
DeepBugs: A Learning
Approach to Name-based Bug
Detection

Presentation by Ben Meerovitch

“This paper presents
DeepBugs, a learning

approach to name-based bug
detection, which reasons
about names based on a

semantic representation and
which automatically learns

bug detectors instead of
manually writing them.”

Outline

Name based bug detectors (built on-top of DeepBug)

Intro + Examples

Framework for learning to find name-related bugs (DeepBug)

Results

Related Work + Q&A

A framework for learning-based and
name-based bug detection

Train a classifier that distinguishes correct
from incorrect code.

Create likely incorrect code examples from
an existing corpus of code.

Bug detection as a binary
classification problem

Introduction

Three bug detectors built on top of the
framework detect: swapped function
arguments, incorrect binary operators, and
incorrect operands in binary operations.

Applying on a corpus of 150,000 JavaScript
files reveal 102 programming mistakes
(with 68% true positive rate) in real-world
code.

Angular.js

Angular-UI-Router
project

DSP.js library

Decide whether a given piece of code
is correct or incorrect

Identifier names are inherently fuzzy and
elude the precise reasoning that is
otherwise common in program analysis.

Reason about the meaning of
identifier names

Name-Based Bug Detector: Challenges

Given an understanding of the meaning of
identifier names, must yield a reasonably
low number of false positives while
detecting actual bugs.

Formulate the problem as binary
classification

This representation, called embeddings,
preserves semantic similarities, such as the
fact that length and count are similar.

Use a learned vector representation
of identifiers.

Name-Based Bug Detector: Solutions

Train a model to distinguish correct from
incorrect code.

A framework that supports different classes of
name-related bugs

DeepBug

The framework extracts positive training examples from a code corpus, applies a simple
transformation to also create large amounts of negative training examples, trains a model

to distinguish these two, and finally uses the trained model for identifying mistakes in
previously unseen code.

Drill-Down

(3) Train a model to distinguish correct and incorrect examples.

(1) Extract and generate training data from the corpus.

(2) Represent code as vectors. (Word2Vec)

(4) Predict bugs in previously unseen code.

(1)
Generating Training Data

Huge amount of existing code
provides ample of examples of
likely correct code. In contrast, it is
non-trivial to obtain many
examples of code that suffers
from a particular bug pattern.● Implementations of τ that apply simple

AST-based code transformations will be
covered later.

(2.1)
Embeddings: Identifiers and Literals

Semantic similarity does not
always correspond to lexical
similarity. Thus, a representation
of identifiers that preserves
semantic similarities is required.

● consider literals in code, such as true and
23.

● Word2Vec.

(2.2)
Vector Representations of Positive

and Negative Code Examples

Given code snippets extracted
from a corpus, our approach uses
the embeddings for identifiers to
represent each snippet as a vector
suitable for learning.

(3)
Training and Querying a Bug

Detector

Based on the vector
representation of code snippets, a
bug detector is a model that
distinguishes between vectors that
correspond to correct and
incorrect code examples,
respectively.

● Feedforward neural network

Three examples of name-based bug
detectors built on top of the DeepBugs

framework.

NAME-BASED
BUG DETECTORS

Accidentally
swapped
function

arguments

Incorrect binary
operators

Incorrect
operands in

binary
expressions

Examples

Training Data Generator:
Create training examples from given code. Traverse the AST of each file in the code corpus and
visits each call site that has two or more arguments. Extract the following:

Swapped Function Arguments

Training Data Generator:
Create for each call site a positive example

Swapped Function Arguments

and a negative example

To create the negative example, we simply swap the arguments w.r.t. the order in the
original code.

Code representation:

● Transform Xpos and Xneg from tuples of strings into vectors.

● Each name n is represented as E(n), where E is the learned embedding.

● Represent type names as vectors.

○ Define a function T that maps each built-in type in JavaScript to a randomly chosen binary

vector of length 5.

● Compute code representation for Xpos or Xneg as the concatenation the individual vectors.

Swapped Function Arguments

Training Data Generator:
Create training examples from given code. Traverse the AST of each file in the code corpus and
from each binary operation extract the following:

Wrong Binary Operator

Training Data Generator:
Create a positive and negative example

Wrong Binary Operator

The operator op′≠op is a randomly selected binary operator different from the original
operator likely to create incorrect code.

Code representation:

● Create a vector representation of each positive and negative example by mapping each

string in the tuple to a vector and by concatenating the resulting vectors.

● To map a kind of AST node K to a vector, we use a map K that assigns to each kind of AST

node in JavaScript a randomly chosen binary vector of length 8.

Wrong Binary Operator

The intuition is that identifier names help to decide whether an operand fits another given
operand and a given binary operator.

Training Data Generator:
The training data generator extracts the same information as in the last example, and then
replaces one of the operands with a randomly selected alternative.

Wrong Operand in Binary Operation

Training Data Generator:
Create a positive example

Wrong Operand in Binary Operation

and a negative example

To create negative examples that a programmer might also create by accident, use
alternative operands that occur in the same file as the binary operation. For example,
given bits << 2, the approach may transform it into a negative example bits << next.

or

Code representation:

● Same as previous example.

Wrong Operand in Binary Operation

Warnings in
Real-World Code

Accuracy and
Recall of Bug

Detectors

Extraction and
Generation of
Training Data

Experimental
Setup

Results

Efficiency

Usefulness of
Embeddings and

Vocabulary

● How effective is the approach at distinguishing correct from incorrect code?

● Does the approach find bugs in production JavaScript code?

● How long does it take to train a model and, once a model has been trained, to predict bugs?

● How useful are the learned embeddings of identifiers compared to a simpler vector representation?

Main Research Questions

● Used 150,000 JavaScript files provided by the authors of earlier work as a corpus of code.

● Corpus contains 68.6 million lines of code.

● 100,000 files for training and the remaining 50,000 files for validation.

● All experiments are performed on a single machine with 48 Intel Xeon E5-2650 CPU cores,

64GB of memory, and a single NVIDIA Tesla P100 GPU

Experimental Setup

● Table 3 summarizes the training and validation data that DeepBugs extracts and generates

for the three bug detectors.

● Half of the examples are positive and negative code examples, respectively.

Extraction and Generation of Training Data

● Train each bug detector with the 100,000 training files, then apply the trained bug detector

to the 50,000 validation files.

● Manually inspect code locations that the bug detectors report as potentially incorrect.

● Sort all reported warnings by the probability that the code is incorrect.

● Inspect the top 50 warnings per bug detector.

● Classify each warning in one of three categories.

○ Bug.

○ Code quality problem.

○ False positive.

Warnings in Real-World Code

● Out of the 150 inspected warnings, 95 warnings point to bugs and 7 warnings point to a code

quality problem, i.e., 68% of all warnings point to an actual problem.

Warnings in Real-World Code: Results

● Evaluate the accuracy and recall of each bug detector based on automatically seeded bugs.

● Accuracy - how many of the classification decisions that the bug detector makes are correct.

● Recall - how many of all bugs in a corpus of code that the bug detector finds.

● Use training data generator to extract correct code examples Cpos and to artificially create

likely incorrect code examples Cneg.

● Query the bug detector D with each example c, which yields a probability D(c) that the

example is buggy.

● Compute the accuracy:

Accuracy and Recall of Bug Detectors

Accuracy and Recall of Bug Detectors

● More warnings are likely to reveal more bugs, thus increasing recall, but are also more likely

to report false positives.

● A developer inspects all warnings where the probability D(c) is above some threshold t.

● Model this process by turning the bug detector D into a boolean function:

● Compute recall:

● Measure the number of false positives:

Accuracy and Recall of Bug Detectors

● Figure 2 shows the recall of the three bug

detectors as a function of the threshold for

reporting warnings.

Accuracy and Recall of Bug Detectors

● As expected, the recall decreases when the threshold increases

● For a threshold of t = 0.5, the three bug detectors report a total of 116,941 warnings, which

corresponds to roughly one warning per 196 lines of code.

● For a threshold of t = 0.9, the number reduces to 11,292, i.e., roughly one warning per 2,025

lines of code

● In practice, we expect developers to inspect only the top-ranked warnings

Accuracy and Recall of Bug Detectors

● Training time consists of the time to gather code examples and of time to train the classifier.

● Prediction time consist of the time to extract code examples and the time to query the

classifier with each example.

● Running both training and prediction on all 150,000 files takes between 36 minutes and 73

minutes per bug detector.

● The average prediction time per JavaScript file is below 20 milliseconds.

Efficiency

● Evaluate the usefulness of learned embeddings both quantitatively and qualitatively.

● Quantitative evaluation: compare DeepBugs with learned embeddings to a simpler variant of

the approach that uses a baseline vector representation.

○ Compare the learned embeddings with the baseline w.r.t. accuracy and recall.

Findings:

● For all three bug detectors, the learned embeddings increase the recall.

● The bug detectors achieve relatively high accuracy and recall even with randomly created

embeddings.

Usefulness of Embeddings and Vocabulary

● Qualitative assessment: show for a set of identifiers which other identifiers are the most

similar according to the learned embeddings.

● Figure 3 shows the ten most similar identifiers for name, wrapper, and msg:

FIndings: The embeddings encode similarities between

● Abbreviated and non-abbreviated identifiers:

msg and message

● lexically similar identifiers: name and getName

● lexically dissimilar identifiers such as name and Identifier, or wrapper and container.

Usefulness of Embeddings and Vocabulary

Vocabulary:

● Total number of unique tokens in the training data set is about 2.4 million.

● |V| = 10, 000, i.e., consider the 10,000 most frequent tokens.

● Figure shows that a small number of tokens covers a large percentage of the occurrences of

tokens. Default vocabulary size covers over 90% of all occurrences of tokens.

Usefulness of Embeddings and Vocabulary

Conclusions

The key insights that enable the approach are:

(i) that reasoning about identifiers based on a learned, semantic representation of names is

beneficial

(ii) that artificially seeding bugs through simple code transformations yields accurate bug

detectors that are effective also for real-world bugs.

“Applying the framework and three bug detectors built on top of it to a large corpus of

code shows that the bug detectors have an accuracy between 89% and 95%, and that

they detect 102 programming mistakes with a true positive rate of 68%.”

In the long term, we envision our work to complement manually designed bug detectors by

learning from existing code and by replacing some of the human effort required to create bug

detectors with computational effort.

Thanks!
You can find me on: Piazza!

Any questions?

