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Abstract
Web technology has evolved to offer 360-degree immersive
browsing experiences. This new technology, called WebVR,
enables virtual reality by rendering a three-dimensional world
on an HTML canvas. Unfortunately, there exists no browser-
supported way of sharing this canvas between different parties.
Assuming an abusive ad service provider who exploits this
absence, we present four new ad fraud attack methods. Our
user study demonstrates that the success rates of our attacks
range from 88.23% to 100%, confirming their effectiveness.
To mitigate the presented threats, we propose AdCube, which
allows publishers to specify the behaviors of third-party ad
code and enforce this specification. We show that AdCube is
able to block the presented threats with a small page loading
latency of 236 msec and a negligible frame-per-second (FPS)
drop for nine WebVR official demo sites.

1 Introduction

WebVR [77] is a JavaScript programming interface that en-
ables virtual reality (VR) presentation in user browsers. It
aims to provide an integrated VR environment for different
browser platforms and operating systems. WebVR works in
tandem with WebGL [31] and leverages a canvas document
object model (DOM) to render VR scenes; this canvas be-
comes a window displaying a VR world.

WebVR websites provide the unique feature of enabling im-
mersive virtual world experiences. Internet surfers who seek
diverse and content-rich experiences are attracted to WebVR
websites [65, 68]. Considering that advertisers seek oppor-
tunities to expose their ads to large audiences, it is natural
for them to search for a means to bring promotional content
into VR worlds. StateFarm reported a 500% increase in the
click-through rate over mobile ads due to their VR ad cam-
paigns [5], demonstrating the potential of VR ads to attract
audience attention. Online VR ad service providers, including
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OmniVirt [52] and Adverty [6], have provided a means for
advertisers to expose their products or services in VR worlds.

A standard website often monetizes its content by renting
out its screen estates for ads. For this, the website embeds
a JavaScript (JS) library from an ad service provider (e.g.,
Google or Facebook), and this library leverages an iframe
element to display ads and confine the execution of their JS
scripts. This iframe serves as an execution container such
that the hosting website cannot alter ads within the iframe.
Unfortunately, in WebVR environments, there are no iframe-
like primitives that isolate the execution of an ad-serving
JS script; instead, it shares a portion of the displayed VR
scene. This WebVR limitation stems from the usage of a
canvas DOM to render VR scenes, thus providing no browser-
supported method of sharing this canvas between different
web origins [51].

Previous research has demonstrated the presence of abusive
ad service providers who perpetrate impression or click fraud
campaigns [63, 81]. When an ad service provider with ill
intent abuses the absence of iframe-like primitives in WebVR
environments, there is no practical method for WebVR web-
sites to sandbox the execution of their third-party ad-serving
JS scripts. Furthermore, to the best of our knowledge, there is
no previous study that investigates security threats imposed
by third-party WebVR ads.
Our contributions. Assuming the presence of abusive ad
service providers who conduct impression or click fraud, we
introduce four new attack variants that leverage unique We-
bVR features. We present gaze and controller cursor-jacking
attacks. Gaze and controller cursors are new input channels
from head-mounted displays (HMDs) and VR controllers,
respectively. These attacks introduce fake gaze and controller
cursors into VR scenes and deceive users into clicking pro-
motional VR entities. We then introduce a blind spot tracking
attack whereby the adversary places promotional objects, im-
ages, and videos in the opposite direction of a user’s current
line of sight. This attack exploits the limited visual aware-
ness of users when they enable 360-degree immersive views.
Lastly, we propose an abuse of an auxiliary display attack



that exploits the inability of users to view the main display
when they enter the immersive mode.

We conducted user studies with 82 participants to measure
the efficacy of our attacks. The experimental results show that
the gaze and controller cursor-jacking attacks have success
rates of 88.23% and 93.75%, respectively, with participants
clicking at least two ad entities. The blind spot tracking and
abuse of an auxiliary display attacks have success rates of
94.12% and 100%, respectively. These results demonstrate
that the adversary is able to readily conduct stealthy ad fraud.

We propose a defense system, AdCube, which is designed
to block the four types of attacks presented as well as tradi-
tional web threats, including cookie theft [82] and unrestricted
private information retrieval [39] by untrustworthy third par-
ties. We define two security requirements to block the pre-
sented threats: 1) the visual confinement of three-dimensional
(3D) ad entities; and 2) the sandboxing of ad-serving JS
scripts according to a given security policy. To address the first
requirement, we propose an algorithm confining ad objects as
well as 3D models to bounding boxes, called adcube. To ad-
dress the second requirement, we leverage Caja [19], a mature
sandboxing technology maintained by Google, to confine the
execution of third-party JS code. Specifically, on top of Caja,
we design a set of JS APIs that an ad-serving JS script is able
to use to create WebVR ads and implement each API. There-
fore, a benign WebVR website owner is able to use AdCube to
confine the locations and executions of VR ads as the owner
specifies. For open science and further research, we have re-
leased AdCube at https://github.com/WSP-LAB/AdCube.

We evaluated the performance of AdCube in terms of page
loading time and frames-per-second (FPS). Compared to the
baseline without any defense, AdCube produced a negligible
FPS drop when rendering a complex demo site of a virtual art
museum and an additional page loading time of 236 msec on
average when rendering nine WebVR sites, thus demonstrat-
ing the promising efficacy of AdCube in the wild.

2 Background

2.1 WebVR
VR technology offers an immersive user experience that pro-
vides users with a virtual 3D world. Rendering a virtual world
scene entails heavy usage of matrix computations, high de-
mand for graphics processor unit (GPU) resources, and the
frequent loading of large-sized graphic textures and images.
These requirements make native applications the only viable
means of delivering a VR world. However, the proper installa-
tion and frequent software updates, which native applications
often require, have hindered their wide adoption.

The advent of WebVR addresses these core limitations.
This new technology enables a website to offer a VR envi-
ronment by means of browser supports. WebVR specifies
a set of browser-supported APIs that enables VR in user

browsers [77]. It provides interfaces for managing VR pe-
ripherals, such as HMDs and VR controllers, thus enabling
an immersive 3D world experience. WebVR works in tandem
with WebGL [31] to render VR content on an HTML5 can-
vas DOM element. WebGL provides a set of interfaces that
launch shader programs as well as manage viewports, thus
rendering sophisticated 3D entities and models via a large
volume of matrix computations empowered by GPUs.

In 2018, WebVR was integrated into WebXR [78], which
is designed for both augmented reality (AR) [43] and virtual
reality (VR) on the Web. However, the original architecture
of WebVR remains the same in WebXR, with only keyword
changes. In this paper, we focus on addressing new security
threats that involve WebVR APIs in WebXR.
WebVR terminology. Here we clarify WebVR terms that we
use throughout the paper. A VR scene refers to a view of a VR
world in WebVR. In this definition, a scene requires a viewer
of the VR world. A camera refers to this viewer, usually rep-
resented by the perspective of a user. The immersive mode
refers to the mode in which a user sees the scene through an
HMD. A viewport defines a rectangular area where the VR
world is rendered. Most WebVR sites offer two viewports
onto their VR world; these viewports correspond to the left
and right eyes, respectively. An entity refers to a visible or in-
visible object within a scene. To avoid confusion with DOMs
and JS run-time objects, we explicitly use the term entity to
describe objects placed in a VR world. Therefore, an entity
that promotes a commercial product is called either an ad
entity or a promotional entity.
3D library. To facilitate usages of WebGL, many JS 3D li-
braries, including Three.js [71], babylon.js, and React 360,
have been proposed. Several vendors have even promoted new
WebVR frameworks (e.g., A-Frame [1], PlayCanvas [53], and
Sketchfab [59]), which not only provide intuitive interfaces
but also establish their own abstraction layers to ease the
implementation of rich VR experiences.

A-Frame [1] is a representative WebVR framework in-
troduced by Mozilla in 2015. Its striking feature is that a
scene and all entities rendered within the scene can be de-
fined through a markup language, which is accessible via a
DOM [46]. For instance, a developer can create a 3D box
entity by defining an <a-box> tag in HTML and query this
entity via JS DOM APIs. This intuitive approach to encoding
diverse 3D entity properties into HTML tag attributes has
lowered the technical barriers to developing VR content.

2.2 Online Advertising

There exist three main types of participants in the web ad
ecosystem: publishers, ad service providers, and advertisers.
Figure 1 depicts how these three participants interact with
one another. Publishers are website owners or operators who
serve informative, promotional, or intriguing content to their
website visitors. Advertisers play a role in planning and bid-
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Figure 1: Simplified overview of the web ad ecosystem
and examples of OmniVirt VR ads: A billboard ad and a
promotional 3D model in a VR scene.

ding on ad campaigns and want to expose those ad campaigns
to users who visit publisher websites. Ad service providers
connect these publishers and advertisers; they provide pub-
lishers with ad-serving JS APIs, which fetch banner, text, and
even video ads provided by advertisers.

Web ads have been a prevailing method by which pub-
lishers monetize their content. As advertisers seek diverse
channels and responsive interactions with their audiences, ad
technology has evolved to support not only text banner ads
but also various multimedia delivery mechanisms, such as
video and native responsive ads integrated into their hosting
websites [61, 81]. For instance, news feed ads blended with
other non-ad feeds have become a popular ad technology for
social media platforms, including Facebook [15, 81].

VR ad market. The VR market was valued at USD 7.3 billion
in 2018 and is expected to reach 20.5 billion by 2026 [79].
The total number of active VR users was approximately 171
million as of 2018 [64]. Thus, it is natural for advertisers to
seek new opportunities to promote their products or services
in a content-rich VR environment, thereby reaching a large
number of VR users.

There exist at least 13 VR ad service providers offering VR
ad forms; OmniVirt [52] and Wonderleap [80] have supported
options to initiate WebVR ad campaigns. OmniVirt reported
100 million and 1 billion delivered VR/AR ad impressions
in 2017 and 2018, respectively [73], which demonstrates the
surging demand for VR ads.

Ad fraud. Ad fraud refers to an operation that generates unin-
tended ad traffic involving ad impressions or clicks. Previous
studies have described various adversarial models that address
ill-intentioned publishers committing click fraud [18, 28], ma-
licious extension replacing ads [69], and abusive ad providers
generating unwanted ad traffic [63, 81].

In this paper, we assume an abusive ad provider whose
objective is to increase ad traffic that fetches ad impressions
or generates click events via deceptive techniques. To the best
of our knowledge, there have been no previous fraud studies
involving WebVR ads.

3 Motive and Threat Model

A typical way of placing web ads is for publishers to copy
and paste an ad bootstrapping JS script on their websites. This
embedded JS code, which runs with the same origin as its host
webpage, creates an iframe [48] of the page that is fetched
from a third-party ad service provider. Because the publisher
origin differs from the origin of the embedded iframe, the JS
script in this iframe can neither alter nor read resources from
the hosting page due to browsers enforcing the Same Origin
Policy (SOP) [51]. The SOP ensures that the rest of the ad
script confined within this iframe is isolated from the hosting
page. Thus, publishers only need to check how the embedded
bootstrapping JS code performs to prevent potential abuses
by advertisers or ad service providers.
Problem. Today’s WebVR does not provide an origin separa-
tion mechanism that allows a third-party ad script to securely
share the same origin as its hosting page to render ad entities,
images, or videos within the VR content of the hosting page.
This limitation stems from the usage of a canvas element [47]
when rendering VR content, which does not provide a way of
sharing this element among different origins. This limitation
leaves no option for WebVR ad service providers except to
run their ad scripts with the origins of hosting pages. Conse-
quently, it is imperative that publishers completely trust these
ad service providers.

Unfortunately, previous studies have demonstrated the pres-
ence of abusive or malicious ad service providers that victim-
ize visitors to publisher websites [28, 63, 69]. For instance,
Springborn et al. [63] investigated abusive pay-per-view net-
works that expose fraudulent impressions via pop-under or
invisible ads to increase the number of served ad impressions.
Given that an abusive ad service provider is capable of run-
ning scripts using its hosting origin, she is able to conduct
clickjacking [8, 28], steal cookies [82], and even access the
private information of users [39]. However, no previous study
has addressed the unique risks entailed in WebVR. Consid-
ering that WebVR introduced an immersive mode, in what
ways does this paradigm shift favor the attacker?
Sandboxing. Previous studies have investigated how to sand-
box the execution of third-party ad scripts within the same
origin as the hosting page [2, 7, 22, 30, 42, 45, 57, 72]. Such
sandboxing methods are viable as they require low overhead,
which is a key requirement in WebVR environments demand-
ing a robust FPS rate. However, it is not clear how to apply
these existing techniques to confine WebVR ad scripts.

What are the security properties that the sandbox technique
should guarantee? Which API should the sandbox technique
provide to support VR features while achieving security re-
quirements? These questions drive our research into providing
a practical method of confining ad scripts in WebVR websites.
Threat model. We assume an abusive ad service provider
who serves 2D/3D ads into WebVR sites. In this scenario,
the business imperative is to expose promotional VR entities,



images, or videos in the VR worlds of publishers. At the
same time, the goal of the adversary is to increase ad traffic
by rendering more promotional entities and to generate user
clicks via deceptive techniques that increase ad revenue. We
emphasize that this adversary model is a real threat. There
exist numerous malicious secondary or tertiary ad service
providers whose sole motive is to maximize their short-term
profit [32, 44]. Adf.ly was a notorious abusive ad service
provider that modified the link addresses of publisher pages
and tricked users into clicking ads [81].

Considering that there exists no practical way of separating
origins that share the same canvas that renders VR scenes, we
assume that the adversary places her ad-rendering code at the
hosting page, which allows the code to access any resources
that belong to the hosting page. The adversary victimizes
publishers by abusing their website visitors; her ad-serving
JS script generates ad fraud traffic by victimizing visitors.
These publishers also lose visitors due to providing bad user
experiences with fraudulent ads. An advertiser also becomes
a major victim who is obliged to pay for those fraudulent ad
impressions and clicks.

4 Attacks

In this section, we present four new ad fraud attacks that
exploit blind spots and new VR peripherals.

4.1 Cursor-Jacking Attack
Facilitating WebVR experiences requires two representative
IO devices: an HMD and a VR controller. These devices intro-
duce two new input channels: a gaze cursor and a controller
cursor, which did not exist in a standard web environment.

Unfortunately, both of these input methods can be altered
by a JS script, allowing a malicious ad service provider to
control them. Thus, the adversary abuses this capability by
creating a fake input source to induce actual clicks on other
entities. Specifically, we introduce two attack vectors: gaze
and controller cursor-jacking attacks.
Gaze cursor-jacking attack. A gaze cursor is a marker that
represents the focal point at which a user looks in a VR scene.
Usually, a gaze cursor has a circular appearance, which helps
users realize what they are looking at. This gaze cursor sup-
ports a fusing event that fires when a user locates the cursor
on a targeted entity. When the gaze cursor stays on this target
entity for 1.5 seconds (default), a browser then fires a click
event. Thus, the gaze cursor provides a unique way of trigger-
ing a “click” event on an entity without involving any mouse
or controller events.

Gaze cursor-jacking (GCJ) refers to an attack that creates a
fake gaze cursor and hides the original cursor in a target VR
scene. This GCJ attack leads its victims to believe that a fake
cursor is actually an authentic input cursor and to place the
“authentic” cursor at a point where the attacker wants it to be.

(a) Gaze cursor-jacking (b) Controller cursor-jacking

Figure 2: Illustration of (a) gaze and (b) controller cursor-
jacking attacks: (a) When a user clicks a UI button via
the gaze cursor made by the attacker, the authentic cur-
sor clicks the ad. (b) Inserting a fake controller cursor by
rotating its z-axis by 180 degrees. When a user clicks the
green box with an authentic VR controller cursor, the ad
placed in the opposite direction is also clicked.

Figure 2a demonstrates the implementation of the attack in
an A-Frame environment. The attacker is able to make the
authentic gaze cursor invisible and insert a fake gaze cursor
that triggers click events on different entities placed near the
position where the authentic cursor is located. Thus, she is
able to hijack authentic clicks that should be attributed to
first-party content.
Controller cursor-jacking attack. A VR controller is an-
other input device that enables a user to trigger various events
on entities, such as clicks. Usually, a VR site shows a projec-
tion line that points to a target, which varies according to the
user’s controller direction. A user leverages this projection
line in a scene to select a target entity at which the user fires
various events.

Controller cursor-jacking (CCJ) is an attack that introduces
an additional fake VR controller cursor in a target VR scene.
When a victim generates a user event on an entity, the same
event is also triggered at the target entity that this fake cursor
indicates because this fake cursor shares user events with the
original controller cursor. The adversary is able to leverage
blind spots to hide fake controller cursors and induce clicks
on ads whenever a click occurs (Figure 2b).

In a standard web page, a clickjacking attack [28] performs
a similar attack by using another iframe window from a third-
party source that actually tricks victims into clicking a target
element underneath this iframe window. However, the two at-
tacks presented here differ from the clickjacking attack in that
they do not exploit third-party windows due to the WebVR
nature of sharing the same scene between first- and third-
party scripts. Furthermore, these two attacks abuse new input
vectors that only exist in a WebVR environment.

Considering the adversary is already able to fire click
events via dispatchEvent API invocations, she might not
need to induce genuine user clicks with these two attacks
to achieve her goal. However, in Chrome, Edge, and Oculus
Android browsers, only event handlers invoked via genuine
click events are able to open a new window or cause redirec-
tion to a different website. Because the goal of the adversary



Figure 3: An illustration of blind spot tracking ads.

is eventually to redirect victims to an ad-landing page, the
attacker has a clear motive to conduct GCJ and CCJ attacks.

4.2 Blind Spot Attack

A WebVR site offers surrounding 360-degree views through
the support of an HMD, thereby enabling a new kind of brows-
ing experience. This results in two types of blind spots that
users are unable to see when experiencing the immersive
mode with the HMD: 1) one is located in the direction oppo-
site a user’s current line of sight, and 2) the other is the main
display, such as a desktop monitor or a laptop display, which
becomes an auxiliary display when users wear the HMD. The
attack is able to place promotional entities in these blind spots,
which are invisible to users. We introduce two attack vectors:
blind-spot tracking and abuse of an auxiliary display.
Blind spot tracking attack. A blind spot tracking (BST)
attack occurs when the adversary hides an ad entity in the
opposite direction from the user’s current line of sight. She
can also move this entity into blind spots whenever the user’s
gaze changes direction by tracking the camera sight’s direc-
tion (Figure 3). Thus, the adversary is able to increase the
number of rendered ad impressions or entities, later charging
the respective advertisers for this inflated number of ad views.

The BST attack is a unique variant of ad impression fraud.
Ad impression fraud refers to an operation that (1) hides
rendered ads underneath other UI elements, (2) makes ads
invisible by making them too small, (3) places ads to appear
when a user scrolls down a webpage, or (4) simply renders
a vast volume of ad impressions [36, 37, 67]. On the other
hand, the proposed BST attack leverages blind spots that are
inherent in any VR content.
Abuse of an auxiliary display attack. An attacker can abuse
the user’s limited awareness of the browser on the auxiliary
display by displaying diverse ad impressions or videos to
maximize ad view counts. We call this attack an abuse of an
auxiliary display (AAD) attack.

Furthermore, the attacker can identify the moment when
a victim exits the immersive mode when a vrdisplaypres-
entchange event is fired or when the HMD device is taken
off; this is achieved by monitoring abrupt gaze cursor changes
or scene change events. When identifying such moments, the
attacker can remove all ad impressions and stop video ads on

the auxiliary display involved in stealth ad campaigns.

5 User Study

To measure the efficacy of the presented attacks (§4), we
recruited 82 participants and investigated their responses to
the four attack scenarios. This section describes our user study
designs (§5.1) and experimental results (§5.2).

5.1 Experimental Design

From July to October 2019, we recruited a total of 82 univer-
sity students, consisting of 52 males and 30 females (mean
age = 23.69). Among them, 49 had been exposed to VR ex-
periences before. The participants were offered $5 per attack
scenario, each of which took approximately 30 minutes to
complete. We obtained IRB approvals and consent from every
participant. We focused on demonstrating the feasibility of
each attack rather than proving its success on general audi-
ences. For participants, we thus targeted primary consumers
of VR content, whose ages were between 19 and 30 [66].

Each participant was randomly assigned to one of four at-
tack scenarios. For each attack scenario, we prepared two
webpages: one represented the normal case without any at-
tacks (control group); the other was implemented for the cor-
responding attack. We used a within-subject design; all par-
ticipants experienced both normal and attack tests in each
scenario. To minimize the learning effect, whereby a prior
user study experience affects metrics observed during a pos-
terior user study, we shuffled the order of normal and attack
cases for each participant, ensuring that the same number of
users initially experienced normal and attack cases.

While exploring the two webpages described above, the
participants were asked to complete a specific task for each
page. At the end of each task, they were asked to complete a
survey asking about their awareness of the existence of ren-
dered ads and the differences between the normal webpages
and those under attack. The questionnaires are described in
detail in Appendix A.1.

We reserved a spacious classroom for the participants to
browse the VR websites and prepared a Windows 10 host
with an HTC VIVE device. We instructed the participants
not to interact with ads and notified them that any clicks on
promotional entities would be considered interactions. We
gave explicit guidance to the participants that they did not
need to interact with any ad entities to finish a given task.

5.2 Experimental Results

5.2.1 Gaze Cursor-Jacking Attack

We used halloVReen [24], a game of finding hidden animation
objects, to test the efficacy of a GCJ attack. The participants



Table 1: Experimental results for participants who experienced GCJ and CCJ attacks.

Attack Scenario Treatment Group Total Awareness of Ads Authentic Clicks Forged Clicks (Attack Success)

at least one half* all at least one half* all at least one half* all

GCJ Normal 17 17 17 5 11 4 0 N/A† N/A† N/A†

Attack 17 17 16 11 6 5 1 17 (100%) 15 (88.23%) 0 (0%)

CCJ Normal 16 6 2 1 0 0 0 N/A† N/A† N/A†

Attack 16 6 2 2 0 0 0 16 (100%) 15 (93.75%) 6 (37.5%)
*Half indicates at least three out of seven ad entities for GCJ and at least two out of three ad entities for CCJ.
†In the normal case, the attack is not carried out, so the result is shown as N/A.

were expected to find five animated Halloween ghosts scat-
tered across a VR scene via gaze-clicks. The task was to end
after five minutes, regardless of the completion of a given
task.

For the normal webpage without the attack, we placed seven
ad entities placed near Halloween figures. For the attack page
with the GCJ attack, we placed seven different ad entities
near Halloween figures. We also created a fake gaze cursor
near the actual cursor and made the actual cursor invisible.
To minimize the learning effect, we used different Halloween
figures and ad entities for each webpage.

When participants gaze-clicked the fake cursor on the Hal-
loween figures, the ad entities were gaze-clicked by the actual
cursor. Because a gaze click event is triggered when the cur-
sor stays on a target for at least 1.5 seconds, non-intentional
head movements could not have accounted for any of the
gaze-clicks. In other words, all counted gaze clicks originate
from either users’ intentional clicks or the GCJ attack. After
a given task, participants were asked on the survey to check
which ad objects they had found and whether they had clicked
any of them.

Table 1 shows the experimental results. The columns below
Awareness of Ads represent the number of participants who
noticed the existence of ads. The sub-columns at least one,
half, and all represent the number of participants who recog-
nized at least one, half, and all of the promotional entities,
respectively. The columns below Authentic Clicks show the
number of participants who intentionally gaze-clicked promo-
tional entities. Also, the Forged Clicks columns represent the
number of participants who gaze-clicked promotional entities
with the real gaze cursor due to this attack.

As the first row in Table 1 shows, all 17 participants who
browsed the normal webpage discovered at least three ad enti-
ties, which is about half of the seven ad entities that we placed
in the scene. Interestingly, whereas the instructions were given
to avoid clicking on promotional entities, 11 and 6 people in
the normal and attack cases, respectively, intentionally clicked
on at least one ad entity.

As the second row in the table shows, every participant
gaze-clicked at least one ad entity due to the GCJ attack,
which is a significant improvement over the six participants
who intentionally gaze-clicked at least one ad entity in the
attack case. Also, 15 participants (88.23%) gaze-clicked at
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Figure 4: Total number of participants’ clicks on all ads
in the GCJ and CCJ attack scenarios.

least three ad entities due to the attack; this means that the
emplaced attack caused a majority of the participants to gaze-
click ad entities.

Figure 4a shows the total number of gaze-clicks on all ad
entities for each participant. The normal group represents the
number of intentional clicks on ads in the normal case, while
the attack group represents how many gaze-clicks were fired
due to the attack. The mean of the clicks due to the attack
is 6.51, which is three times greater than 2.61, which is the
mean of clicks in the normal case. This statistic demonstrates
that the adversary can generate more gaze-clicks on ads than
in the normal case by exploiting a GCJ attack.

5.2.2 Controller Cursor-Jacking Attack

For the second user study, we used A-Blast [76], a shooting
game in which players shoot flying monsters with two blaster
guns maneuvered by two VR controllers. Monsters appear
randomly within 120 degrees of the front. Each participant
played a game for five minutes, or the game ended early when
his/her avatar died.

We prepared two webpages. The normal page implemented
the A-Blast game, in which three ad entities were placed
in positions where the participants would hardly ever look,
which was about 180 degrees away from the front. The attack
page had the same ads placed in the same location as on the
first page. It implemented the CCJ attack, in which a fake
controller was inserted that rotated the z-axis 180 degrees.
Thus, the participants unwittingly clicked the back of the
scene when they shot at monsters in front of their sights, thus
clicking ad entities.



The second row of Attack Scenario in Table 1 summarizes
the experimental results. It shows that six of 16 participants
were aware of at least one ad entity in both cases although they
could not see them unless they turned their line of sight around
180 degrees. Also, no participants intentionally clicked ad
entities because they were located in the opposite direction of
the front area where the game was taking place.

Due to the attack, every participant (100%) clicked at least
one ad entity. Also, 15 (93.75%) and 6 (37.5%) participants
clicked at least two and all of the ad entities, respectively.
This demonstrates that no one intentionally clicked these ad
entities but that the attack caused participants to click them.

Figure 4b shows the total number of clicks on all ad entities
for each participant. These results show that there were no
clicks in the normal case. On the other hand, the mean of ad
clicks in the attack case was 174.31. This unbalanced metric
indicates the effectiveness of the CCJ attack.

5.2.3 Blind Spot Tracking Attack

We revised two VR game websites to implement a blind spot
tracking attack: halloVReen [24] and Whack-a-mole [56].
The Whack-a-mole game is designed such that users attempt
to grab moles, which appear in the 360-degree scene, via user
gaze-click. We asked the participants to finish the games in
one minute.

The attack was implemented by placing a video ad for
which z-order was set to the behind camera position, thus
rendering the video ad at a blind spot of the participant. Con-
sidering that a typical video ad is accompanied by music and
sound effects, we also tested the degree to which ad sounds en-
hanced the participants’ awareness of ads in their blind spots.
The participants were asked to wear earphones connected to
the HMD supporting 3D spatialized sounds. Note that the
3D spatialized sounds only reflect the distance from a sound
source and not the direction. Regardless of whether sounds
were played in the front of or behind the participants in our
VR worlds in A-Frame, the participants heard the identical
sounds.

We chose two ad videos that advertise a popular super-
market and drink product. They had been well-received by
university students due to a heavy volume of commercial mar-
keting. Thus, the participants were highly likely to recognize
these brands by just hearing the sounds of these ad videos.

For the user study, we prepared two treatment groups. One
group consisted of 17 participants who experienced two VR
websites: Whack-a-mole for the normal case and halloVReen
for the attack case with the sound enabled. The other group,
consisting of 15 participants, experienced two VR websites:
halloVReen for the normal case and Whack-a-mole for the
attack case with the sound muted.

Table 2 presents the experimental results for each treatment
group. Of the 32 participants who experienced the normal
sites that rendered no ads, only three participants (9.375%)

Table 2: Experimental results for participants who expe-
rienced the blind spot tracking (BST) and the abuse of an
auxiliary display (AAD) attacks.

Attack
Scenario

Treatment
Group Total Awareness

of the Ads
Found ads

(Attack Success)

BST
normal 32 3 0 (N/A)

attack (muted) 15 2 0 (100%)
attack (w/ sound) 17 14 1 (94.12%)

AAD
normal 32 3 0 (N/A)

attack (muted) 17 1 0 (100%)
attack (w/ sound) 15 15 0 (100%)

Note: The Awareness of the Ads column indicates that the number of
participants who realized the presence of ads. The Found ads column
shows the number of participants who actually saw the ads.

claimed that they heard ad sounds, which were actually the
sound effects of the underlying websites. Of the 15 partici-
pants who experienced the attack site with the sound muted,
only two (13.3%) claimed awareness of ad sounds, which
were actually noises in the experimental environment, such
as desk-dragging sounds. That is, no one heard genuine ad
sounds in the normal and attack cases with the sound muted.
In contrast, 14 participants (82.35%) who experienced the
attack site with ad sounds claimed that they indeed heard
ad sounds and became aware of the presence of ongoing ad
campaigns.

Note that no one in the attack group saw the ad video in the
muted attack, and only one participant claimed that he saw an
ad video in the sound attack. Considering that this participant
could not specify the ad video he saw, we concluded that he
did not see any video ad playing in the opposite direction
of his line of sight. We concluded that the BST attack is
capable of concealing ad impressions and videos, rendering
users unable to recognize whether ads are rendered.

5.2.4 Abuse of an Auxiliary Display Attack

We implemented an AAD attack on the A-Blast website [76].
Each participant played a game for five minutes. The attack
created an iframe that rendered a video ad on the A-Blast
webpage in the original desktop display when a participant
entered the immersive mode. The attack also deleted this
iframe when a participant exited the immersive mode. There-
fore, it was improbable for participants to find such ads unless
they took off the HMD device before finishing the task.

We also measured the effects of ad sounds to measure the
participants’ awareness of the ads rendered on their auxiliary
display, which was the desktop monitor used in this user study.
For the user study, we designed two treatment groups. One
group consisted of 17 participants, and they experienced the
A-Blast website for the normal case and the same website for
the attack case with the sound muted. The other group, which
consisted of 15 participants, visited the same A-Blast website
for the normal and attack cases with enabled sound. For the ad



videos rendered, we chose two videos that advertise a popular
e-commerce site and a vitamin drink product.

Table 2 presents the experimental results for each treat-
ment group. Only three (9.375%) of the 32 participants who
experienced the normal site and one (5.882%) of the 17 partic-
ipants who experienced the muted attack site claimed hearing
ad sounds; however, they were the sound effects of the un-
derlying websites. On the other hand, all (100%) of the 15
participants who experienced the attack site with sound were
aware of the presence of ongoing ads due to the video ad
sounds. However, note that no one explicitly found the ad
video, thus demonstrating the feasibility of abusing this attack
in a stealthy manner.

6 AdCube

This section explains two security requirements to mitigate
the presented attacks and a defense model of AdCube (§6.1).
We then present the architecture of AdCube (§6.2) and its
usage in terms of defining security policies (§6.3). Lastly, we
explain how AdCube is implemented to enforce the aforemen-
tioned security requirements (§6.4 and §6.5).

6.1 Defense Model
We list security requirements that a new defense model should
have in order to prevent the four proposed attacks as well as
traditional threats [38, 39, 82].

1. Third-party JS code should place ad entities only within
the confined area that the first party specifies, and these
entities should fit within this area.

2. Third-party JS code should not be able to alter DOM ele-
ments and sensitive entities (e.g., camera and controller)
if the first party does not permit doing so.

The first requirement aims to block the BST attack and
any abusive attempts to place a prohibitive number of ad
entities all over the VR scene of a publisher. The second
condition is required to block the GCJ, CCJ, and AAD attacks,
thereby limiting the adversary’s capability of changing gaze
cursors, VR controller cursors, and DOM elements belonging
to the first party. Note that the defense system in the second
requirement also prevents malicious third-party scripts from
gaining unrestricted access to sensitive information, such as
credential cookies and private information [39, 82].

Previous studies have addressed the second requirement
by confining the execution of third-party code [7, 30, 38, 54,
57, 58]. These approaches are categorized according to two
objectives: 1) origin-based isolation and 2) code sandboxing.
The origin-based isolation refers to a technique that assigns
each embedded third-party code with a separate origin (or
process) so that SOP (or process isolation by OS) forces
the confinement of the third-party code. In contrast, code

sandboxing enforces third-party code to interact with its host
via specified APIs while sharing the same origin with its host.

Unfortunately, origin-based isolation techniques, including
AdJail [38] and AdSplit [58], often demand a heavy volume
of cross-origin or process communications, which enable the
separate origins of third-party codes to operate as a single app.
Such a large volume of communications introduces execution
latency, thus impeding a stable frame rate, which undermines
rich user WebVR experiences. On the other hand, previous
studies of code sandboxing have not explored the confinement
of a third-party script in a WebVR environment [7, 54, 57].

To this end, we propose AdCube, a client-side defense so-
lution that addresses the aforementioned two security require-
ments. The defense is designed for benign publishers who
wish to prevent third-party scripts from accessing and mod-
ifying the host page’s DOM elements and VR entities. For
the first requirement, AdCube provides a hexahedron, called
an adcube, which visually confines the ads. The publishers
specify its position to indicate where an ad entity should be
rendered. To address the second requirement, AdCube sand-
boxes a given third-party JS script while providing a limited
set of APIs which the third-party codes use to render WebVR
ads. Also, it allows the publishers to set a security policy,
which defines how specified third-party scripts should interact
with host elements. Therefore, the ad service providers should
implement their ad-serving scripts in AdCube APIs. To en-
able AdCube, the publisher embeds an AdCube JS library in
their host script.
Publisher’s motives. Considering that ad fraud campaigns
may not only benefit the adversary but also publishers in the
adversary’s ad network via inflated numbers of impressions
and clicks, the following question arises: What would motivate
publishers to use AdCube?

Note that an abusive ad service provider may harness the
absence of visual confinement of WebVR ads. The adversary
emplaces an enormous number of ad entities that visually
block the VR content of a publisher, thereby diverting visi-
tors’ attention to the invasive ads [27], which conflicts with
the publisher’s intention. Furthermore, this service can also
place eye-grabbing promotional entities that block first-party
promotional entities, conducting occlusion attacks [33]. These
invasive or spammy ads can eventually contribute to visitors
avoiding publisher websites [12].

The FTC states that publishers are responsible for substan-
tiating whether deceptive ads are present [17]. They examine
whether publishers have known or participated in serving de-
ceptive and invasive ads. Google penalizes the search rankings
of publishers with invasive ads [14]. We believe that these
trends necessitate the adoption of AdCube by publishers.

Furthermore, it is known that security vulnerabilities, in-
cluding cross-site scripting bugs, often arise from third-party
JS code [45, 57, 62, 82]. AdCube is able to isolate third-party
JS code, thereby preventing the adversary from harming the
customer via exploiting security vulnerabilities.



6.2 Architecture

Figure 5: AdCube overview.

The overall architecture of AdCube is demonstrated in
Figure 5. AdCube is a JavaScript library, designed to confine
the execution of third-party scripts rendering WebVR ads.
A publisher furnishes this JS library with a given security
policy that specifies how a third-party script should interact
with the resources belonging to the first-party origin. The
publisher then embeds a third-party JS ad library in Secure
ECMAScript [20], which fetches and renders WebVR ads.

To sandbox this embedded JS ad library, AdCube leverages
Caja [19], a seminal sandbox framework from Google. We
chose Caja from among the previous studies [2, 7, 22, 30, 42,
45, 57, 72] because it is open source software that has been
well-managed for over 10 years. Caja sandboxes the execution
of guest code from its host page so that the guest code is only
accessible to defensive objects that the host page allows. Caja
achieves this sandboxing via dynamically monitoring the
execution of transformed guest code. Caja conducts cajoling
of the original guest code into a transformed version, which
adds inline checks to enforce invariants that Caja requires.

By design, Caja guarantees no free variables. Thus, the
only way for guest code to modify JS objects or DOMs in the
host page is to use the references of defensive objects that
the host page explicitly offers. Furthermore, the host page is
able to enforce customized access control checks on these
defensive objects because the host page can revise the APIs
that the guest code uses to access defensive objects.

Therefore, the sandboxing of a third-party ad JS script is
enforced by Caja. AdCube is a set of wrapper Caja APIs. For
publishers, AdCube offers a security policy language. For ad
service providers, AdCube offers a set of JS APIs that enable
the programming of WebVR ads while interacting with VR
entities in host pages.

Listing 1 shows an example of applying AdCube to an
A-Frame host page. To enable AdCube, a publisher includes
adcube.js at Line (Ln) 2. Also, the publisher defines an ad-
vertising cube at Ln 9 where a third-party ad-serving script
places VR advertising entities. The publisher is also able to
specify a security policy that defines which host elements a
third-party ad script interacts with. As Lns 5-6 indicate, the
third-party is able to read the properties of the a-box DOM
object and to write the properties of the a-sphere object. At

Listing 1 An example of A-Frame host page with AdCube
1: <body>
2: <script src=’adcube.js’></script>
3: <a-scene>
4: <!-- part of the host app -->
5: <a-box can-read></a-box>
6: <a-sphere can-write></a-sphere>
7: ...
8: <!-- a new definition for ad -->
9: <a-adcube position=’0 0 -2’ width=’2’ height

=’2’ depth=’2’></a-adcube>
10: </a-scene>
11: <script>
12: const adcube = AdCube();
13: adcube.load(’https://3rdparty.com/ad.js’);
14: </script>
15: </body>

last, the ad script embedded at Ln 13 runs in a Caja-enforced
sandbox with limited access to the a-box and a-sphere entities.
That is, this load invocation specifies third-party scripts that
should be sandboxed via AdCube.

6.3 AdCube and Security Policy

AdCube asks a publisher to specify two types of specifica-
tions: 1) an adcube primitive that specifies a third-party ad
rendering space in the VR world of a host page; and 2) a secu-
rity policy that specifies DOMs that interact with a confined
third-party ad script.
AdCube primitive. An <a-adcube> tag defines an AdCube
primitive for A-Frame enabled web pages. It specifies a hexa-
hedron in which to render WebVR ads. This adcube tag has
four properties. The position property specifies a hexahe-
dron position in the VR world of a host page. The width,
height, and depth define the size of this hexahedron. When
this <a-adcube> tag is placed as a child of a host element,
AdCube internally sets the parent of the adcube to be this
host element, and the location of the adcube is relative to
this parent element. For instance, when specifying the parent
element of an adcube primitive to be a camera entity, this
adcube moves as the camera angle of the scene changes.
Security policy. A publisher with AdCube is able to spec-
ify access control policies regarding which host entities and
DOMs are readable or writable by a third-party script that
AdCube sandboxes. Specifically, the publisher assigns a
can-read or can-write attribute to an A-Frame entity or
a DOM. AdCube stores this labeled entity or DOM in a JS
object, called TamedDOM, which AdCube lets a third-party
script access or revise via the querySelector API. That is,
TamedDOM becomes a bridge between the host and a sand-
boxed third-party script. AdCube implements this functional-
ity by leveraging the markfunction API of Caja.

By default, AdCube prohibits a sandboxed third-party
script from accessing any entities or DOMs in the host page.
This default policy blocks all the attacks (§4) by preventing



Table 3: An API list for advertising.

Creation
createElement([tag name|URL])
Creates a new entity and returns the entity’s interfaces defined by AdCube
addElement(adcube_id, entity)
Appends an entity to the adcube which has the adcube_id.

Set
entity.setAttribute(key, value)
Sets an entity’s attribute with key and value
entity.appendChild(child entity)
Appends a child entity to the entity as its children
entity.addEventListener(event name, function)
Sets an entity’s event handler with event name and function

Get
entity.getAttribute(key)
Returns an entity’s attribute corresponding to the key
querySelector(tag name|ID)

Returns an entity corresponding to the tag name or ID
querySelectorAll(tag name|ID)

Returns multiple entities corresponding to the tag name or ID

a third-party script from accessing cameras, gaze/controller
cursors, and DOMs whose origin is bounded by the host ori-
gin. Moreover, this default policy significantly lightens the
burden of specifying a proper security policy for publishers.

Furthermore, AdCube attaches an “[AD]” label at the top
of a defined adcube area, as shown in Figure 6, thus making
VR ad content visually distinguishable from host VR entities.
In this way, publishers are able to help their visitors easily
identify which entities are for ads, which the IAB has been
recommending for healthy ad ecosystems [29].

6.4 Ad Service APIs
AdCube sandboxes a third-party script by providing a con-
fined execution environment with predefined objects and APIs.
We designed a set of APIs that a third-party ad serving script
is able to use to implement VR content. Instead of defining a
long list of all possible APIs, we focused on defining essential
APIs for the AdCube prototype. Table 3 shows the API list.
We designed our APIs similar to JavaScript DOM APIs [46]
to make them compatible with common software engineering
practices among JS developers.

Caja does not allow any direct access to host DOM ele-
ments from Caja’s guest context. Thus, AdCube creates a
custom JS object called TamedDOM that contains the APIs pre-
sented in Table 3. Any API invocations other than defined
APIs result in an execution error.

Listing 2 is a third-party ad-serving script example that
implements VR content. The code creates an ad entity via
createElement(), which is yet to be added to the scene.
By leveraging the returned entity reference, the code sets the
attribute that specifies the URL source of a 3D model and
attaches a click event handler that causes the model to ani-

Listing 2 An example of ad-serving JS script
1: let e = createElement(’a-gltf -model’);
2: e.setAttribute(’src’, ’product.gltf’);
3: e.addEventListener(’click’,onClick);
4: addElement(’adcube -id’, e);
5: function onClick(event){
6: e.setAttribute(’animation -mixer’, ’clip:

animate’);
7: }

mate. The invocation of addElement() appends this entity to
the adcube that the host page defines via the <a-adcube>
tag. Note that this addElement() could be an injection
channel to insert DOMs and entities furnished with mali-
cious JS code in their event handlers. Thus, AdCube im-
plements filters that allow appending only A-Frame objects
(e.g., <a-gltf-model> and <a-obj-model>) and forbid al-
tering sensitive sink properties (e.g., Element.innerHTML
and Element.insertAdjacentHTML) [45].

Host entities with can-read and can-write attributes
are converted into TamedDOM objects. Thus, a third-party
ad script can obtain the references of these objects via
querySelector() or querySelectorAll().

6.5 3D Ad Confinement

AdCube uses a bounding helper box, called a BBox [11],
for publishers to confine the locations of ad entities, which
addresses the first security requirement (§6.1). When loading
or creating an ad entity within a specified BBox, AdCube
resizes the entity to fit within the BBox. Note that VR axis
scales often differ between the VR worlds of the entity and
the underlying publisher’s website. Therefore, we decided to
resize ad entities that do not fit, instead of rejecting them.

This security enforcement requires AdCube to compute
whether a specified BBox is able to contain a target entity. It
is straightforward to compute whether primitive entities, such
as boxes or spheres, fit within the hexahedron. AdCube simply
does this by invoking the Box3 API in Three.js, which inter-
nally calculates an axis-aligned bounding box in 3D space.

However, checking whether a 3D model fits within a BBox
entails a technical challenge; when the model is designed to
animate or move around in a scene, it is necessary to compute
the maximum size of the model at the time of loading. That is,
AdCube should estimate the maximum size of this model and
ensure that its estimated size fits within the specified BBox.

We tackle this challenge by playing a target model one-time
before attaching this model to a scene. The idea is to sample
frames while rendering the target 3D model and compute the
maximum boundary of the shapes in these frames.

To this end, we project the model into 2D space and sample
one frame out of 17 frames during the animation loop, which
runs once. We then find the maximum size of the shape by
scanning the pixels in the captured frames. Because only
information for two axes is obtained in the 2D projection, we



then rotate the camera angle (e.g., from front to side) and
repeat the operation to retrieve information for three axes.
AdCube projects a model onto the x-, y-, and z-axes and
overlays the frames rendered during the animation. AdCube
obtains the min/max positions of the pixels that are not the
same color as a background and calculates the maximum
BBox.

Considering that we only sample one out of 17 frames,
our method may not compute an accurate size of a given
model. To address this, one can increase the sampling rate,
thus capturing more frames in exchange for increasing the
latency in model loading.

It is possible to append multiple ad entities to a single
adcube space. For this, we use a Three.js Group object [21].
The Group object allows the management of multiple entities,
including their children, as a single entity. We update the
Group object when a new ad is added and adjust the scale of
the entire group to prevent it from escaping the adcube.

7 Evaluation

This section describes a showcase of WebVR ads enabled
by AdCube (§7.1). We then evaluate the security of AdCube
(§7.2) and the performance of AdCube (§7.3).

7.1 Ad Showcase
We conducted a preliminary study investigating on-going VR
ad campaigns offered by OmniVirt [52], Adverty [6], and
Admix [4]. They support three kinds of VR ad campaigns: i)
billboard ads, ii) entity ads, and iii) image ads. A billboard ad
campaign renders its video or image on a billboard in a VR
scene. An entity ad campaign places a 3D ad object in a VR
scene. An image ad campaign places an image of which the
z-depth is zero in a VR scene.

Figure 6: A showcase of WebVR ads with AdCube.

To demonstrate that AdCube supports each VR ad type,
we implemented an ad showcase on WebVR, as shown in
Figure 6. In the figure, the underlying VR environment is an

art museum where users can experience VR art content [60].
All the entities within the red-bordered hexahedrons are from
sandboxed ad-serving scripts. The billboard on the left wall
renders a video ad campaign, and the one on the floor renders
an ad impression promoting hotels in Europe. This image ren-
dering display is attached to the current camera, thus varying
in accordance with the user’s current line of sight. On the
right side, the third-party script draws a 3D drawer model.

7.2 Security
To evaluate the security provided by AdCube, we checked
whether it is able to block all four of the presented attacks (§4).
We assume that the adversary is an ad service provider that
delivers the ad entities in Figure 6. For this experiment, we
implemented a host website with the default security policy
that specifies no can-read and can-write properties.

The default policy provides no reference point to a confined
third-party script so that the script complied via Caja becomes
unable to obtain a current camera position, insert new fake cur-
sors, or modify any DOMs in the host page, thus rendering all
the presented attacks ineffective. Note that this default policy
blocks third-party scripts from reading or writing any first-
party elements, including cookies, thus mitigating traditional
web threats [39, 82].

A publisher may grant can-read and can-write access
to their host camera and attach an <a-adcube> tag to the
current camera, which makes this adcube area to move along
with the camera perspective. However, to prevent the BST
attack, AdCube prohibits the z position value from being a
positive value when the adcube tag has the camera as its
parent. Furthermore, all fake gaze and controller cursors that
third-party scripts generate will be visually distinguishable
from their host scene because these cursors will be confined
within a helper box with the “AD” label.

Note that it is feasible to abuse an auxiliary display when
the publisher allows a third-party script to revise the host page.
However, this can be easily blocked by carefully assigning
can-write properties to host DOMs. The extension of such
a policy can also block a third-party script from accessing
private user information and credentials belonging to the host
page, which is an original security goal of Caja.

We also emphasize that an <a-adcube> tag visually con-
fines VR entities within this adcube area. When AdCube adds
or loads VR entities in an adcube area, it ensures that these
loaded entities do not escape from this area.

7.3 Performance
We evaluated the performance overhead of AdCube and com-
pared it with two other methods: Baseline and Mirroring. The
baseline method is to run a third-party script without any un-
derlying security defense, thus running it with the same origin
as its host. For the other method, we chose an origin-based



Table 4: Comparison of the average page loading times
for nine WebVR sites and the average FPS for 12 events
on the showcase with Baseline, Mirroring, and AdCube.

Performance Evaluation Baseline Mirroring AdCube

Average Loading Time (s) 0.55 0.95 0.78

FPS (drop rate) 56.70 (-) 53.12 (6.32%) 55.79 (1.60%)

execution separation method that runs the third-party script
in a separate origin different from its host origin. For this,
we referred to AdJail [38], which provides a secure ad ser-
vice using the origin separation method in a standard web
environment. This approach leverages the SOP enforcement
of the browser and uses a postMessage API [50] for com-
munications between different origins. The unique feature
of this approach is to mirror any entity updates on the host
page in a separate third-party iframe to address the scenario
in which the first- and third-party contents interact with each
other. AdJail only mirrors the static content types of ads that
are not necessary to be rendered on the mirror page. However,
in a WebVR environment, the mirror page must have a VR
scene in order to sync ad behaviors between the two origins;
therefore, rendering the scene in both pages is inevitable. We
implemented this AdJail approach (denoted by Mirroring) for
the comparative study.
Experiment setup. For each defense approach, we measured
the page loading time and FPS on a machine with Intel i7
CPU, GeForce GTX 1060, and 32GB of main memory. All
experiments were conducted using Firefox 78.0.2.
Loading latency. To understand the overhead of deploying
AdCube, we measured the loading time of a WebVR webpage.
When a page is requested, all three approaches (i.e., Baseline,
Mirroring, and AdCube), request a VR library (e.g., A-Frame)
and a third-party ad script and then render the host scene.
We assumed that a target website is furnished with a Caja
library because this library is a part of AdCube, and AdCube
is a defense system for website owners. AdCube establishes
an execution environment for Caja. It then parses adcube
tags on the host page and renders third-party ad entities into
adcube areas after resizing these entities. On the other hand,
the Mirroring approach generates a guest page within an
iframe and loads the required resources onto both the guest
and host pages. It then renders ad entities on the guest page
and mirrors these entities on the host page.

For the experiment, we used WebVR showcases on the
A-Frame official site [1]. Of 17 showcases, we collected a
total of nine open source apps that use the later versions of
A-Frame 0.6. These WebVR sites comprise diverse demo
purposes (Hello WebVR, Lights, Anime UI), games (A-Blast,
Super Says), and utilities (360 Image, 360 Image Gallery,
A-Painter, A Saturday Night).

For the guest code to be sandboxed, we created an ad-
serving JS script that loads a static 3D chair model and applied
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Figure 7: A comparison of page loading times between
Baseline, Mirroring, and AdCube for nine WebVR sites.

three approaches to it. We also specified a security policy for
each website that specifies three host entities with the can-
write property, with which the ad-serving guest code is able to
interact. We measured the page loading time ten times using
Firefox with cache enabled and reported the average.

Figure 7 represents the page loading time of the nine We-
bVR demo websites using three approaches: Baseline, Mir-
roring, and AdCube. The Saturday Night and A-Blast web-
sites exhibited the smallest and largest overheads for AdCube,
reporting an additional 95 and 537 msec, respectively. On
average, the page loading time of the nine demo sites with Ad-
Cube took an additional 236 msec, compared to an additional
406 msec with Mirroring. Furthermore, the page load time
for each website with AdCube was consistently smaller than
with the Mirroring approach. As Table 4 shows, the average
loading time of the nine WebVR websites was 0.55 sec (Base-
line). When applying the Mirroring and AdCube methods, the
average loading times were 0.95 and 0.78 sec, respectively.

To understand this observed loading latency by AdCube,
we further measured the rendering time by subdividing steps.
The rendering time of AdCube includes the execution time
of Caja, which can be divided into three steps: 1) requesting
caja.js and connecting with the Caja’s server; 2) making the
host code accessible to the guest code; and 3) loading the
guest code and cajoling the code.

Table 5: Overall rendering latencies (msec.) for Lights
and A-Blast where having Caja’s minimum and maxi-
mum execution overhead, respectively.

Website Caja Execution Time Total Rendering
TimeStep 1 Step 2 Step 3

Lights 255.9 1.1 1.6 1016.6

A-Blast 1125.2 1.3 2 1533

Table 5 shows the overall loading time for websites with
Caja’s minimum and maximum execution overhead from a
total of nine websites. Caja’s execution resulted in rendering
latencies of 25.44% for Lights and 73.61% for A-Blast. This
means that more than 25.44% of the rendering latency for all
the nine websites using AdCube is due to the Caja setup. That
is, the initialization time of Caja dominated the observed page
loading times, whereas the latency for cajoling ad-serving JS
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Figure 8: Page loading time of a testing page while vary-
ing the number of shared 3D models.

scripts was small, which was less than 2 msec.
For the A-painter, Lights, and A-Blast Baseline websites

that exhibited relatively longer page loading times, the Mirror-
ing approaches of their corresponding websites also exhibited
greater overheads. This is because the Mirroring approach
inevitably entails the redundant loading of resources onto
the guest page, which means that the more objects rendered,
the greater the overhead. On the other hand, the initialization
of Caja dominates the page loading time of AdCube, which
happens only for the first visit.

Note that we chose an arbitrary number of three host ele-
ments that interact with a sandboxed ad-serving JS code for
the experiment. Thus, we further measured variations of page
loading time as we increased the number of elements shared
between a host page and its ad-serving JS code. For the host
page, we implemented an empty VR world and added a given
number of shared 3D models, which were randomly chosen
from 3D static models at Sketchfab [59]. Figure 8a shows the
experimental results, which demonstrate that the page loading
time in the Mirroring approach increases significantly with
the mirroring of many 3D models. This demonstrates that
AdCube is more scalable than the Mirroring approach to cope
with an arbitrary number of shared entities.
FPS. To assess the overall performance during the explo-
ration of a WebVR world, we measured the FPS change for
each approach while the WebVR website was running. We
experimented with the museum site presented in Section 7.1,
including the various types of advertising campaigns. To show
FPS variations, we added entities of museum sculptures to
the virtual scene to intentionally lower the FPS rate.

Existing VR advertising services [6, 52] provide interaction
behaviors for each type of ad. For example, accordance with
user interactions, video ads can be loaded, image ads can be
resized, or the animation states of 3D models can be changed.
Based on this, to measure the impact of user and publisher
interactions on FPS, we also defined 12 different user events
and implemented their corresponding event handlers. We then
forced them to trigger every 10 seconds using setTimeout().
We further describe each event with its handler implementa-
tion in Appendix B.1.

Table 4 shows the average FPS of our showcase website
when the 12 events were triggered for Baseline, Mirroring,
and AdCube, respectively. Note that Firefox caps its FPS at 60.

The average FPS for Mirroring is 53.12, which is an additional
6.32% decrease from the Baseline approach. On the other
hand, AdCube exhibited a 1.60% decrease (55.79 FPS), which
shows a negligible FPS drop from the Baseline approach. This
means that AdCube provides stable performance even when
various events occur.

We further measured the FPS variations while increasing
the number of objects shared between a host page and ad-
serving JS scripts. We used the same empty VR webpage
used for measuring the page loading time variations as in-
creasing the number of shared objects. We also measured the
average FPS for 20 seconds after the page completes loading.
As shown in Figure 8b, when reaching 40 shared objects, the
average FPSs for Baseline, Mirroring, and AdCube decreased
to 43.86, 13.45, and 39.75, respectively. AdCube exhibited
an FPS drop similar to that of the Baseline approach. The ex-
perimental results indicate that AdCube is a practical solution
compared to Mirroring in WebVR, in which FPS drops are
critical. Note that an abrupt FPS decrease reduces the user’s
sense of immersion in the VR mode and may cause a poor
user experience [13].

8 Discussion

This section discusses other possible defense methods against
the proposed WebVR attacks and their limitations.
Visibility reporting. One may implement a visibility report-
ing approach that attaches observers [49] to VR ad entities
to check their visibility to users, thus mitigating BST attacks.
This requires revising existing 3D JS libraries or frameworks
(e.g., Three.js and A-Frame) to compute the intersections be-
tween ad entities and users’ viewports. However, this type of
defense does not block the AAD attack because ad entities are
actually rendered in the auxiliary display. Also, the adversary
may conduct a GCJ or CCJ attack that induces a victim to
trigger clicks on ad entities when the victim watches or clicks
non-promotional entities. That is, visibility reporting does not
address GCJ, CCJ, or AAD attacks because these attacks stem
from no access control when third-party scripts read or revise
first-party resources.

HTC supports the eye-tracking API [75], which can be
used for visibility reporting. However, this API is unavailable
to WebVR, and the current specification [78] does not define
interfaces for retrieving eye-tracking information. Further-
more, allowing access to user’s eye movements would entail
a privacy risk by third parties abusing the information, which
necessitates sandboxing third-party scripts.

We also believe that WebXR specification changes cannot
address GCJ, CCJ, or AAD attacks. Blocking these attacks
requires restricting third-party script behaviors; however, the
specification is designed to define interfaces for providing VR
worlds and peripherals.
Native browser support. One possible defense is to inte-
grate AdCube with a browser engine, thereby sandboxing



third-party scripts. We believe that native browser supports
for sandboxing general websites require a long-term develop-
ment plan with significant engineering effort. Implementing
browser-level sandboxing requires identifying the source of
a given script to execute; this is because the browser should
determine whether to sandbox a given script based on its
source. However, the dynamic nature of JS makes it difficult
to determine the true sources of dynamically generated JS
scripts when the generation involves multiple origins.

Furthermore, it is important to maintain the creator’s origin
of each DOM element because a browser should determine the
accessibility of such DOM elements. However, this requires
significant changes to today’s modern browsers. Chrome de-
velopers discussed implementing a similar functionality of
tracking the creators of dynamically generated iframe DOMs
and concluded that its implementation would introduce nu-
merous corner cases, providing a false sense of security [16].

We propose a practical sandboxing tool that requires no
change to browsers. AdCube addresses the aforementioned
two challenges by not allowing dynamically generated scripts
and leveraging security policies specified by publishers.
AR support. Recently, WebAR services [40, 55] have been
introduced, and several vendors [9, 10, 35, 70] have provided
JS libraries that enable AR services in websites. A website
owner is able to pop up 3D augmented entities in a user’s
mobile browser when this user’s camera looks at a marked
predefined for user recognition. AdCube can be integrated
with such a WebAR service; it is able to visually confine
augmented entities from untrustworthy third parties and to
sandbox their execution when they come with JS scripts.

9 Related Work

Online ad fraud. Ad fraud refers to an operation that
generates unintended ad traffic involving ad impressions
or clicks. Numerous studies have explored methods of ad
fraud [8, 25, 28, 41, 63, 69]. Thomas et al. [69] identified
ad networks that replace existing ad impressions to swindle
advertising income from benign publishers. Huang et al. [28]
suggested new clickjacking attack methods, such as cursor
spoofing and white-a-mole, for click fraud. We introduce four
new attacks that harness features unique to WebVR.
Third-party ad sandboxing. There have been extensive
studies on sandboxing third-party libraries of publisher
sites [2, 23, 30, 38, 42, 45, 54, 58]. AdJail [38] provides
an isolation technique that inserts an ad script into another
hidden shadow page that has a different origin than that of the
publisher, and it adds the ad content to the host page via an
inter-origin communication mechanism [50]. AdSentry [23]
achieved the same goal using a different technique that modi-
fied the JS engine in the browser to prevent third-party code
from interfering with the host’s context. Politz et al. [54]
proposed a language-based sandboxing technology, called
AdSafety. They defined a subset of JavaScript and provided

related safeguards through type-based verification. Instead of
devising our own sandboxing system, AdCube is built on top
of Caja, a mature open source project.
Security and privacy of AR and VR. Despite significant
attention to VR, there have been few studies of its security
and privacy aspects [3, 26, 74]. Vilk et al. [74] addressed
new privacy threats posed in immersive environments. They
revealed the privacy risks of using raw camera data or user
gesture information, which could expose users’ private data,
such as room information or people around them. To address
these threats, Adams et al. [3] established standards for the
ethical developments of VR content by carrying out exten-
sive user studies. George et al. [26] investigated information
leakage that could occur when a bystander observes VR users.
Lebeck et al. [34] manifested security, privacy, and safety
concerns in multi-user AR systems. Because most WebVR
sites offer a VR world for each user, we presented the at-
tacks in a single-user scenario. In a multi-user environment,
conducting stealthy BST, GCJ, and CCJ attacks would be
more difficult because the adversary should compute blind
spots and hide cursors from every participant. However, when
gaze or controller cursors are invisible to other participants,
the multi-user environment will not affect the GCJ and CCJ
attacks.

10 Conclusion

Assuming a malicious adversary who abuses the lack of built-
in browser support of sharing canvas DOMs, we have devised
four new attack variants to conduct VR ad fraud. Our user
study showed that the devised attacks are effective in conduct-
ing stealthy impression and click fraud. To defend against
the presented threats, we proposed AdCube, which allows
honest publishers to confine the locations of ad entities as
well as to sandbox third-party ad scripts. We advocate ad
service providers and publishers to alarm the presented risks
in WebVR and adopt AdCube.
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A Further Details on the User Studies

A.1 Questionnaires for the User Study Survey
For the GCJ and CCJ attacks, we asked the participants of the
user study the following questions:

1. Did you find any promotional products or brands in your
VR experience?

2. If yes, mark each of the findings in the given examples.
(We gave examples of ad objects to choose from.)

3. Is there a webpage where you were exposed to more ads
between two VR webpages that you explored? If so, why?

Using the examples provided in Question 2, we could verify
whether the ad object that the user claimed to have found was
a genuine ad object.

For the BST and AAD attacks, we asked the participants
the following questions:

1. Did you hear any sounds of commercial clips? If yes,
which sounds?

2. Did you find any ad videos in the background of your VR
scene or on your monitor screen? If yes, which videos?

3. Which of the two VR websites exposes ads? And which
ad is exposed?

In Question 3, “two VR websites” refers to the normal and
attack websites for each attack scenario.

B Additional Evaluation

B.1 Events Used for the FPS evaluation and
FPS over Times and across Events

The following list entails nine user events and three publisher
events that we used to measure FPS drops in the ad showcase
in Figure 6 (§6.5):

− e1: Load and play a video ad
− e2: Attach an image ad to a camera entity
− e3: Resize the image ad
− e4: Load a 3D model ad
− e5: Change an animation status of the 3D model ad
− e6: Replace the video ad with another one
− e7: Replace the image ad with another one
− e8: Replace the 3D model ad with another one
− e9: Modify the host entity with permission
− e10: Hide the video ad (publisher event)
− e11: Change the location of the image ad (publisher event)
− e12: Resize the 3D model ad (publisher event)

Figure 9 shows measured FPS variations over time and
across events. Note that Firefox caps its FPS at 60. A targeted
museum site loads many entities at the initial time, resulting
in a significant FPS reduction in the early stages of all three
approaches, including Baseline.
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Figure 9: FPS drops in three approaches in response to
interaction events.

AdCube exhibited a reliable performance that aligned with
Baseline’s along all timelines. In contrast, Mirroring strug-
gled with unstable performance when the events occurred.
Especially, in the eighth event, replacing a 3D model ad, Mir-
roring resulted in a decrease of FPS that was about 1.5 times
that of Baseline.
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