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I/O Pair Examples

[2, 3, 4, 5, 6]→ [2, 4, 6]
[5, 8, 3, 2, 2, 1, 12]→ [8, 2, 2, 12]
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I/O Pair Examples

[1, 2, 3]→ X
[4, 5, 6]→ ?
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Related Work

Learning Simple Algorithms From Examples (Zaremba et al, 2015)
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Related Work

Neural Random Access Machines (Kurach et al, 2015)
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Related Work

DeepCoder (Balog et al, 2016)
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Related Work

RobustFill (Devlin et al, 2017)
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Motivation for Program Generation

Implicit programs

Learning over source code

Specificity of domain

Natural language specification
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Definitions

Program Sketch

Domain Specific Language
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Problem Overviews

Neural Sketch Learning for Conditional Program Generation

Learning to Infer Program Sketches
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Problem Formulation

Learn over program sketches using a probabilistic encoder-decoder,
conditioned on labels, to generate source code in AML
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Goal

Create a model that can generate source code from some ’spec’
Learn a function g

For test case (X ,Prog), g(X ) = Prog ′
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Example 1
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Example 1a
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Example 1a
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Example 2a

Label X = (XCalls ,XTypes ,XKeys)
X = ({readLine}, ∅, ∅)

Solution?
X = ({readline}, {FileReader}, ∅)
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Conditional Program Generation

Functional equivalence

Maximize the expected value that g(X ) and some Prog
belong to the same equivalence relation

E [I ((g(X ),Prog) ∈ Eqv)]

BAYOU
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Techincal Approach

P(Prog |X , θ)

θ∗ = arg maxθ
∑

i logP(Progi |Xi , θ)

g(X ) = arg maxProgP(Prog |X , θ∗)

Solar-Lezama et al, Murali et al Sketches for Automatic Coding



Motivation
Neural Sketch Learning for Conditional Program Generation

Learning to Infer Program Sketches

Abstraction

Define abstraction function α : P→ Y
sat(Y ) if α−1(Y ) 6= ∅ aka...

P(Prog |Y ) 6= 0 ⇐⇒ Y = α(Prog)
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Abstraction Function
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Grammar for Sketches
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Encoder-Decoder

P(Y |X , θ) =
∫
Z∈Rm P(Z |X , θ)P(Y |Z , θ)dZ
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Encoder

Convert each label (ex. XCalls,i ) to one-hot vector
representation

Assume h hidden units

Define an encoder function, ex:
f (XCalls,i ) = tanh((Wh · X ′Calls,i + bh) ·Wd + bd)

Wh ∈ R|Calls|×h,bh ∈ Rh,Wd + bd ∈ Rd
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Decoder

Task: generate sketch Y by sampling from the space of
P(Y |Z )

Z is a real vector-valued latent variable

Start with the root node pair (root, child)

Depth first tree exploration
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Decoder (cont)
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Concretization

Type directed, stochastic search

Given sketch Y , perform random walk of space of partially
concretized sketches

Follows distribution of P(Prog |Y )

Ex. x1.a(x2); τ1.b(τ2)

Defined set of neighbors for each state

Prioritize simple programs
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Experiments

1500 Android apps

150,000 methods

Labels defined by heuristic
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t-SNE Plot of Latent Space

Solar-Lezama et al, Murali et al Sketches for Automatic Coding



Motivation
Neural Sketch Learning for Conditional Program Generation

Learning to Infer Program Sketches

Accuracy Metrics

AST Comparison

Minimum Jaccard Distance between sets of sequences of API
calls

Minimum Jaccard Distance between the sets of API calls

Minimum absolute difference between number of statements

Minimum absolute difference between number of control
structures
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Results
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Learning to Infer Program Sketches

This paper develops a dynamic system to incorporate pattern
recognition and explicit reasoning to solve programming
puzzles

State-of-the-art performance via self-supervised learning
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Formulation

DSL with program space G
Set of program specifications (specs) containing I/O
examples: Xi = {(xij , yij)}j=1,...,n

We have solved problem Xi if we find the true program Fi
such that

∀j : Fi (xij) = yij
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Formulation

Can we solve the problem quickly?

The problem becomes:

max logP [Time(Xi → Fi ) < t]
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System

SketchAdapt

Sketch Generator: Proposes set of possible (incomplete)
sketches based on a spec

Program Synthesizer: Takes a sketch as a starting point,
then performs explicit search to “fill the holes”

Solar-Lezama et al, Murali et al Sketches for Automatic Coding



Motivation
Neural Sketch Learning for Conditional Program Generation

Learning to Infer Program Sketches

Novel Approach

Define a more general sketch: a valid program tree where any
subtree may be replaced with the special token <HOLE>

This token designates locations in the program tree where
pattern recognition is difficult and more explicit search is
necessary

This allows the system to learn how much to rely on each
component
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Infer Sketches via Self-supervision

Generator will be parametrized by a RNN, and is trained to
assign a high probability to sketches that can be quickly
completed

We can now reframe the program synthesis problem:

max
φ

logPs∼qφ(−|Xi ) [Time(s → Fi ) < t]
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How to set the time budget?

In order to make the system more robust, train it to output
sketches that are suitable for a range of timeout budgets

Rewrite the previous optimization as:

max
φ

log P
t∼Dt

s∼qφ(−|Xi )

[Time(s → Fi ) < t]
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Loss

Maximize the objective function:

obj = E
t∼Dt

(F ,X )∼G

log
∑

s:Time(s→F )<t

qφ(s|X )

Quickly solve “easy” problems with concrete sketches, but
also sample more general sketches for harder problems
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Generator Implementation

The sketch generator is a sequence-to-sequence RNN with
attention

Spec is encoded via LSTM

Sketch is decoded token-by-token while attending to the spec
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Synthesizer Implementation

The program synthesizer uses probabilities of primitives
appearing in the program in order to induce a PCFG over an
incomplete sketch: p(F |s, θ)

Candidate programs are enumerated in decreasing probability

The primitive probabilities are provided by a learned
recognizer (feed forward MLP ending in softmax)
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Architecture
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Computing the Loss in Practice

Note that Time(s → F ) ≤ 1/p(F |s, θ)

Bound the objective by

obj ≥ E
t∼Dt

(F ,X )∼G

log
∑

s:1/p(F |s,θ)<t

qφ(s|X )

Because the generator and synthesizer are highly correlated,
sketches that maximize qφ(s|X ) will minimize p(F |s, θ). So
we can use only the dominating term:

obj∗ = E
t∼Dt

(F ,X )∼G

log qφ(s∗|X ) ≤ obj
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Training
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Results
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Discussion

Developed a flexible and robust approach that requires
processing less data

No labels required

Integrates multiple forms of computation (pattern recognition
and search)
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Conclusions

Generalizability

Evaluation

Flexibility

Limitations
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