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Motivation

A somewhat different presentation than others – look at general
method rather than paper

Overall, the idea is that many interesting characteristics of data
should not depend on certain details of the representation, i.e. they
are topological

Will largely make use of Chazal and Michel’s An introduction to

Topological Data Analysis: fundamental and practical

aspects for data scientists
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Overview

First, we will look at what it means for a feature in data to be
“topological”, and topological invariants

Then, we will discuss persistent homology in particular as a
realization of TDA

Finally, we will briefly touch on applications
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Topological features

Toy example – for data obtained by different measurement schemes,
interesting feature (hole) is preserved
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What is topology?

Definition (Topological Space)

A pair X = (S , T ) where S is a set and T a set of its subsets such that:

1 ∅,S ∈ T
2 T is closed under arbitrary unions of its elements

3 T is closed under finite intersections of its elements

Interpret elements of T as open sets

Gives a notion of a continuous map (preimage of any open set is
open) – topology is the study of such spaces and continuous maps
between them

For X ,Y topological spaces, if f : X → Y is a continuous map with
continuous inverse, it is a homeomorphism, and X ∼= Y are
homeomorphic
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Topology and learning

Sensible to consider the sample space as a topological space, as any
metric space has a natural topology

Collection of data is application of some measurement map
f : X → Y to elements of viable domain A ⊂ X

Question (for future): how do we recover A or f −1(B) for B ∈ Y ,
given we only have finitely many samples?
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Simplices

First, need a way to encode topology which we can work with

An n-simplex is intuitively a basic n-dimensional object, i.e. the
convex hull of n + 1 affinely independent points
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Simplicial complexes

Abstractly, a generalization of a graph: a 0-simplicial complex is a set
of points, a 1-simplicial complex is a graph. . .

An n-simplicial complex contains up to n-dimensional simplices (but
also all lower dimensions)

Geometrically, just a set of simplices

Definition (Simplicial complex)

A pair (V ,K ) where V consists of “vertices”, K is a collection of finite
subsets of V which contains all vertices, and obeys σ ∈ K =⇒ any
subset ς ⊂ σ ∈ K has ς ∈ K
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Simplicial complexes, cont.
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Simplicial complexes from data

For now, assume that X is a finite set of points in (M, ρ) a metric
space, d is the inherited metric on X , and α ∈ R+:

Definition (Vietoris-Rips Complex)

Ripsα(X ) := the set of simplices σ = [x0, . . . , xn] such that d(xi , xj) ≤ α

Definition (Cech Complex)

Cechα(X ) := the set of simplices σ = [x0, . . . , xn] such that
n⋂

i=0
Bα(xi ) 6= ∅

Note that Bα(xi ) is the (closed) ball of radius α centered on xi

Related by Ripsα(X ) ⊂ Cechα(X ) ⊂ Rips2α(X )
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Rips and Cech complexes
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Summary so far

The topology of data is potentially interesting, so we decided to look
into it

But actual datasets are just finite samples, and in any case
topological spaces generally have infinite descriptions

Introduced simplicial complexes and found a way to build them from
finite sets of points, but does this actually help us understand the
topology of data?
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Nerve theorem

In short, yes (given satisfaction of certain conditions)

Definition (Nerve)

For a cover U = {Ui} of M, the simplicial complex C (U) := the set of

simplices σ = [Ui0 , . . . ,Uin ] such that
n⋂

j=0
Uij 6= ∅
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Nerve theorem, cont.

Definition (Homotopy, etc.)

For continuous f , f ′ : X → Y , a continuous map h : X × [0, 1]→ Y such
that h(x , 0) = f (x) and h(x , 1) = f ′(x). If f , f ′ permit a homotopy, they
are homotopic, and if there exists g : Y → X such that f ◦ g and g ◦ f
are homotopic to the identity maps, X and Y are homotopy-equivalent

Roughly, X can be continuously deformed into Y ⇐⇒ they are
homotopy-equivalent

If X ∼= Y then they are homotopy-equivalent, but the converse is not
necessarily true
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Nerve theorem, cont.

If a space is homotopy-equivalent to a point, it is contractible – the
top row is contractible while the bottom row is not:
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Nerve theorem, cont.

Proposition (Nerve Theorem)

Let U = {Ui}i∈I be a cover of M such that for any subset A ⊂ I , the
intersection UA :=

⋂
i∈A

Ui is empty or contractible. Then M is

homotopy-equivalent to the nerve C (U)

Note that as balls in Rn are convex (hence contractible), and the
Cech complex is the nerve of such balls of fixed radius around a set of
points, it is homotopy equivalent to the union of those balls
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Reconstruction theorem

Our previous observation might make us hope that the Cech complex
can summarize the topological data of some space X , and the
Reconstruction Theorem tells us that this is indeed true under
certain (technical) conditions
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Another example
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Another example, cont.
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Another example, cont.
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Another example, cont.
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Homology

We want a concise way of summarizing the topological characteristics
of an object: homology provides a set of invariants which do just that

Associates a set of groups (which will indeed be vector spaces for
simplicial homology) to a topological space

Does not uniquely identify a topological space: if X ,Y are
homotopy-equivalent, they have the same homology groups, but
converse not necessarily true and certainly they are not necessarily
homeomorphic (see link: pseudocircle)
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Betti numbers

The k-th Betti number of a topological space X is the dimension of
its k-th homology group

Roughly, β0 corresponds to the number of connected components, β1
to the number of punctures, β2 to the number of “voids”. . .
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Persistent homology

Our primary issue remaining is that in general it is not obvious what
the correct radius is for construction of our simplicial complex

Persistent homology attempts to remedy this problem by highlighting
the topological features which persist while growing the radii

Use persistence diagrams: keeps track of increase/decrease of each
Betti number, i.e. birth/death of features as radii increase
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Toy example

Can consider union of balls of radius r around X ⊂ Rn as sublevel set
of the natural function fX : Rn → R, so let’s look at persistence for a
general function:
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More complex example
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Some good and bad things

Persistence diagrams are fairly stable under certain perturbations of
data, as desired from a topological learning method
Care must be taken to deal with outliers – there are methods to
mitigate this problem, but that is beyond the scope of this
presentation
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Applications with machine learning

TDA has found application in a number of fields, including biology,
chemistry, sensor networks, shape analysis, materials science, and
cosmology

The method has done well with data which has some natural
representation as a graph or complex, for example in genetics or
cosmology, suggesting it may lend itself well to program analysis

Often used with other learning methods, ex. an embedding of the
initial data may be used to find the topological characteristics, or a
CNN can be used to extract data from persistence diagrams
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