons
for a pair of inputs of the same class and different classes. In-
puts of different classes tend to activate different neurons.

Total neurons Avg. no. of
activated neurons Avg. overlap

Diff. class 268 83.6 45.9
Same class 268 84.1 74.2

Activation of neurons for different classes of inputs. In
this experiment, we measure the number of active neurons
that are common across the LeNet-5 DNN running on pairs of
MNIST inputs of the same and different classes respectively.
In particular, we randomly select 200 input pairs where 100
pairs have the same label (e.g., labeled as 8) and 100 pairs
have different labels (e.g., labeled as 8 and 4). Then, we
calculate the number of common (overlapped) active neurons
for these input pairs. Table 7 shows the results, which confirm
our hypothesis that inputs coming from the same class share
more activated neurons than those coming from different
classes. As inputs from different classes tend to get detected
through matching of different DNN rules, our result also
confirms that neuron coverage can effectively estimate the
numbers of different rules activated during DNN testing.

7.2 Performance
We evaluate DeepXplore’s performance using two metrics:
neuron coverage of the generated tests and execution time for
generating difference-inducing inputs.
Neuron coverage. In this experiment, we compare the neuron
coverage achieved by the same number of tests generated by
three different approaches: (1) DeepXplore, (2) adversarial
testing [26], and (3) random selection from the original test
set. The results are shown in Table 8 and Figure 9.

We can make two key observations from the results. First,
DeepXplore, on average, covers 34.4% and 33.2% more neu-
rons than random testing and adversarial testing as demon-
strated in Figure 9. Second, the neuron coverage threshold
𝑡 (defined in § 4), which decides when a neuron has been
activated, greatly affects the achieved neuron coverage. As
the threshold 𝑡 increases, all three approaches cover fewer
neurons. This is intuitive as a higher value of 𝑡 makes it
increasingly harder to activate neurons using simple modifi-
cations.
Execution time and number of seed inputs. For this ex-
periment, we measure the execution time of DeepXplore to
generate difference-inducing inputs with 100% neuron cov-
erage for all the tested DNNs. We note that some neurons in
fully-connected layers of DNNs on MNIST, ImageNet and
Driving are very hard to activate, we thus only consider neu-
ron coverage on layers except fully-connected layers. Table 8
shows the results, which indicate that DeepXplore is very
efficient in terms of finding difference-inducing inputs as well
as increasing neuron coverage.

DeepXplore SOSP ’17, October 28, 2017, Shanghai, China

0.00 0.25 0.50 0.75
Neuron coverage threshold t

0

10

20

30

40

50

60

70

80

90

100

N
eu

ro
n

co
ve

ra
ge

DeepXplore

Adversarial

Random

(a) MNIST

0.00 0.25 0.50 0.75
Neuron coverage threshold t

0

10

20

30

40

50

60

70

80

90

100

N
eu

ro
n

co
ve

ra
ge

DeepXplore

Adversarial

Random

(b) ImageNet

0.00 0.25 0.50 0.75
Neuron coverage threshold t

0

10

20

30

40

50

60

70

80

90

100

N
eu

ro
n

co
ve

ra
ge

DeepXplore

Adversarial

Random

(c) Driving

0.00 0.25 0.50 0.75
Neuron coverage threshold t

0

10

20

30

40

50

60

70

80

90

100

N
eu

ro
n

co
ve

ra
ge

DeepXplore

Adversarial

Random

(d) VirusTotal

0.00 0.25 0.50 0.75
Neuron coverage threshold t

0

10

20

30

40

50

60

70

80

90

100

N
eu

ro
n

co
ve

ra
ge

DeepXplore

Adversarial

Random

(e) Drebin
Figure 9: The neuron coverage achieved by the same number of inputs (1% of the original test set) produced by DeepXplore, ad-
versarial testing [26], and random selection from the original test set. The plots show the changes in neuron coverage for all three
methods as the threshold 𝑡 (defined in § 4) increases. DeepXplore, on average, covers 34.4% and 33.2% more neurons than random
testing and adversarial testing.

Table 8: Total time taken by DeepXplore to achieve 100% neu-
ron coverage for different DNNs averaged over 10 runs. The last
column shows the number of seed inputs.

C1 C2 C3 # seeds
MNIST 6.6 s 6.8 s 7.6 s 9

ImageNet 43.6 s 45.3 s 42.7 s 35
Driving 11.7 s 12.3 s 9.8 s 12

VirusTotal 31.1 s 29.7 s 23.2 s 6
Drebin 180.2 s 196.4 s 152.9 s 16

Table 9: The variation in DeepXplore runtime (in seconds)
while generating the first difference-inducing input for the
tested DNNs with different step size choice (𝑠 for gradient as-
cent shown in Algorithm 1 line 14). All numbers averaged over
10 runs. The fastest times for each dataset is highlighted in gray.

s=0.01 s=0.1 s=1 s=10 s=100

MNIST 0.19 s 0.26 s 0.65 s 0.62 s 0.65 s
ImageNet 9.3 s 4.78 s 1.7 s 1.06 s 6.66 s
Driving 0.51 s 0.5 s 0.53 s 0.55 s 0.54 s
VirusTotal 0.17 s 0.16 s 0.21 s 0.21 s 0.22 s
Drebin 7.65 s 7.65 s 7.65 s 7.65 s 7.65 s

Different choices of hyperparameters. We further evaluate
how the choices of different hyperparameters of DeepXplore
(𝑠, 𝜆1, 𝜆2, and 𝑡 as described in § 4.2) influence DeepX-
plore’s performance. The effects of changing neuron activa-
tion threshold 𝑡 was shown in Figure 9 as described earlier.
Tables 9, 10, and 11 show the variations in DeepXplore run-
time with changes in 𝑠, 𝜆1, and 𝜆2 respectively. Our results
show that the optimal values of 𝑠 and 𝜆1 vary across the
DNNs and datasets, while 𝜆2 = 0.5 tend to be optimal for all
the datasets.

We use the time taken by DeepXplore to find the first
difference-inducing input as the metric for comparing diff-
erent choices of hyperparameters in Tables 9, 10, and 11.
We choose this metric as we observe that finding the first
difference-inducing input for a given seed tend to be sig-
nificantly harder than increasing the number of difference-
inducing inputs.
Testing very similar models with DeepXplore. Note that
while DeepXplore’s gradient-guided test generation process

Table 10: The variation in DeepXplore runtime (in seconds)
while generating the first difference-inducing input for the
tested DNNs with different 𝜆1, a parameter in Equation 2.
Higher 𝜆1 values indicate prioritization of minimizing a DNNs’
outputs over maximizing the outputs of other DNNs showing
differential behavior. The fastest times for each dataset is high-
lighted in gray.

𝜆1 = 0.5 𝜆1 = 1 𝜆1 = 2 𝜆1 = 3

MNIST 0.28 s 0.25 s 0.2 s 0.17 s
ImageNet 1.38 s 1.26 s 1.21 s 1.72 s
Driving 0.62 s 0.59 s 0.57 s 0.58 s
VirusTotal 0.13 s 0.12 s 0.05 s 0.09 s
Drebin 6.4 s 5.8 s 6.12 s 7.5 s

Table 11: The variation in DeepXplore runtime (in seconds)
while generating the first difference-inducing input for the
tested DNNs with different 𝜆2, a parameter in Equation 3.
Higher 𝜆2 values indicate higher priority for increasing cover-
age. All numbers averaged over 10 runs. The fastest times for
each dataset is highlighted in gray.

𝜆2 = 0.5 𝜆2 = 1 𝜆2 = 2 𝜆2 = 3

MNIST 0.19 s 0.22 s 0.23 s 0.26 s
ImageNet 1.55 s 1.6 s 1.62 s 1.85 s
Driving 0.56 s 0.61 s 0.67 s 0.74 s
VirusTotal 0.09 s 0.15 s 0.21 s 0.25 s
Drebin 6.14 s 6.75 s 6.82 s 6.83 s

works very well in practice, it may fail to find any difference-
inducing inputs within a reasonable time for some cases es-
pecially for DNNs with very similar decision boundaries. To
estimate how similar two DNNs have to be in order to make
DeepXplore to fail in practice, we control three types of dif-
ferences between two DNNs and measure the changes in
iterations required to generate the first difference-inducing
inputs in each case.

We use MNIST training set (60,000 samples) and LeNet-1
trained with 10 epochs as the control group. We change the (1)
number of training samples, (2) number of filters per convolu-
tional layer, and (3) number of training epochs respectively to
create variants of LeNet-1. Table 12 summarizes the averaged
number of iterations (over 100 seed inputs) needed by Deep-
Xplore to find the first difference inducing inputs between
these LeNet-1 variants and the original version. Overall, we

SOSP ’17, October 28, 2017, Shanghai, China K. Pei, Y. Cao, J. Yang, S. Jana

Table 12: Changes in the number of iterations DeepXplore
takes, on average, to find the first difference inducing inputs
as the type and numbers of differences between the test DNNs
increase.

Training
Samples

diff 0 1 100 1000 10000
iter -* -* 616.1 503.7 256.9

Neurons
per layer

diff 0 1 2 3 4
iter -* 69.6 53.9 33.1 18.7

Training
Epochs

diff 0 5 10 20 40
iter -* 453.8 433.9 348.7 210

*- indicates timeout after 1000 iterations

find that DeepXplore is very good at finding differences even
between DNNs with minute variations (only failing once as
shown in Table 12). As the number of differences goes down,
the number of iterations to find a difference-inducing input
goes up, i.e., it gets increasingly harder to find difference-
inducing tests between DNNs with smaller differences.

7.3 Improving DNNs with DeepXplore
In this section, we demonstrate two additional applications
of the error-inducing inputs generated by DeepXplore: aug-
menting training set and then improve DNN’s accuracy and
detecting potentially corrupted training data.
Augmenting training data to improve accuracy. We aug-
ment the original training data of a DNN with the error-
inducing inputs generated by DeepXplore for retraining the
DNN to fix the erroneous behaviors and therefore improve
its accuracy. Note that such strategy has also been adopted
for fixing a DNN’s behavior for adversarial inputs [26]—but
the key difference is that adversarial testing requires manual
labeling while DeepXplore can adopt majority voting [23]
to automatically generate labels for the generated test inputs.
Note that the underlying assumption is that the decision made
by the majority of the DNNs are more likely to be correct.

To evaluate this approach, we train LeNet-1, LeNet-4, and
LeNet-5 as shown in Table 1 with 60, 000 original samples.
We further augment the training data by adding 100 new
error-inducing samples and retrain the DNNs by 5 epochs.
Our experiment results—comparing three approaches, i.e.,
random selection (“random”), adversarial testing (“adversar-
ial”) and DeepXplore—are shown in Figure 10. The results
show that DeepXplore achieved 1–3% more average accuracy
improvement over adversarial and random augmentation.
Detecting training data pollution attack. As another appli-
cation of DeepXplore, we demonstrate how it can be used
to detect training data pollution attacks with an experiment
on two LeNet-5 DNNs: one trained on 60, 000 hand-written
digits from MNIST dataset and the other trained on an arti-
ficially polluted version of the same dataset where 30% of
the images originally labeled as digit 9 are mislabeled as 1.
We use DeepXplore to generate error-inducing inputs that are
classified as the digit 9 and 1 by the unpolluted and polluted

0 1 2 3 4 5
Retrain epochs

90

91

92

93

94

95

96

97

98

99

100

A
cc

ur
ac

y
(%

)

DeepXplore

Adversarial

Random

(a) LeNet-1

0 1 2 3 4 5
Retrain epochs

90

91

92

93

94

95

96

97

98

99

100

A
cc

ur
ac

y
(%

)

DeepXplore

Adversarial

Random

(b) LeNet-4

0 1 2 3 4 5
Retrain epochs

90

91

92

93

94

95

96

97

98

99

100

A
cc

ur
ac

y
(%

)

DeepXplore

Adversarial

Random

(c) LeNet-5
Figure 10: Improvement in accuracy of three LeNet DNNs
when the training set is augmented with the same number of
inputs generated by random selection (“random”), adversarial
testing (“adversarial”) [26], and DeepXplore.

versions of the LeNet-5 DNN respectively. We then search
for samples in the training set that are closest to the inputs
generated by DeepXplore in terms of structural similarity [80]
and identify them as polluted data. Using this process, we are
able to correctly identify 95.6% of the polluted samples.

8 DISCUSSION
Causes of differences between DNNs. The underlying
root cause behind prediction differences between two
DNNs for the same input is differences in their decision
logic/boundaries. As described in § 2.1, a DNN’s decision
logic is determined by multiple factors including training
data, the DNN architecture, hyperparameters, etc. Therefore,
any differences in the choice of these factors will result in
subtle changes in the decision logic of the resulting DNN. As
we empirically demonstrated in Table 12, the more similar
the decision boundaries of two DNNs are, the harder it is to
find difference-inducing inputs. However, all the real-world
DNNs that we tested tend to have significant differences and
therefore DeepXplore can efficiently find erroneous behaviors
in all of the tested DNNs.
Overhead of training vs. testing DNNs. There is a signifi-
cant performance asymmetry between the prediction/gradient
computation and training of large real-world DNNs. For ex-
ample, training a state-of-the-art DNN like VGG-16 [66] (one
of the tested DNNs in this paper) on 1.2 million images in
ImageNet dataset [61] competitions) can take up to 7 days
on a single GTX 1080 Ti GPU. By contrast, the prediction
and gradient computations on the same GPU take around 120
milliseconds in total per image. Such massive performance
difference between training and prediction for large DNNs
make DeepXplore especially suitable for testing large, pre-
trained DNNs.
Limitations. DeepXplore adopts the technique of differential
testing from software analysis and thus inherits the limitations
of differential testing. We summarize them briefly below.

First, differential testing requires at least two different
DNNs with the same functionality. Further, if two DNNs only
differ slightly (i.e., by a few neurons), DeepXplore will take
longer to find difference-inducing inputs than if the DNNs

DeepXplore SOSP ’17, October 28, 2017, Shanghai, China

were significantly different from each other as shown in Ta-
ble 12. However, our evaluation shows that in most cases
multiple different DNNs, for a given problem, are easily avail-
able as developers often define and train their own DNNs for
customization and improved accuracy.

Second, differential testing can only detect an erroneous
behavior if at least one DNN produces different results than
other DNNs. If all the tested DNNs make the same mis-
take, DeepXplore cannot generate the corresponding test case.
However, we found this to be not a significant issue in prac-
tice as most DNNs are independently constructed and trained,
the odds of all of them making the same mistake is low.

9 RELATED WORK
Adversarial deep learning. Recently, the security and pri-
vacy aspects of machine learning have drawn significant atten-
tion from the researchers in both machine learning [26, 49, 72]
and security [12, 21, 22, 55, 63, 74, 82] communities. Many
of these works have demonstrated that a DNN can be fooled
by applying minute perturbations to an input image, which
was originally classified correctly by the DNN, even though
the modified image looks visibly indistinguishable from the
original image to the human eye.

Adversarial images demonstrate a particular type of erro-
neous behaviors of DNNs. However, they suffer from two
major limitations: (1) they have low neuron coverage (similar
to the randomly selected test inputs as shown in Figure 9)
and therefore, unlike DeepXplore, can not expose different
types of erroneous behaviors; and (2) the adversarial image
generation process is inherently limited to only use the tiny,
undetectable perturbations as any visible change will require
manual inspection. DeepXplore bypasses this issue by using
differential testing and therefore can perturb inputs to create
many realistic visible differences (e.g., different lighting, oc-
clusion, etc.) and automatically detect erroneous behaviors of
DNNs under these circumstances.
Testing and verification of DNNs. Traditional practices
in evaluating machine learning systems primarily measure
their accuracy on randomly drawn test inputs from man-
ually labeled datasets [81]. Some machine learning sys-
tems like autonomous vehicles leverage ad hoc unguided
simulations [2, 4]. However, without the knowledge of the
model’s internals, such blackbox testing paradigms are not
able to find different corner cases that induce erroneous
behaviors [25]. This observation has inspired several re-
searchers to try to improve the robustness and reliability of
DNNs [9, 13, 17, 30, 32, 46, 51, 53, 62, 84, 89, 90]. However,
all of these projects only focus on adversarial inputs and rely
on the ground truth labels provided manually. By contrast, our
technique can systematically test the robustness and reliability
of DL systems for a broad range of flaws in a fully automated
manner without any manual labeling.

Another recent line of work has explored the possibility
of formally verifying DNNs against different safety prop-
erties [32, 37, 57]. None of these techniques scale well to
find violations of interesting safety properties for real-world
DNNs. By contrast, DeepXplore can find interesting erro-
neous behaviors in large, state-of-the-art DNNs but cannot
provide any guarantee about whether a specific DNN satisfies
a given safety property.
Other applications of DNN gradients. Gradients have
been used in the past for visualizing activation of different
intermediate layers of a DNN for tasks like object seg-
mentation [44, 66], artistic style transfer between two im-
ages [24, 43, 59], etc. By contrast, in this paper, we apply
gradient ascent for solving the joint optimization problem that
maximizes both neuron coverage and the number of differen-
tial behaviors among tested DNNs.
Differential testing of traditional software. Differential
testing has been widely used for successfully testing various
types of traditional software including JVMs [14], C compil-
ers [45, 86], SSL/TLS certification validation logic [11, 15,
56, 67], PDF viewers [56], space flight software [28], mobile
applications [36], and Web application firewalls [6].

The key advantage of applying differential testing to DNNs
over traditional software is that the problem of finding a large
number of difference-inducing inputs while simultaneously
maximizing neuron coverage can be expressed as a well de-
fined joint optimization problem. Moreover, the gradient of a
DNN with respect to the input can be utilized for efficiently
solving the optimization problem using gradient ascent.

10 CONCLUSION
We designed and implemented DeepXplore, the first whitebox
system for systematically testing DL systems and automat-
ically identify erroneous behaviors without manual labels.
We introduced a new metric, neuron coverage, for measuring
how many rules in a DNN are exercised by a set of inputs.
DeepXplore performs gradient ascent to solve a joint opti-
mization problem that maximizes both neuron coverage and
the number of potentially erroneous behaviors. DeepXplore
was able to find thousands of erroneous behaviors in fifteen
state-of-the-art DNNs trained on five real-world datasets.

ACKNOWLEDGMENTS
We would like to thank Byung-Gon Chun (our shepherd),
Yoav Hollander, Daniel Hsu, Murat Demirbas, Dave Evans,
and the anonymous reviewers for their helpful feedback. This
work was supported in part by NSF grants CNS-16-17670,
CNS-15-63843, and CNS-15-64055; ONR grants N00014-
17-1-2010, N00014-16-1-2263, and N00014-17-1-2788; and
a Google Faculty Fellowship.

SOSP ’17, October 28, 2017, Shanghai, China K. Pei, Y. Cao, J. Yang, S. Jana

REFERENCES
[1] 2010. ImageNet crowdsourcing, benchmarking & other cool things.

http://www.image-net.org/papers/ImageNet_2010.pdf. (2010).
[2] 2016. Google auto Waymo disengagement report for

autonomous driving. https://www.dmv.ca.gov/portal/
wcm/connect/946b3502-c959-4e3b-b119-91319c27788f/
GoogleAutoWaymo_disengage_report_2016.pdf?MOD=AJPERES.
(2016).

[3] 2016. Report on autonomous mode disengagements for waymo
self-driving vehicles in california. https://www.dmv.ca.gov/
portal/wcm/connect/946b3502-c959-4e3b-b119-91319c27788f/
GoogleAutoWaymo_disengage_report_2016.pdf?MOD=AJPERES.
(2016).

[4] 2017. Inside Waymo’s secret world for training self-driving
cars. https://www.theatlantic.com/technology/archive/2017/08/inside-
waymos-secret-testing-and-simulation-facilities/537648/. (2017).

[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. TensorFlow: A system for large-scale ma-
chine learning. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation.

[6] George Argyros, Ioannis Stais, Suman Jana, Angelos D Keromytis, and
Aggelos Kiayias. 2016. SFADiff: Automated evasion attacks and finger-
printing using black-box differential automata learning. In Proceedings
of the 23rd ACM SIGSAC Conference on Computer and Communica-
tions Security.

[7] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon,
Konrad Rieck, and CERT Siemens. 2014. DREBIN: Effective and
Explainable Detection of Android Malware in Your Pocket.. In Pro-
ceedings of the 21st Annual Network and Distributed System Security
Symposium.

[8] autopilot:dave 2016. Nvidia-Autopilot-Keras. https://github.com/
0bserver07/Nvidia-Autopilot-Keras. (2016).

[9] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vy-
tiniotis, Aditya Nori, and Antonio Criminisi. 2016. Measuring neural
net robustness with constraints. In Proceedings of the 29th Advances in
Neural Information Processing Systems.

[10] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, et al. 2016. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316 (2016).

[11] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and
Vitaly Shmatikov. 2014. Using Frankencerts for Automated Adversar-
ial Testing of Certificate Validation in SSL/TLS Implementations. In
Proceedings of the 35th IEEE Symposium on Security and Privacy.

[12] Yinzhi Cao and Junfeng Yang. 2015. Towards Making Systems Forget
with Machine Unlearning. In Proceedings of the 36th IEEE Symposium
on Security and Privacy.

[13] Nicholas Carlini and David Wagner. 2017. Towards evaluating the
robustness of neural networks. In Proceedings of the 38th IEEE Sympo-
sium on Security and Privacy.

[14] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao.
2016. Coverage-directed differential testing of JVM implementations.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation.

[15] Yuting Chen and Zhendong Su. 2015. Guided differential testing of
certificate validation in SSL/TLS implementations. In Proceedings of
the 10th Joint Meeting on Foundations of Software Engineering.

[16] François Chollet. 2015. Keras. https://github.com/fchollet/keras.
(2015).

[17] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin,
and Nicolas Usunier. 2017. Parseval networks: Improving robustness
to adversarial examples. In Proceedings of the 34th International Con-
ference on Machine Learning.

[18] clone:dave 2016. Behavioral cloning: end-to-end learning for self-
driving cars. https://github.com/navoshta/behavioral-cloning. (2016).

[19] contagio 2010. Contagio, PDF malware dump. http:
//contagiodump.blogspot.de/2010/08/malicious-documents-archive-
for.html. (2010).

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. 2009. Imagenet: A large-scale hierarchical image database. In
Proceedings of the 22nd IEEE Conference on Computer Vision and
Pattern Recognition.

[21] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model
inversion attacks that exploit confidence information and basic coun-
termeasures. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security.

[22] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page,
and Thomas Ristenpart. 2014. Privacy in pharmacogenetics: An end-to-
end case study of personalized warfarin dosing.. In Proceedings of the
23rd USENIX Security Symposium (USENIX Security 14).

[23] Yoav Freund and Robert E Schapire. 1995. A desicion-theoretic gener-
alization of on-line learning and an application to boosting. In European
conference on computational learning theory.

[24] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2015. A neural
algorithm of artistic style. arXiv preprint arXiv:1508.06576 (2015).

[25] Ian Goodfellow and Nicolas Papernot. 2017. The challenge of veri-
fication and testing of machine learning. http://www.cleverhans.io/
security/privacy/ml/2017/06/14/verification.html. (2017).

[26] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Ex-
plaining and Harnessing Adversarial Examples. In Proceedings of
the 3rd International Conference on Learning Representations. http:
//arxiv.org/abs/1412.6572

[27] google-accident 2016. A Google self-driving car caused a crash for the
first time. http://www.theverge.com/2016/2/29/11134344/google-self-
driving-car-crash-report. (2016).

[28] Alex Groce, Gerard Holzmann, and Rajeev Joshi. 2007. Randomized
differential testing as a prelude to formal verification. In Proceedings
of the 29th international conference on Software Engineering.

[29] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael
Backes, and Patrick McDaniel. 2016. Adversarial perturbations against
deep neural networks for malware classification. arXiv preprint
arXiv:1606.04435 (2016).

[30] Shixiang Gu and Luca Rigazio. 2015. Towards deep neural network
architectures robust to adversarial examples. In Proceedings of the 3rd
International Conference on Learning Representations.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the 29th
IEEE Conference on Computer Vision and Pattern Recognition. 770–
778.

[32] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017.
Safety verification of deep neural networks. In Proceedings of the 29th
International Conference on Computer Aided Verification.

[33] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Ac-
celerating deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167 (2015).

[34] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, Rick Boyle, et al. 2017. In-Datacenter Performance
Analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual
International Symposium on Computer Architecture.

http://www.image-net.org/papers/ImageNet_2010.pdf
https://www.dmv.ca.gov/portal/wcm/connect/946b3502-c959-4e3b-b119-91319c27788f/GoogleAutoWaymo_disengage_report_2016.pdf?MOD=AJPERES
https://www.dmv.ca.gov/portal/wcm/connect/946b3502-c959-4e3b-b119-91319c27788f/GoogleAutoWaymo_disengage_report_2016.pdf?MOD=AJPERES
https://www.dmv.ca.gov/portal/wcm/connect/946b3502-c959-4e3b-b119-91319c27788f/GoogleAutoWaymo_disengage_report_2016.pdf?MOD=AJPERES
https://www.dmv.ca.gov/portal/wcm/connect/946b3502-c959-4e3b-b119-91319c27788f/GoogleAutoWaymo_disengage_report_2016.pdf?MOD=AJPERES
https://www.dmv.ca.gov/portal/wcm/connect/946b3502-c959-4e3b-b119-91319c27788f/GoogleAutoWaymo_disengage_report_2016.pdf?MOD=AJPERES
https://www.dmv.ca.gov/portal/wcm/connect/946b3502-c959-4e3b-b119-91319c27788f/GoogleAutoWaymo_disengage_report_2016.pdf?MOD=AJPERES
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://github.com/0bserver07/Nvidia-Autopilot-Keras
https://github.com/0bserver07/Nvidia-Autopilot-Keras
https://github.com/fchollet/keras
https://github.com/navoshta/behavioral-cloning
http:// contagiodump.blogspot.de/2010/08/malicious-documents-archive-for.html
http:// contagiodump.blogspot.de/2010/08/malicious-documents-archive-for.html
http:// contagiodump.blogspot.de/2010/08/malicious-documents-archive-for.html
http://www.cleverhans.io/security/privacy/ml/2017/06/14/verification.html
http://www.cleverhans.io/security/privacy/ml/2017/06/14/verification.html
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report
http://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report

DeepXplore SOSP ’17, October 28, 2017, Shanghai, China

[35] Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P Owen, and
Mykel J Kochenderfer. 2016. Policy compression for aircraft collision
avoidance systems. In Proceedings of the 35th IEEE/AIAA Digital
Avionics Systems Conference.

[36] Jaeyeon Jung, Anmol Sheth, Ben Greenstein, David Wetherall, Gabriel
Maganis, and Tadayoshi Kohno. 2008. Privacy oracle: a system for
finding application leaks with black box differential testing. In Proceed-
ings of the 15th ACM Conference on Computer and Communications
Security.

[37] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J.
Kochenderfer. 2017. Reluplex: An Efficient SMT Solver for Verify-
ing Deep Neural Networks. In Proceedings of the 29th International
Conference On Computer Aided Verification.

[38] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny
images. Technical Report.

[39] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Im-
ageNet Classification with Deep Convolutional Neural Networks. In
Proceedings of the 25th International Conference on Neural Informa-
tion Processing Systems.

[40] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998.
Gradient-based learning applied to document recognition. Proc. IEEE
(1998).

[41] Yann LeCun, Corinna Cortes, and Christopher JC Burges. 1998. The
MNIST database of handwritten digits. (1998).

[42] Yann LeCun, Corinna Cortes, and Christopher JC Burges. 2010.
MNIST handwritten digit database. AT&T Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist 2 (2010).

[43] Chuan Li and Michael Wand. 2016. Combining markov random fields
and convolutional neural networks for image synthesis. In Proceed-
ings of the 29th IEEE Conference on Computer Vision and Pattern
Recognition.

[44] Aravindh Mahendran and Andrea Vedaldi. 2015. Understanding deep
image representations by inverting them. In Proceedings of the 28th
IEEE Conference on Computer Vision and Pattern Recognition.

[45] William M McKeeman. 1998. Differential testing for software. Digital
Technical Journal (1998).

[46] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian
Bischoff. 2017. On detecting adversarial perturbations. In Proceedings
of the 6th International Conference on Learning Representations.

[47] George A Miller. 1995. WordNet: a lexical database for English. Com-
mun. ACM (1995).

[48] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th International
Conference on Machine Learning. 807–814.

[49] Anh Nguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural net-
works are easily fooled: High confidence predictions for unrecognizable
images. In Proceedings of the 28th IEEE Conference on Computer Vi-
sion and Pattern Recognition.

[50] Nvidia. 2008. CUDA Programming guide. (2008).
[51] Nicolas Papernot and Patrick McDaniel. 2017. Extending defensive

distillation. arXiv preprint arXiv:1705.05264 (2017).
[52] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson,

Z Berkay Celik, and Ananthram Swami. 2016. The limitations of
deep learning in adversarial settings. In Proceedings of the 37th IEEE
European Symposium on Security and Privacy.

[53] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Anan-
thram Swami. 2016. Distillation as a defense to adversarial perturba-
tions against deep neural networks. In Proceedings of the 37th IEEE
Symposium on Security and Privacy.

[54] pdfrate 2012. PDFRate, A machine learning based classifier operating
on document metadata and structure. http://pdfrate.com/. (2012).

[55] Roberto Perdisci, David Dagon, Wenke Lee, P. Fogla, and M. Sharif.
2006. Misleading worm signature generators using deliberate noise
injection. In Proceedings of the 27th IEEE Symposium on Security and
Privacy.

[56] Theofilos Petsios, Adrian Tang, Salvatore J. Stolfo, Angelos D.
Keromytis, and Suman Jana. 2017. NEZHA: Efficient Domain-
independent Differential Testing. In Proceedings of the 38th IEEE
Symposium on Security and Privacy.

[57] Luca Pulina and Armando Tacchella. 2010. An abstraction-refinement
approach to verification of artificial neural networks. In Proceedings of
the 22nd International Conference on Computer Aided Verification.

[58] Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. 2017. Learn-
ing to generate reviews and discovering sentiment. arXiv preprint
arXiv:1704.01444 (2017).

[59] Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox. 2016. Artistic
style transfer for videos. In German Conference on Pattern Recogni-
tion.

[60] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1988.
Learning representations by back-propagating errors. Cognitive model-
ing (1988).

[61] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet
Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (2015).

[62] Uri Shaham, Yutaro Yamada, and Sahand Negahban. 2015. Understand-
ing adversarial training: Increasing local stability of neural nets through
robust optimization. arXiv preprint arXiv:1511.05432 (2015).

[63] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter.
2016. Accessorize to a crime: Real and stealthy attacks on state-of-
the-art face recognition. In Proceedings of the 23rd ACM SIGSAC
Conference on Computer and Communications Security.

[64] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timo-
thy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. 2016. Mastering the game of Go with deep neural
networks and tree search. Nature (2016).

[65] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep
inside convolutional networks: Visualising image classification models
and saliency maps. arXiv preprint arXiv:1312.6034 (2013).

[66] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

[67] Suphannee Sivakorn, George Argyros, Kexin Pei, Angelos D.
Keromytis, and Suman Jana. 2017. HVLearn: Automated black-box
analysis of hostname verification in SSL/TLS implementations. In Pro-
ceedings of the 38th IEEE Symposium on Security and Privacy. San
Jose, CA.

[68] Charles Smutz and Angelos Stavrou. 2012. Malicious PDF detection
using metadata and structural features. In Proceedings of the 28th
Annual Computer Security Applications Conference.

[69] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas
Schreck, and Johannes Hoffmann. 2013. Mobile-sandbox: having
a deeper look into android applications. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing.

[70] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning Research
(2014).

http://pdfrate.com/

SOSP ’17, October 28, 2017, Shanghai, China K. Pei, Y. Cao, J. Yang, S. Jana

[71] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. 2015. Going deeper with convolutions. In Proceedings of
the 28th IEEE Conference on Computer Vision and Pattern Recogni-
tion.

[72] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2014. Intriguing
properties of neural networks. In Proceedings of the 2nd International
Conference on Learning Representations.

[73] tesla-accident 2016. Understanding the fatal Tesla accident on Autopilot
and the NHTSA probe. https://electrek.co/2016/07/01/understanding-
fatal-tesla-accident-autopilot-nhtsa-probe/. (2016).

[74] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. 2016. Stealing machine learning models via prediction
APIs. In Proceedings of the 25th USENIX Security Symposium.

[75] udacity-challenge 2016. Using Deep Learning to Predict Steering
Angles. https://github.com/udacity/self-driving-car. (2016).

[76] Vladimir Naumovich Vapnik. 1998. Statistical learning theory.
[77] virustotal 2004. VirusTotal, a free service that analyzes suspicious files

and URLs and facilitates the quick detection of viruses, worms, trojans,
and all kinds of malware. https://www.virustotal.com/. (2004).

[78] visualize:dave 2016. Visualizations for understanding the regressed
wheel steering angle for self driving cars. https://github.com/jacobgil/
keras-steering-angle-visualizations. (2016).

[79] Nedim Šrndic and Pavel Laskov. 2014. Practical evasion of a learning-
based classifier: a case study. In Proceedings of the 35th IEEE Sympo-
sium on Security and Privacy.

[80] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli.
2004. Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing (2004).

[81] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016.
Data Mining: Practical machine learning tools and techniques. Morgan

Kaufmann.
[82] Xi Wu, Matthew Fredrikson, Somesh Jha, and Jeffrey F Naughton.

2016. A Methodology for Formalizing Model-Inversion Attacks. In
Proceedings of the 29th IEEE Computer Security Foundations Sympo-
sium.

[83] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike
Seltzer, Andreas Stolcke, Dong Yu, and Geoffrey Zweig. 2016. Achiev-
ing human parity in conversational speech recognition. arXiv preprint
arXiv:1610.05256 (2016).

[84] Weilin Xu, David Evans, and Yanjun Qi. 2017. Feature squeezing:
detecting adversarial examples in deep neural networks. arXiv preprint
arXiv:1704.01155 (2017).

[85] Weilin Xu, Yanjun Qi, and David Evans. 2016. Automatically evading
classifiers. In Proceedings of the 23rd Network and Distributed Systems
Symposium.

[86] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding
and understanding bugs in C compilers. In ACM SIGPLAN Notices.

[87] Jason Yosinski, Jeff Clune, Thomas Fuchs, and Hod Lipson. 2015.
Understanding neural networks through deep visualization. In 2015
ICML Workshop on Deep Learning.

[88] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. 2014.
Droid-sec: deep learning in android malware detection. In ACM SIG-
COMM Computer Communication Review.

[89] Yuqian Zhang, Cun Mu, Han-Wen Kuo, and John Wright. 2013. Toward
guaranteed illumination models for non-convex objects. In Proceedings
of the 26th IEEE International Conference on Computer Vision. 937–
944.

[90] Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. 2016.
Improving the robustness of deep neural networks via stability training.
In Proceedings of the 29th IEEE Conference on Computer Vision and
Pattern Recognition. 4480–4488.

https://electrek.co/2016/07/01/understanding-fatal-tesla-accident-autopilot-nhtsa-probe/
https://electrek.co/2016/07/01/understanding-fatal-tesla-accident-autopilot-nhtsa-probe/
https://github.com/udacity/self-driving-car
https://www.virustotal.com/
https://github.com/jacobgil/keras-steering-angle-visualizations
https://github.com/jacobgil/keras-steering-angle-visualizations

	Abstract
	1 Introduction
	2 Background
	2.1 DL Systems
	2.2 DNN Architecture
	2.3 Limitations of Existing DNN Testing

	3 Overview
	4 Methodology
	4.1 Definitions
	4.2 DeepXplore algorithm

	5 Implementation
	6 Experimental Setup
	6.1 Test datasets and DNNs
	6.2 Domain-specific constraints

	7 Results
	7.1 Benefits of neuron coverage
	7.2 Performance
	7.3 Improving DNNs with DeepXplore

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

