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ABSTRACT
Recent advances in Deep Neural Networks (DNNs) have led to the
development of DNN-driven autonomous cars that, using sensors
like camera, LiDAR, etc., can drive without any human intervention.
Most major manufacturers including Tesla, GM, Ford, BMW, and
Waymo/Google are working on building and testing different types
of autonomous vehicles. The lawmakers of several US states includ-
ing California, Texas, and New York have passed new legislation
to fast-track the process of testing and deployment of autonomous
vehicles on their roads.

However, despite their spectacular progress, DNNs, just like
traditional software, often demonstrate incorrect or unexpected
corner-case behaviors that can lead to potentially fatal collisions.
Several such real-world accidents involving autonomous cars have
already happened including one which resulted in a fatality. Most
existing testing techniques for DNN-driven vehicles are heavily
dependent on the manual collection of test data under different
driving conditions which become prohibitively expensive as the
number of test conditions increases.

In this paper, we design, implement, and evaluate DeepTest, a
systematic testing tool for automatically detecting erroneous be-
haviors of DNN-driven vehicles that can potentially lead to fatal
crashes. First, our tool is designed to automatically generated test
cases leveraging real-world changes in driving conditions like rain,
fog, lighting conditions, etc. DeepTest systematically explore differ-
ent parts of the DNN logic by generating test inputs that maximize
the numbers of activated neurons. DeepTest found thousands of
erroneous behaviors under different realistic driving conditions
(e.g., blurring, rain, fog, etc.) many of which lead to potentially fatal
crashes in three top performing DNNs in the Udacity self-driving
car challenge.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Security and privacy→ Software and application se-
curity; • Computing methodologies → Neural networks;
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1 INTRODUCTION
Significant progress in Machine Learning (ML) techniques like
Deep Neural Networks (DNNs) over the last decade has enabled
the development of safety-critical ML systems like autonomous
cars. Several major car manufacturers including Tesla, GM, Ford,
BMW, and Waymo/Google are building and actively testing these
cars. Recent results show that autonomous cars have become very
efficient in practice and already drivenmillions of miles without any
human intervention [21, 36]. Twenty US states including California,
Texas, and New York have recently passed legislation to enable
testing and deployment of autonomous vehicles [18].

However, despite the tremendous progress, just like traditional
software, DNN-based software, including the ones used for au-
tonomous driving, often demonstrate incorrect/unexpected corner-
case behaviors that can lead to dangerous consequences like a fatal
collision. Several such real-world cases have already been reported
(see Table 1). As Table 1 clearly shows, such crashes often happen
under rare previously unseen corner cases. For example, the fatal
Tesla crash resulted from a failure to detect a white truck against
the bright sky. The existing mechanisms for detecting such erro-
neous behaviors depend heavily on manual collection of labeled
test data or ad hoc, unguided simulation [11, 20] and therefore miss
numerous corner cases. Since these cars adapt behavior based on
their environment as measured by different sensors (e.g., camera,
Infrared obstacle detector, etc.), the space of possible inputs is ex-
tremely large. Thus, unguided simulations are highly unlikely to
find many erroneous behaviors.

At a conceptual level, these erroneous corner-case behaviors
in DNN-based software are analogous to logic bugs in traditional
software. Similar to the bug detection and patching cycle in tra-
ditional software development, the erroneous behaviors of DNNs,
once detected, can be fixed by adding the error-inducing inputs to
the training data set and also by possibly changing the model struc-
ture/parameters. However, this is a challenging problem, as noted
by large software companies like Google and Tesla that have already
deployed machine learning techniques in several production-scale
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Table 1: Examples of real-world accidents involving autonomous cars

Reported Date Cause Outcome Comments
Hyundai Competition [4] December, 2014 Rain fall Crashed while testing "The sensors failed to pick up street signs, lane markings, and even pedestrians

due to the angle of the car shifting in rain and the direction of the sun" [4]

Tesla autopilot mode [17] July, 2016 Image contrast Killed the driver "The camera failed to recognize the white truck against a bright sky" [23]

Google self-driving car [12] February, 2016 Failed to estimate speed Hit a bus while shifting
lane

"The car assumed that the bus would yield when it attempted to merge back into
traffic" [12]

systems including self-driving car, speech recognition, image search,
etc. [22, 73].

Our experience with traditional software has shown that it is
hard to build robust safety-critical systems only using manual test
cases. Moreover, the internals of traditional software and new DNN-
based software are fundamentally different. For example, unlike
traditional software where the program logic is manually written
by the software developers, DNN-based software automatically
learns its logic from a large amount of data with minimal human
guidance. In addition, the logic of a traditional program is expressed
in terms of control flow statements while DNNs use weights for
edges between different neurons and nonlinear activation functions
for similar purposes. These differences make automated testing of
DNN-based software challenging by presenting several interesting
and novel research problems.

First, traditional software testing techniques for systematically
exploring different parts of the program logic by maximizing
branch/code coverage is not very useful for DNN-based software
as the logic is not encoded using control flow [70]. Next, DNNs are
fundamentally different from the models (e.g., finite state machines)
used for modeling and testing traditional programs. Unlike the tradi-
tional models, finding inputs that will result in high model coverage
in a DNN is significantly more challenging due to the non-linearity
of the functions modeled by DNNs. Moreover, the Satisfiability
Modulo Theory (SMT) solvers that have been quite successful at
generating high-coverage test inputs for traditional software are
known to have trouble with formulas involving floating-point arith-
metic and highly nonlinear constraints, which are commonly used
in DNNs. In fact, several research projects have already attempted
to build custom tools for formally verifying safety properties of
DNNs. Unfortunately, none of them scale well to real-world-sized
DNNs [48, 51, 71]. Finally, manually creating specifications for com-
plex DNN systems like autonomous cars is infeasible as the logic is
too complex to manually encode as it involves mimicking the logic
of a human driver.

In this paper, we address these issues and design a systematic
testing methodology for automatically detecting erroneous behav-
iors of DNN-based software of self-driving cars. First, we leverage
the notion of neuron coverage (i.e., the number of neurons activated
by a set of test inputs) to systematically explore different parts of
the DNN logic. We empirically demonstrate that changes in neuron
coverage are statistically correlated with changes in the actions of
self-driving cars (e.g., steering angle). Therefore, neuron coverage
can be used as a guidance mechanism for systemically exploring
different types of car behaviors and identify erroneous behaviors.
Next, we demonstrate that different image transformations that
mimic real-world differences in driving conditions like changing
contrast/brightness, rotation of the camera result in activation of
different sets of neurons in the self-driving car DNNs. We show that
by combining these image transformations, the neuron coverage
can be increased by 100% on average compared to the coverage

achieved by manual test inputs. Finally, we use transformation-
specific metamorphic relations between multiple executions of the
tested DNN (e.g., a car should behave similarly under different
lighting conditions) to automatically detect erroneous corner case
behaviors. We found thousands of erroneous behaviors across the
three top performing DNNs in the Udacity self-driving car chal-
lenge [15].
The key contributions of this paper are:
• We present a systematic technique to automatically synthesize
test cases that maximizes neuron coverage in safety-critical DNN-
based systems like autonomous cars. We empirically demonstrate
that changes in neuron coverage correlate with changes in an
autonomous car’s behavior.

• We demonstrate that different realistic image transformations
like changes in contrast, presence of fog, etc. can be used to gen-
erate synthetic tests that increase neuron coverage. We leverage
transformation-specific metamorphic relations to automatically
detect erroneous behaviors. Our experiments also show that the
synthetic images can be used for retraining and making DNNs
more robust to different corner cases.

• We implement the proposed techniques in DeepTest, to the best
of our knowledge, the first systematic and automated testing
tool for DNN-driven autonomous vehicles. We use DeepTest to
systematically test three top performing DNN models from the
Udacity driving challenge. DeepTest found thousands of erro-
neous behaviors in these systems many of which can lead to
potentially fatal collisions as shown in Figure 1.

• We have made the erroneous behaviors detected by DeepTest
available at https://deeplearningtest.github.io/deepTest/. We also
plan to release the generated test images and the source of
DeepTest for public use.

1.1 original 1.2 with added rain

Figure 1: A sample dangerous erroneous behavior found by
DeepTest in the Chauffeur DNN.

2 BACKGROUND
2.1 Deep Learning for Autonomous Driving
The key component of an autonomous vehicle is the percep-
tion module controlled by the underlying Deep Neural Network
(DNN) [14, 19]. The DNN takes input from different sensors like
camera, light detection and ranging sensor (LiDAR), and IR (in-
frared) sensor that measure the environment and outputs the steer-
ing angle, braking, etc. necessary to maneuver the car safely under

https://deeplearningtest.github.io/deepTest/
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Figure 2: A simple autonomous car DNN that takes inputs from
camera, light detection and ranging sensor (LiDAR), and IR (in-
frared) sensor, and outputs steering angle, braking decision, and
acceleration decision. The DNN shown here essentially models the
function σ (θ (2) · σ (θ (1) · x )) where θ s represent the weights of the
edges and σ is the activation function. The details of the computa-
tions performed inside a single neuron are shown on the right.

current conditions as shown in Figure 2. In this paper, we focus on
the camera input and the steering angle output.

A typical feed-forward DNN is composed of multiple processing
layers stacked together to extract different representations of the
input [30]. Each layer of the DNN increasingly abstracts the input,
e.g., from raw pixels to semantic concepts. For example, the first few
layers of an autonomous car DNN extract low-level features such
as edges and directions, while the deeper layers identify objects like
stop signs and other cars, and the final layer outputs the steering
decision (e.g., turning left or right).

Each layer of a DNN consists of a sequence of individual com-
puting units called neurons. The neurons in different layers are
connected with each other through edges. Each edge has a corre-
sponding weight (θs in Figure 2). Each neuron applies a nonlinear
activation function on its inputs and sends the output to the subse-
quent neurons as shown in Figure 2. Popular activation functions
include ReLU (Rectified Linear Unit) [61], sigmoid [58], etc. The
edge weights of a DNN is inferred during the training process of
the DNN based on labeled training data. Most existing DNNs are
trained with gradient descent using backpropagation [72]. Once
trained, a DNN can be used for prediction without any further
changes to the weights. For example, an autonomous car DNN can
predict the steering angle based on input images.

Figure 2 illustrates a basic DNN in the perception module of a
self-driving car. Essentially, the DNN is a sequence of linear trans-
formations (e.g., dot product between the weight parameters θ of
each edge and the output value of the source neuron of that edge)
and nonlinear activations (e.g., ReLU in each neuron). Recent re-
sults have demonstrated that a well-trained DNN f can predict the
steering angle with an accuracy close to that of a human driver [31].

2.2 Different DNN Architectures
Most DNNs used in autonomous vehicles can be categorized into
two types: (1) Feed-forward Convolutional Neural Network (CNN),
and (2) Recurrent neural network (RNN). The DNNs we tested (see
Section 4) include two CNNs and one RNN. We provide a brief
description of each architecture below and refer the interested
readers to [39] for more detailed descriptions.

3.1 A simplified CNN architecture

3.2 A simplified RNN architecture

Figure 3: (Upper row) A simplified CNN architecture with a con-
volution kernel shown on the top-left part of the input image. The
same filter (edges with same weights) is then moved across the en-
tire input space, and the dot products are computed between the
edgeweights and the outputs of the connected neurons. (Lower row)
A simplified RNN architecture with loops in its hidden layers. The
unrolled version on the right shows how the loop allows a sequence
of inputs (i.e. images) to be fed to the RNN and the steering angle is
predicted based on all those images.
CNNarchitecture.Themost significant difference between a CNN
and a fully connected DNN is the presence of a convolution layer.
The neurons in a convolution layer are connected only to some
of the neurons in the next layer and multiple connections among
different neurons share the same weight. The sets of connections
sharing the same weights are essentially a convolution kernel [50]
that applies the same convolution operation on the outputs of a set
of neurons in the previous layer. Figure 3 (upper row) illustrates the
convolution operations for three convolution layers. This simplified
architecture is similar to the ones used in practice [31].

Convolution layers have two major benefits. First, they greatly
reduce the number of trainable weights by allowing sharing of
weights among multiple connections and thus significantly cut
down the training time. Second, the application of convolution
kernels is a natural fit for image recognition as it resembles the
human visual system which extracts a layer-wise representation of
visual input [50, 53].
RNN architecture. RNNs, unlike CNNs, allow loops in the net-
work [49]. Specifically, the output of each layer is not only fed to
the following layer but also flow back to the previous layer. Such
arrangement allows the prediction output for previous inputs (e.g.,
previous frames in a video sequence) to be also considered in pre-
dicting current input. Figure 3 (lower row) illustrates a simplified
version of the RNN architecture.

Similar to other types of DNNs, RNNs also leverage gradient
descent with back propagation for training. However, it is well
known that the gradient, when propagated through multiple loops
in an RNNs, may vanish to zero or explode to an extremely large
value [46] and therefore may lead to an inaccurate model. Long
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short-term memory (LSTM) [47], a popular subgroup of RNNs, is
designed to solve this vanishing/exploding gradient problem. We
encourage interested readers to refer to [47] for more details.

3 METHODOLOGY
To develop an automated testing methodology for DNN-driven
autonomous cars we must answer the following questions. (i) How
do we systematically explore the input-output spaces of an au-
tonomous car DNN? (ii) How can we synthesize realistic inputs to
automate such exploration? (iii) How can we optimize the explo-
ration process? (iv) How do we automatically create a test oracle
that can detect erroneous behaviors without detailed manual speci-
fications?We briefly describe how DeepTest addresses each of these
questions below.

3.1 Systematic Testing with Neuron Coverage
The input-output space (i.e., all possible combinations of inputs and
outputs) of a complex system like an autonomous vehicle is too large
for exhaustive exploration. Therefore, we must devise a systematic
way of partitioning the space into different equivalence classes and
try to cover all equivalence classes by picking one sample from
each of them. In this paper, we leverage neuron coverage [70] as a
mechanism for partitioning the input space based on the assumption
that all inputs that have similar neuron coverage are part of the
same equivalence class (i.e., the target DNN behaves similarly for
these inputs).

Neuron coverage was originally proposed by Pei et al. for guided
differential testing of multiple similar DNNs [70]. It is defined as
the ratio of unique neurons that get activated for given input(s) and
the total number of neurons in a DNN:

Neuron Coveraдe =
|Activated Neurons |

|Total N eurons |
(1)

An individual neuron is considered activated if the neuron’s output
(scaled by the overall layer’s outputs) is larger than a DNN-wide
threshold. In this paper, we use 0.2 as the neuron activation thresh-
old for all our experiments.

Similar to the code-coverage-guided testing tools for traditional
software, DeepTest tries to generate inputs that maximize neuron
coverage of the test DNN. As each neuron’s output affects the final
output of a DNN,maximizing neuron coverage also increases output
diversity. We empirically demonstrate this effect in Section 5.

Pei et al. defined neuron coverage only for CNNs [70].We further
generalize the definition to include RNNs. Neurons, depending on
the type of the corresponding layer, may produce different types of
output values (i.e. single value and multiple values organized in a
multidimensional array). We describe how we handle such cases in
detail below.

For all neurons in fully-connected layers, we can directly com-
pare their outputs against the neuron activation threshold as these
neurons output a single scalar value. By contrast, neurons in con-
volutional layers output multidimensional feature maps as each
neuron outputs the result of applying a convolutional kernel across
the input space [45]. For example, the first layer in Figure 3.1 il-
lustrates the application of one convolutional kernel (of size 3×3)
to the entire image (5×5) that produces a feature map of size 3×3
in the succeeding layer. In such cases, we compute the average of
the output feature map to convert the multidimensional output
of a neuron into a scalar and compare it to the neuron activation
threshold.

For RNN/LSTM with loops, the intermediate neurons are un-
rolled to produce a sequence of outputs (Figure 3.2). We treat each
neuron in the unrolled layers as a separate individual neuron for
the purpose of neuron coverage computation.

3.2 Increasing Coverage with Synthetic Images
Generating arbitrary inputs that maximize neuron coverage may
not be very useful if the inputs are not likely to appear in the real-
world even if these inputs potentially demonstrate buggy behaviors.
Therefore, DeepTest focuses on generating realistic synthetic im-
ages by applying image transformations on seed images and mimic
different real-world phenomena like camera lens distortions, ob-
ject movements, different weather conditions, etc. To this end, we
investigate nine different realistic image transformations (chang-
ing brightness, changing contrast, translation, scaling, horizontal
shearing, rotation, blurring, fog effect, and rain effect). These trans-
formations can be classified into three groups: linear, affine, and
convolutional. Our experimental results, as described in Section 5,
demonstrate that all of these transformations increase neuron cov-
erage significantly for all of the tested DNNs. Below, we describe
the details of the transformations.

Adjusting brightness and contrast are both linear transforma-
tions. The brightness of an image depends on how large the pixel
values are for that image. An image’s brightness can be adjusted by
adding/subtracting a constant parameter β to each pixel’s current
value. Contrast represents the difference in brightness between
different pixels in an image. One can adjust an image’s contrast by
multiplying each pixel’s value by a constant parameter α .

Table 2: Different affine transformation matrices

Affine Transform Example Transformation Matrix Parameters

Translation
[1 0 tx
0 1 ty

]
tx : displacement along x axis
ty : displacement along y axis

Scale
[
sx 0 0
0 sy 0

]
sx : scale factor along x axis
sy : scale factor along y axis

Shear
[ 1 sx 0
sy 1 0

]
sx : shear factor along x axis
sy : shear factor along y axis

Rotation
[
cosq − sinq 0
sinq cosq 0

]
q: the angle of rotation

Translation, scaling, horizontal shearing, and rotation are all
different types of affine transformations. An affine transformation is
a linear mapping between two images that preserves points, straight
lines, and planes [5]. Affine transforms are often used in image
processing to fix distortions resulting from camera angle variations.
In this paper, we leverage affine transformations for the inverse
case, i.e., to simulate different real-world camera perspectives or
movements of objects and check how robust the self-driving DNNs
are to those changes.

An affine transformation is usually represented by a 2 × 3 trans-
formation matrix M [6]. One can apply an affine transformation
to a 2D image matrix I by simply computing the dot product of I
andM , the corresponding transformation matrix. We list the trans-
formation matrices for the four types of affine transformations
(translation, scale, shear, and rotation) used in this paper in Table 2.

Blurring and adding fog/rain effects are all convolutional trans-
formations, i.e., they perform the convolution operation on the
input pixels with different transform-specific kernels. A convolu-
tion operation adds (weighted by the kernel) each pixel of the input
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image to its local neighbors. We use four different types of blurring
filters: averaging, Gaussian, median, and bilateral [3]. We compose
multiple filters provided by Adobe Photoshop on the input images
to simulate realistic fog and rain effects [1, 2].

3.3 Combining Transformations to Increase
Coverage

As the individual image transformations increase neuron coverage,
one obvious question is whether they can be combined to further
increase the neuron coverage. Our results demonstrate that differ-
ent image transformations tend to activate different neurons, i.e.,
they can be stacked together to further increase neuron coverage.
However, the state space of all possible combinations of different
transformations is too large to explore exhaustively. We provide
a neuron-coverage-guided greedy search technique for efficiently
finding combinations of image transformations that result in higher
coverage (see Algorithm 1).

Algorithm 1: Greedy search for combining image tranforma-
tions to increase neuron coverage
Input :Transformations T, Seed images I
Output :Synthetically generated test images
Variable :S: stack for storing newly generated images

Tqueue: transformation queue
1

2 Push all seed imgs ∈ I to Stack S
3 genTests = ϕ
4 while S is not empty do
5 img = S.pop()
6 Tqueue = ϕ
7 numFailedTries = 0
8 while numFailedTries ≤ maxFailedTries do
9 if Tqueue is not empty then

10 T1 = Tqueue.dequeue()
11 else
12 Randomly pick transformation T1 from T
13 end
14 Randomly pick parameter P1 for T1
15 Randomly pick transformation T2 from T
16 Randomly pick parameter P2 for T2
17 newImage = ApplyTransforms(image, T1, P1, T2, P2)
18 if covInc(newimage) then
19 Tqueue.enqueue(T1)
20 Tqueue.enqueue(T2)
21 UpdateCoverage()
22 genTest = genTests ∪ newimage S.push(newImage)
23 else
24 numFailedTries = numFailedTries + 1
25 end
26 end
27 end
28 return genTests

The algorithm takes a set of seed images I , a list of transfor-
mations T and their corresponding parameters as input. The key
idea behind the algorithm is to keep track of the transformations
that successfully increase neuron coverage for a given image and
prioritize them while generating more synthetic images from the
given image. This process is repeated in a depth-first manner to all
images.

3.4 Creating a Test Oracle with Metamorphic
Relations

One of themajor challenges in testing a complex DNN-based system
like an autonomous vehicle is creating the system’s specifications
manually, against which the system’s behavior can be checked. It
is challenging to create detailed specifications for such a system
as it essentially involves recreating the logic of a human driver. To

avoid this issue, we leverage metamorphic relations [33] between
the car behaviors across different synthetic images. The key in-
sight is that even though it is hard to specify the correct behavior
of a self-driving car for every transformed image, one can define
relationships between the car’s behaviors across certain types of
transformations. For example, the autonomous car’s steering an-
gle should not change significantly for the same image under any
lighting/weather conditions, blurring, or any affine transformations
with small parameter values. Thus, if a DNNmodel infers a steering
angle θo for an input seed image Io and a steering angle θt for a
new synthetic image It , which is generated by applying the trans-
formation t on Io , one may define a simple metamorphic relation
where θo and θt are identical.

However, there is usually no single correct steering angle for a
given image, i.e., a car can safely tolerate small variations. Therefore,
there is a trade-off between defining themetamorphic relations very
tightly, like the one described above (may result in a large number
of false positives) and making the relations more permissive (may
lead to many false negatives). In this paper, we strike a balance
between these two extremes by using the metamorphic relations
defined below.

To minimize false positives, we relax our metamorphic relations
and allow variations within the error ranges of the original input im-
ages. We observe that the set of outputs predicted by a DNN model
for the original images, say {θo1,θo2, ....,θon }, in practice, result in
a small but non-trivial number of errors w.r.t. their respective man-
ual labels ({θ̂1, θ̂2, ...., θ̂n }). Such errors are usually measured using
Mean Squared Error (MSE), where MSEor iд =

1
n
∑n
i=1(θ̂i − θoi )

2.
Leveraging this property, we redefine a new metamorphic relation
as:

(θ̂i − θt i )
2 ≤ λ MSEor iд (2)

The above equation assumes that the errors produced by a model
for the transformed images as input should be within a range of
λ times the MSE produced by the original image set. Here, λ is a
configurable parameter that allows us to strike a balance between
the false positives and false negatives.

4 IMPLEMENTATION
Autonomous drivingDNNs.We evaluate our techniques on three
DNN models that won top positions in the Udacity self-driving
challenge [15]: Rambo [13] (2nd rank), Chauffeur [8] (3rd rank),
and Epoch [10] (6th rank). We choose these three models as their
implementations are based on the Keras framework [34] that our
current prototype of DeepTest supports. The details of the DNN
models and dataset are summarized in Table 3.

As shown in the right figure of Table 3, the steering angle is
defined as the rotation degree between the heading direction of the
vehicle (the vertical line) and the heading directions of the steering
wheel axles (i.e., usually front wheels). The negative steering angle
indicates turning left while the positive values indicate turning left.
The maximum steering angle of a car varies based on the hardware
of different cars. The Udacity self-driving challenge dataset used in
this paper has a maximum steering angle of +/- 25 degree [15]. The
steering angle is then scaled by 1/25 so that the prediction should
fall between -1 and 1.

Rambomodel consists of three CNNs whose outputs are merged
using a final layer [13]. Two of the CNNs are inspired by NVIDIA’s
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No. of Reported Our
Model Sub-Model Neurons MSE MSE

Chauffeur CNN 1427 0.06 0.06LSTM 513

Rambo
S1(CNN) 1625

0.06 0.05S2(CNN) 3801
S3(CNN) 13473

Epoch CNN 2500 0.08 0.10
†

dataset HMB_3.bag [16]

Table 3: (Left) Details of DNNs used to evaluate DeepTest.†(Right)
The outputs of the DNNs are the steering angles for a self-driving
car heading forward. The Udacity self-driving car has a maximum
steering angle of +/- 25 degree.

self-driving car architecture [31], and the third CNN is based on
comma.ai’s steering model [9]. As opposed to other models that
take individual images as input, Rambo takes the differences among
three consecutive images as input. The model uses Keras [34] and
Theano [79] frameworks.

Chauffeur model includes one CNN model for extracting fea-
tures from the image and one LSTM model for predicting steering
angle [8]. The input of the CNN model is an image while the input
of the LSTMmodel is the concatenation of 100 features extracted by
the CNN model from previous 100 consecutive images. Chauffeur
uses Keras [34] and Tensorflow [24] frameworks.

Epoch model uses a single CNN. As the pre-trained model for
Epoch is not publicly available, we train the model using the in-
structions provided by the authors [10]. We used the CH2_002
dataset [16] from the Udacity self-driving Challenge for training
the epoch model. Epoch , similar to Chauffeur, uses Keras and
Tensorflow frameworks.
Image transformations. In the experiments for RQ2 and RQ3,
we leverage seven different types of simple image transformations:
translation, scaling, horizontal shearing, rotation, contrast adjust-
ment, brightness adjustment, and blurring. We use OpenCV to
implement these transformations [7]. For RQ2 and RQ3 described
in Section 5, we use 10 parameters for each transformation as shown
in Table 4.
Table 4:Transformations and parameters used byDeepTest for gen-
erating synthetic images.

Transformations Parameters Parameter ranges

Translation (tx , ty )
(10, 10) to (100, 100)

step (10, 10)

Scale (sx , sy )
(1.5, 1.5) to (6, 6)
step (0.5, 0.5)

Shear (sx , sy )
(−1.0, 0) to (−0.1, 0)

step (0.1, 0)

Rotation q (degree) 3 to 30 with step 3

Contrast α (gain) 1.2 to 3.0 with step 0.2

Brightness β (bias) 10 to 100 with step 10

Averaging kernel size 3 × 3, 4 × 4, 5 × 5, 6 × 6
Gaussian kernel size 3 × 3, 5 × 5, 7 × 7 , 3 × 3

Blur Median aperture linear size 3, 5

Bilateral Filter diameter, sigmaColor, sigmaSpace 9, 75, 75

5 RESULTS
As DNN-based models are fundamentally different than traditional
software, first, we check whether neuron coverage is a good metric
to capture functional diversity of DNNs. In particular, we investigate
whether neuron coverage changes with different input-output pairs
of an autonomous car. An individual neuron’s output goes through

a sequence of linear and nonlinear operations before contributing
to the final outputs of a DNN. Therefore, it is not very clear how
much (if at all) individual neuron’s activation will change the final
output. We address this in our first research question.

Table 5: Relation between neuron coverage and test output

Steering Steering
Model Sub-Model Angle Direction

Spearman Wilcoxon Effect size
Correlation Test (Cohen’s d)

Chauffeur Overall -0.10 (***) left (+ve) > right (-ve) (***) negligible
CNN 0.28 (***) left (+ve) < right (-ve) (***) negligible
LSTM -0.10 (***) left (+ve) > right (-ve) (***) negligible

Rambo Overall -0.11 (***) left (+ve) < right (-ve) (***) negligible
S1 -0.19 (***) left (+ve) < right (-ve) (***) large
S2 0.10 (***) not significant negligible
S3 -0.11 (***) not significant negligible

Epoch N/A 0.78 (***) left (+ve) < right (-ve) (***) small

*** indicates statistical significance with p-value < 2.2 ∗ 10−16

RQ1. Do different input-output pairs result in different neuron
coverage?

For each input image we measure the neuron coverage (see
Equation 1 in Section 3.1) of the underlying models and the corre-
sponding output. As discussed in Section 4, corresponding to an
input image, each model outputs a steering direction (left (+ve) /
right (-ve)) and a steering angle as shown in Table 3 (right). We
analyze the neuron coverage for both of these outputs separately.

Steering angle. As steering angle is a continuous variable, we
check Spearman rank correlation [76] between neuron coverage
and steering angle. This is a non-parametric measure to compute
monotonic association between the two variables [44]. Correlation
with positive statistical significance suggests that the steering angle
increases with increasing neuron coverage and vice versa. Table 5
shows that Spearman correlations for all the models are statistically
significant—while Chauffeur and Rambo models show an overall
negative association, Epoch model shows a strong positive correla-
tion. This result indicates that the neuron coverage changes with
the changes in output steering angles, i.e. different neurons get
activated for different outputs. Thus, in this setting, neuron cov-
erage can be a good approximation for estimating the diversity of
input-output pairs. Moreover, our finding that monotonic correla-
tions between neuron coverage and steering angle also corroborate
Goodfellow et al.’s hypothesis that, in practice, DNNs are often
highly linear [40].

Steering direction. To measure the association between neu-
ron coverage and steering direction, we check whether the cover-
age varies between right and left steering direction. We use the
Wilcoxon nonparametric test as the steering direction can only
have two values (left and right). Our results confirm that neuron
coverage varies with steering direction with statistical significance
(p < 2.2 ∗ 10−16) for all the three overall models. Interestingly, for
Rambo , only the Rambo-S1 sub-model shows statistically signif-
icant correlation but not Rambo-S2 and Rambo-S3. These results
suggest that, unlike steering angle, some sub-models are more re-
sponsible than other for changing steering direction.

Overall, these results show that neuron coverage altogether
varies significantly for different input-output pairs. Thus, a neuron-
coverage-directed (NDG) testing strategy can help in finding corner
cases.
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4.1 Difference in neuron coverage caused by different image transformations 4.2 Average cumulative neuron coverage per input image

Figure 4: Different image transformations activate significantly different neurons. In the top figure the median Jaccard distances for
Chauffeur-CNN, Chauffeur-LSTM, Epoch, Rambo-S1, Rambo-S2, and Rambo-S3 models are 0.53, 0.002, 0.67, 0.12, 0.17, 0.30, and 0.65.

Result 1: Neuron coverage is correlated with input-output
diversity and can be used to systematic test generation.

Next, we investigate whether synthetic images generated by
applying different realistic image transformations (as described in
Table 2) on existing input images can activate different neurons.
Thus, we check:

RQ2. Do different realistic image transformations activate dif-
ferent neurons?

We randomly pick 1,000 input images from the test set and
transform each of them by using seven different transformations:
blur, brightness, contrast, rotation, scale, shear, and translation. We
also vary the parameters of each transformation and generate a
total of 70,000 new synthetic images. We run all models with these
synthetic images as input and record the neurons activated by each
input.

We then compare the neurons activated by different synthetic
images generated from the same image. Let us assume that two
transformations T1 and T2, when applied to an original image I ,
activate two sets of neurons N1 and N1 respectively. We measure
the dissimilarities between N1 and N2 by measuring their Jaccard
distance: 1 − |N1∩N2 |

|N1∪N2 |
.

Figure 4.1 shows the result for all possible pair of transformations
(e.g., blur vs. rotation, rotation vs. transformation, etc.) for different
models. These results indicate that for all models, except Chauffeur-
LSTM , different transformations activate different neurons. As
discussed in Section 2.1, LSTM is a particular type of RNN architec-
ture that keeps states from previous inputs and hence increasing
the neuron coverage of LSTM models with single transformations
is much harder than other models. In this paper, we do not explore
this problem any further and leave it as an interesting future work.

We further check how much a single transformation contributes
in increasing the neuron coverage w.r.t. all other transformations
for a given seed image. Thus, if an original image I undergoes seven
discrete transformations:T1,T2, ...T7, we compute the total number

of neurons activated by T1, T1 ∪T2, ...,
7⋃
i=1

Ti . Figure 4.2 shows the

cumulative effect of all the transformations on average neuron
coverage per seed image. We see that the cumulative coverage
increases with increasing number of transformations for all the

models. In other words, all the transformations are contributing
towards the overall neuron coverage.

We also compute the percentage change in neuron coverage
per image transformation (NT ) w.r.t. to the corresponding seed
image (NO ) as: (NT -NO )/NO . Figure 5 shows the result. For all
the studied models, the transformed images increase the neuron
coverage significantly—Wilcoxon nonparametric test confirms the
statistical significance. These results also show that different image
transformations increase neuron coverage at different rates.

Result 2: Different image transformations tend to activate
different sets of neurons.

Next, we mutate the seed images with different combinations of
transformations (see Section 3). Since different image transforma-
tions activate different set of neurons, here we try to increase the
neuron coverage by these transformed image inputs. To this end,
we question:

RQ3. Can neuron coverage be further increased by combining
different image transformations?

We perform this experiment by measuring neuron coverage in
two different settings: (i) applying a set of transformations and (ii)
combining transformations using coverage-guided search.

i) Cumulative Transformations. Since different seed images acti-
vate a different set of neurons (see RQ1), multiple seed images col-
lectively achieve higher neuron coverage than a single one. Hence,
we check whether the transformed images can still increase the
neuron coverage collectivelyw.r.t. the cumulative baseline coverage
of a set of seed images. In particular, we generate a total of 7,000
images from 100 seed images by applying 7 transformations and
varying 10 parameters on 100 seed images. This results in a total of
7,000 test images.We then compare the cumulative neuron coverage
of these synthetic images w.r.t. the baseline, which use the same 100
seed images for fair comparison. Table 6 shows the result. Across all
the models (except Rambo-S3), the cumulative coverage increased
significantly. Since the Rambo-S3 baseline already achieved 97%
coverage, the transformed images only increase the coverage by
(13, 080 − 13, 008)/13, 008 = 0.55%.

ii) Guided Transformations. Finally, we check whether we can fur-
ther increase the cumulative neuron coverage by using the coverage-
guided search technique described in Algorithm 1. We generate
254, 221, and 864 images from 100 seed images for Chauffeur-CNN ,
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Median Increase in Neuron Coverage

Transformation Chauffeur Epoch Rambo
(CNN,LSTM) (S1,S2,S3)

Scale (1.0,0.0) 39.0** (2.0*,5.0*,32.0)
(0.67%,0%) 93% (0.41%,1%,4%)

Brightness (100.0**,1.0) 113.0** (67.0**,104.0**,585.0*)
(67%,0.2%) 269% (14%,24%,66%)

Contrast (120.0**,1.0*) 75.0** (47.0**,100.0**,159.0)
(80%,0.2%) 179% (10%,23%,18%)

Blur (41.0**,0.0) 9.0* (18.0**,23.0**,269.5*)
(28%,0%) 21% (4%,5%,31%)

Rotation (199.0**,2.0*) 81.0** (70.0**,13.0**,786.5*)
(134%,0.39%) 193% (14%,3%,89%)

Translation (147.0**,1.0*) 65.0** (143.0**,167.0**,2315.5**)
(99%,0.2%) 155% (29%,38%,263%)

Shear (168.0**,1.0*) 167.0** (48.0**,132.0**,1472.0**)
(113%,0.2%) 398% (10%,30%,167%)

All numbers are statistically significant;
Numbers with * and ** have small and large Cohen’s D effect.

Figure 5: Neuron coverage per seed image for individual image
transformations w.r.t. baseline.

Table 6:Neuron coverage achieved by cumulative and guided trans-
formations applied to 100 seed images.

Cumulative Guided % increase of guided w.r.t.
Model Baseline Transformation Generation Baseline Cumulative
Chauffeur-CNN 658 (46%) 1,065 (75%) 1,250 (88%) 90% 17%
Epoch 621 (25%) 1034 (41%) 1,266 (51%) 104% 22%
Rambo-S1 710 (44%) 929 (57%) 1,043 (64%) 47% 12%
Rambo-S2 1,146 (30%) 2,210 (58%) 2,676 (70%) 134% 21%
Rambo-S3 13,008 (97%) 13,080 (97%) 13,150 (98%) 1.1% 0.5%

Epoch , and Rambomodels respectively andmeasure their collective
neuron coverage. As shown in Table 6, the guided transformations
collectively achieve 88%, 51%, 64%, 70%, and 98% of total neurons
for models Chauffeur-CNN , Epoch , Rambo-S1 , Rambo-S2 , and
Rambo-S3 respectively, thus increasing the coverage up to 17%
22%, 12%, 21%, and 0.5% w.r.t. the unguided approach. This method
also significantly achieves higher neuron coverage w.r.t. baseline
cumulative coverage.

Result 3: By systematically combining different image trans-
formations, neuron coverage can be improved by around 100%
w.r.t. the coverage achieved by the original seed images.

Next we check whether the synthetic images can trigger any
erroneous behavior in the autonomous car DNNs and if we can
detect those behaviors using metamorphic relations as described in
Section 3.4. This leads to the following research question:

RQ4. Can we automatically detect erroneous behaviors using
metamorphic relations?

Figure 6: Deviations from the human labels for images that violate
themetamorphic relation (see Equation 2) is higher compared to the
deviations for original images. Thus, these synthetic images have a
high chance to show erroneous behaviors.

Here we focus on the transformed images whose outputs violate
the metamorphic relation defined in Equation 2. We call these
images Ierr and their corresponding original images as Iorд . We
compare the deviation between the outputs of Ierr and Iorд w.r.t. the
corresponding human labels, as shown in Figure 6. The deviations
produced for Ierr are much larger than Iorд (also confirmed by
Wilcoxon test for statistical significance). In fact, mean squared
error (MSE) for Ierr is 0.41, while the MSE of the corresponding
Iorд is 0.035. Such differences also exist for other synthetic images
that are generated by composite transformations including rain,
fog, and those generated during the coverage-guided search. Thus,
overall Ierr has a higher potential to show buggy behavior.

However, for certain transformations (e.g., rotation), not all vio-
lations of the metamorphic relations can be considered buggy as
the correct steering angle can vary widely based on the contents of
the transformed image. For example, when an image is rotated by a
large amount, say 30 degrees, it is nontrivial to automatically define
its correct output behavior without knowing its contents. To reduce
such false positives, we only report bugs for the transformations
(e.g., small rotations, rain, fog, etc.) where the correct output should
not deviate much from the labels of the corresponding seed images.
Thus, we further use a filtration criteria as defined in Equation 3 to
identify such transformations by checking whether the MSE of the
synthetic images is close to that of the original images.

| MSE(trans,param) −MSEorд | ≤ ϵ (3)
Thus, we only choose the transformations that obey Equation 3

for counting erroneous behaviors. Table 7 shows the number of
such erroneous cases by varying two thresholds: ϵ and λ—a higher
value of λ and lower value of ϵ makes the system report fewer
bugs and vice versa. For example, with a λ of 5 and ϵ of 0.03, we
report 330 violations for simple transformations. We do not enforce
the filtration criteria for composite transformations. Rain and fog
effects should produce same outputs as original images. Also, in
guided search since multiple transformations produce the synthe-
sized images, it is not possible to filter out a single transformation.
Thus, for rain, fog, and guided search, we report 4448, 741, and 821
erroneous behavior respectively for λ = 5, across all three models.
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original fog original rain original translation(40,40) original scale(2.5x)

original shear(0.1) original rotation(6 degree) original contrast(1.8) original brightness(50)

Figure 7: Sample images showing erroneous behaviors detected by DeepTest using synthetic images. For original images the arrows are
marked in blue, while for the synthetic images they are marked in red. More such samples can be viewed at https://deeplearningtest.github.
io/deepTest/.

Table 7: Number of erroneous behaviors reported by DeepTest
across all tested models at different thresholds

Simple Tranformation Composite Transformation
λ ϵ (see Eqn. 3) Fog Rain Guided

(see Eqn. 2) 0.01 0.02 0.03 0.04 0.05 Search

1 15666 18520 23391 24952 29649 9018 6133 1148
2 4066 5033 6778 7362 9259 6503 2650 1026
3 1396 1741 2414 2627 3376 5452 1483 930
4 501 642 965 1064 4884 4884 997 872
5 95 171 330 382 641 4448 741 820
6 49 85 185 210 359 4063 516 764
7 13 24 89 105 189 3732 287 721
8 3 5 34 45 103 3391 174 668
9 0 1 12 19 56 3070 111 637
10 0 0 3 5 23 2801 63 597

Table 8: Number of unique erroneous behaviors reported by
DeepTest for different models with λ = 5 (see Eqn. 2)

Transformation Chauffeur Epoch Rambo

Simple Transformation
Blur 3 27 11
Brightness 97 32 15
Contrast 31 12 -
Rotation - 13 -
Scale - 10 -
Shear - - 23
Translation 21 35 -

Composite Transformation
Rain 650 64 27
Fog 201 135 4112
Guided 89 65 666

Table 8 further elaborates the result for different models for λ = 5
and ϵ = 0.03, as highlighted in Table 7. Interestingly, some models
are more prone to erroneous behaviors for some transformations
than others. For example, Rambo produces 23 erroneous cases for
shear, while the other two models do not show any such cases.
Similarly, DeepTest finds 650 instances of erroneous behavior in
Chauffeur for rain but only 64 and 27 for Epoch and Rambo respec-
tively. In total, DeepTest detects 6339 erroneous behaviors across all
three models. Figure 7 further shows some of the erroneous behav-
iors that are detected by DeepTest under different transformations
that can lead to potentially fatal situations.

We alsomanually checked the bugs reported in Table 8 and report
the false positives in Figure 8. It also shows two synthetic images
(the corresponding original images) where DeepTest incorrectly
reports erroneous behaviors while the model’s output is indeed safe.
Although such manual investigation is, by definition, subjective
and approximate, all the authors have reviewed the images and
agreed on the false positives.

Simple
Model Transformation Guided Rain Fog Total

Epoch 14 0 0 0 14
Chauffeur 5 3 12 6 26
Rambo 8 43 11 28 90

Total 27 46 23 34 130

original translation(50,50), epoch original shear(0.4), rambo

Figure 8: Sample false positives produced by DeepTest for λ = 5,
ϵ = 0.03

Result 4: With neuron coverage guided synthesized images,
DeepTest successfully detects more than 1,000 erroneous behavior
as predicted by the three models with low false positives.

RQ5. Can retraining DNNs with synthetic images improve ac-
curacy?

Table 9: Improvement inMSE after retraining of Epochmodel with
synthetic tests generated by DeepTest

Test set Original MSE Retrained MSE

original images 0.10 0.09
with fog 0.18 0.10
with rain 0.13 0.07

Here we check whether retraining the DNNs with some of the
synthetic images generated by DeepTest helps in making the DNNs
more robust.We used the images from HMB_3.bag [16] and cre-
ated their synthetic versions by adding the rain and fog effects. We
retrained the Epoch model with randomly sampled 66% of these
synthetic inputs along with the original training data. We evalu-
ated both the original and the retrained model on the rest 34% of
the synthetic images and their original versions. In all cases, the
accuracy of the retrained model improved significantly over the
original model as shown in Table 9.

Result 5: Accuracy of a DNN can be improved up to 46% by
retraining the DNN with synthetic data generated by DeepTest.

https://deeplearningtest.github.io/deepTest/
https://deeplearningtest.github.io/deepTest/
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6 THREATS TO VALIDITY
DeepTest generates realistic synthetic images by applying different
image transformations on the seed images. However, these trans-
formations are not designed to be exhaustive and therefore may
not cover all realistic cases.

While our transformations like rain and fog effects are designed
to be realistic, the generated pictures may not be exactly repro-
ducible in reality due to a large number of unpredictable factors,
e.g., the position of the sun, the angle and size of the rain drops.
etc. However, as the image processing techniques become more
sophisticated, the generated pictures will get closer to reality.

A complete DNN model for driving an autonomous vehicle must
also handle braking and acceleration besides the steering angle. We
restricted ourselves to only test the accuracy of the steering angle
as our tested models do not support braking and acceleration yet.
However, our techniques should be readily applicable to testing
those outputs too assuming that the models support them.

7 RELATEDWORK
Testing of driver assistance systems. Abdessalem et al. pro-
posed a technique for testing Advanced Driver Assistance Systems
(ADAS) in autonomous cars that show warnings to the drivers if it
detects pedestrians in positions with low driver visibility [25]. They
use multi-objective meta heuristic search algorithms to generate
tests that simultaneously focus on the most critical behaviors of
the system and the environment as decided by the domain experts
(e.g., moving pedestrians in the dark).

The key differences between this work and ours are threefold:
(i) We focus on testing the image recognition and steering logic
in the autonomous car DNNs while their technique tested ADAS
system’s warning logic based on preprocessed sensor inputs; (ii)
Their blackbox technique depends on manually selected critical
scenarios while our gray-box technique looks inside the DNNmodel
and systematically maximize neuron coverage. The trade-off is that
their technique can, in theory, work for arbitrary implementations
while our technique is tailored for DNNs; and (iii) We leverage
metamorphic relations for creating a test oracle while they depend
on manual specifications for detecting faulty behavior.

Testing and verification of machine learning. Traditional
practices in evaluating machine learning systems primarily mea-
sure their accuracy on randomly drawn test inputs from manually
labeled datasets and ad hoc simulations [11, 20, 82]. However, with-
out the knowledge of the model’s internals, such blackbox testing
paradigms are not able to find different corner-cases that may in-
duce unexpected behaviors [26, 70].

Pei et al. [70] proposed DeepXplore, a whitebox differential test-
ing algorithm for systematically finding inputs that can trigger
inconsistencies between multiple DNNs. They introduced neuron
coverage as a systematic metric for measuring how much of the
internal logic of a DNNs have been tested. By contrast, our graybox
methods use neuron coverage for guided test generation in a single
DNN and leverage metamorphic relations to identify erroneous
behaviors without requiring multiple DNNs.

Another recent line of work has explored the possibility of verify-
ing DNNs against different safety properties [48, 51, 71]. However,
none of these techniques can verify a rich set of properties for real-
world-sized DNNs. By contrast, our techniques can systematically

test state-of-the-art DNNs for safety-critical erroneous behaviors
but do not provide any theoretical guarantees.

Adversarial machine learning. A large number of projects
successfully attacked machine learning models at test time by forc-
ing it to make unexpected mistakes. More specifically, these attacks
focus on finding inputs that, when changed minimally from their
original versions, get classified differently by the machine learn-
ing classifiers. These types of attacks are known to affect a broad
spectrum of tasks such as image recognition [37, 40, 52, 55, 62,
63, 65, 66, 78], face detection/verification [75, 81], malware detec-
tion [28, 42, 54, 85], and text analysis [59, 67]. Several prior works
have explored defenses against these attacks with different effec-
tiveness [29, 32, 35, 38, 41, 43, 48, 57, 64, 68, 74, 77, 80, 84, 86].

In summary, this line of work tries to find a particular class of
erroneous behaviors, i.e., forcing incorrect prediction by adding a
minimum amount of noise to a given input. By contrast, we system-
atically test a given DNN by maximizing neuron coverage and find
a diverse set of corner-case behaviors. Moreover, we specifically
focus on finding realistic conditions that can occur in practice.

Test amplification. There is a large body of work on test case
generation and amplification techniques for traditional software
that automatically generate test cases from some seed inputs and
increase code coverage. Instead of summarizing them individually
here, we refer the interested readers to the surveys by Anand et
al. [27], McMinn et al. [56], and Pasareanu et al. [69]. Unlike these
approaches, DeepTest is designed to operate on DNNs.

Metamorphic testing. Metamorphic testing [33, 87] is a way
of creating test oracles in settings where manual specifications
are not available. Metamorphic testing identifies buggy behavior
by detecting violations of domain-specific metamorphic relations
that are defined across outputs from multiple executions of the
test program with different inputs. For example, a sample meta-
morphic property for program p adding two inputs a and b can
be p(a,b) = p(a, 0) + p(b, 0). Metamorphic testing has been used
in the past for testing both supervised and unsupervised machine
learning classifiers [60, 83]. By contrast, we define new metamor-
phic relations in the domain of autonomous cars which, unlike the
classifiers tested before, produce a continuous steering angle, i.e., it
is a regression task.

8 CONCLUSION
In this paper, we proposed and evaluated DeepTest, a tool for au-
tomated testing of DNN-driven autonomous cars. DeepTest maxi-
mizes the neuron coverage of a DNN using synthetic test images
generated by applying different realistic transformations on a set
of seed images. We use domain-specific metamorphic relations to
find erroneous behaviors of the DNN without detailed specification.
DeepTest can be easily adapted to test other DNN-based systems by
customizing the transformations and metamorphic relations. We
believe DeepTest is an important first step towards building robust
DNN-based systems.
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