
Learning Program
Dependencies with ML

Dongdong She
Kexin Pei

Abhishek Shah

What’s happening?

Problem

- Programs have complex dependencies
- Control flow
- Data flow

- Program Analysis
- Examples:

- Taint Analysis
- Symbolic Execution

- Do not scale well

Solution

- Use ML to automatically learn dependencies
- ML can excel at finding relationships in data

- NLP: tagging parts-of-speech in a sentence
- Finding them is useful

- Code Coverage
- Debugging
- Vulnerability Discovery

Outline

- Learn Dependencies
- Examine 1 program dynamically

- Neuro-symbolic Execution
- Learn path dependencies

- Examine many programs statically
- Idea of “Big Code”
- Binaries

- Learn dependency between variable and registers
- Source Code

- Learn dependency between variable use and definition

Neuro-symbolic Execution:
Augmenting Symbolic Execution

with Neural Constraints
Dongdong She

Problem

Symbolic execution has many limitations.
- Poor scalability by path explosion.
- Language-specific implementation.
- Failure to model complex dependencies.
- Limited expressiveness of satisfying theories.

A simple example

Locations of interest

Candidate Vulnerability Point(CVP)
- Statically analyze program in advance.
- Identify two specific program locations.

- Division operations (check zero division).
- Boundary checking in buffer accesses.

- Instrument CVP to record values of
denomimators/ index number for further training.

Neuro-symbolic execution

- Represent most of program logic with
symbolic constraints.

- Approximate the remaining logic that is
hard to solve with NN.

- Solve the combination of exact constraints
& approximated constraints.

Constraints = S_1 ^ N_1 ^ N_2 ^ S_2

Neuro-symbolic execution

How to generate the neuro-constraints?

Neuro-constraints

Neuro-constraints

100,000 samples

Neuro-constraints

Overview

Hybrid mode design (symbolic mode and neural mode)

Neural Mode

● MLP + ReLU
● Simple regression model
● 100,000 samples

Constraints

Constraints

How to solve mixed constraints

Symbolic constraints

Optimization objectives of the neural net

Constraints => Loss

Debin: Recovering Stripped
Info from Binaries

Kexin Pei

Binaries with debug symbols

x86 malware samples from VirusShare

Stripped Binaries

Challenges
1. No mapping from registers and memory
offsets to semantic variables

Challenges
2. No names and types

DeBIN: Recovering debug info

Design Choice
How will you do this?

Recap: importance of dependency

1. Naive way of doing this?
a. Feature template
b. Individual classification

2. Smarter way of doing this?
a. RNN/LSTM
b. Sequential dependency

3. More advanced (best result):
a. PGM(CRF,MRF,Bayesian

Network)/TreeLSTM/GNN/GCN/GGNN...
b. Structured learning

How does Debin work?

Step 1: Recovering Variables

Step 1: Recovering Variables

Extremely randomized trees

Decision tree:
- One dataset
- All features
Random forest:
- Multiple sampled sub-dataset
- Sampled set of features
Extremely Randomized trees:
- Randomized division of feature values

Step 2: Predicting names and types

Pairwise Feature functions

Factor Feature functions

Factors:
- All nodes that appear in the same ϕ

expression of BAP-IR
- Function node of a call and its

arguments
- Elements that are accessed in the

same statement

Learning to predict

End-to-end recovery of debug information

End-to-end recovery of debug information

End-to-end recovery of debug information

Implementation

Evaluation

- How accurate is DeBIN’s variable
recovery?

- How accurate is DeBIN’s name and
type prediction?

- Is DeBIN useful for malware
inspection?

Variable recovery accuracy

Name and type prediction accuracy

Evaluation of name and type prediction

Malware inspection

Inspected 35 x86 malware from VirusShare

Summary

How can we improve?

Learning To Represent
Programs with Graphs

Abhishek Shah

Problem

Neural Networks have understood:
- Images
- Speech
- Language
- Source Code ?

Problem

Question: what’s the bug?

Problem

Do what I want, not what I wrote

Question: what’s the bug?

Solution - Learning from “Big Code”

How to feed programs into Neural Networks?
- Sequence of Tokens (Hindle et al., 2012)
- Parse Tree (Bielik et al., 2016)

Key Insight:
- Expose semantics to NN via a Graph

- Avoid shallow, textual structure by using
data flow and type information

Outline

- Primer on Graph Neural Networks
- Converting Programs to Graphs
- Learning Representations with Graph NNs
- Downstream Tasks
- Evaluation

Primer on Graph NNs

- Why use Graphs?
- Graphs describe a system and the complex

dependencies within them
- Use Cases

- Node Classification → is a node malicious?
- Link Detection → are these two transactions

linked in the blockchain?

Primer on Graph NNs

- Modern DL Techniques
- CNNs → fixed-size images with spatial locality
- RNNs → ordered sequences

Primer on Graph NNs

- Modern DL Techniques
- CNNs → fixed-size images with spatial locality
- RNNs → ordered sequences

- Properties of Graphs
- No obvious ordering
- Not fixed sizes
- Non-obvious or non-existent spatial locality

Primer on Graph NNs

- Building a Graph NN (focus on embedding)
- Need an encoder

- Such that similarity in original graph is preserved in
embedded space

Primer on Graph NNs

- Building a Graph NN (focus on embedding)
- Need an encoder

- Such that similarity in original graph is preserved in
embedded space

- Need a similarity metric
- Learning → minimizing the distance between

similar nodes

Primer on Graph NNs

Primer on Graph NNs

- something

Primer on Graph NNs

- For now, shallow encoding
- Each node has a unique vector

(“embedding-lookup”)

Primer on Graph NNs

- For now, shallow encoding
- Each node has a unique vector

(“embedding-lookup”)
- Similarity

- Connected? or Share Neighbors?

Primer on Graph NNs

- For now, shallow encoding
- Each node has a unique vector

(“embedding-lookup”)
- Similarity

- Connected? or Share Neighbors?
- One Idea: dot products between node

embeddings ~ edge existence

Primer on Graph NNs

- For now, shallow encoding
- Each node has a unique vector

(“embedding-lookup”)
- Similarity

- Connected? or Share Neighbors?
- One Idea: dot products between node

embeddings ~ edge existence
- Adjacency Matrix defines ground truth for edge

existence
- Take the difference between the two

Primer on Graph NNs

- Similarity

Primer on Graph NNs

- Similarity

Primer on Graph NNs
- Encoder

- Main insight: generate node embeddings
based on local neighborhoods

Primer on Graph NNs
- Encoder

- Main insight: generate node embeddings
based on local neighborhoods

- NNs to aggregate information (msg) per layer

Primer on Graph NNs
- “Deep” Encoder

- Main insight: generate node embeddings
based on local neighborhoods

- NNs to aggregate information (msg) per layer
- Each node has unique computation graph

Primer on Graph NNs
- Setup

- Graph G = (V, A, X)
- V → Vertex Set
- A → Adjacency Matrix
- X → matrix of node features

- Name, id, relationship status
- Layer 0 embedding → input feature vector

Primer on Graph NNs

Primer on Graph NNs

Primer on Graph NNs

Primer on Graph NNs

Primer on Graph NNs

Primer on Graph NNs

Primer on Graph NNs
- What if we want to go deeper?

- Overfitting from parameters

Primer on Graph NNs

Primer on Graph NNs

Gated Graph NN

Gated Graph NN

Gated Graph NN

Outline

- Primer on Graph Neural Networks
- Converting Programs to Graphs
- Learning with Graph NNs
- Downstream Tasks
- Evaluation

Converting Programs to Graphs
Key Insight:
- Expose semantics to NN via a Graph

- Avoid shallow, textual structure by
using data flow and type information

Converting Programs to Graphs
Graph: (V, E, X)
- V (AST nodes)

- Grammar-Rule-Named Nonterminals
- Named Program Tokens

- E
- Syntactic
- Semantic

- Discussion:
- What are examples of syntactic and

semantic edges?

Converting Programs to Graphs
Syntactic Edges
Blue → Children
Black → NextToken
- Order saved

Converting Programs to Graphs
Semantic Edges

 x, y = Foo();
 while (x > 0)
 x = x + y;

- Let’s focus on y at line 3

Converting Programs to Graphs
Semantic Edges

 x, y = Foo();
 while (x > 0)
 x = x + y;

- LastUse/Read(y3) → Line {1, 3}
- Line 3 due to loop

- LastWrite(y3) → Line 1

Converting Programs to Graphs
Semantic Edges

 x, y = Foo();
 while (x > 0)
 x = x + y;

Converting Programs to Graphs
- Other Edges

- Can use any other program analysis
- Points-to analysis
- Formal Parameter <-->Argument Match
- Conditional Guards
- ReturnsTo

Converting Programs to Graphs
Variable Type Information
- Map variable type to max of set of

supertypes
- List<int> → max({List<int>, List<K>})

Discussion: any flaws?

Converting Programs to Graphs
Variable Type Information
- Map variable type to max of set of

supertypes
- Boolean → max({Boolean, Any}) → Any
- Scalar → max({Scalar, Any}) → Any

Converting Programs to Graphs
Variable Type Information
- Use dropout mechanisms: randomly select

subset
- Boolean → max({Any}) → Any
- Scalar → max({Scalar}) → Scalar

Learning with Graph NNs

- T = 0 (Initial Node Representation)
- Concatenate Name with Type string embedding

- Run Gated Graph NN propagation for 8 steps
- 8 was experimentally determined

Downstream Tasks

- We have an embedding… now what?

Downstream Task 1 - VarNaming

Downstream Task 1 - VarNaming

- Goal: predict correct name at slot t
- Edit Graph

- Insert new node at slot t (“hole”)

Downstream Task 1 - VarNaming

- Goal: predict correct name at slot t
- Edit Graph

- Insert new node at slot t (“hole”)
- Run Gated Graph NN for 8 steps
- Feed representation into trained GRU to predict

name as a sequence

Downstream Task 2 - VarMisuse

- Found several real-world bugs

Downstream Task 2 - VarMisuse
- Goal: predict correct token at slot t

- Only type-correct tokens allowed at slot t
- Edit Graph

- Insert new node at slot (“hole”)

Downstream Task 2 - VarMisuse
- Goal: predict correct token at slot t

- Only type-correct tokens allowed at slot t
- Edit Graph

- Insert new node at slot (“hole”)
- Connect it without node v-dependent edges →

context (i.e. c(t))

Downstream Task 2 - VarMisuse
- Goal: predict correct token at slot t

- Only type-correct tokens allowed at slot t
- Edit Graph

- Insert new node at slot (“hole”)
- Connect it without node v-dependent edges →

context (i.e. c(t))
- Connect it with node v-dependent edges →

usage representation (i.e. u(t, v))
- Edges include LastUse and LastWrite
- Add usage node per type-correct variable

Downstream Task 2 - VarMisuse
- Goal: predict correct token at slot t

- Only type-correct tokens allowed at slot t
- Edit Graph

- Insert new node at slot (“hole”)
- Connect it without node v-dependent edges →

context (i.e. c(t))
- Connect it with node v-dependent edges →

usage representation (i.e. u(t, v))
- Edges include LastUse and LastWrite
- Add usage node per type-correct variable

- Run Gated Graph NN for 8 steps
- Correct Variable Usage

- Node v that maximizes trained W(c(t), u(t, v))

Evaluation

- Dataset
- 29 C# projects (~3 million lines of code)
- Graphs on average: ~2300 nodes, ~8400 edges

- Baseline
- VarMisuse (predict variable usage)

- LOC → 2 layer bidirectional GRU
- AVGB1RNN → LOC + simple variable usage dataflow

Evaluation

- Dataset
- 29 C# projects (~3 million lines of code)
- Graphs on average: ~2300 nodes, ~8400 edges

- Baseline
- VarMisuse (predict variable usage)

- LOC → 2 layer bidirectional GRU
- AVGB1RNN → LOC + simple variable usage dataflow

- VarNaming (predict name)
- AVGLBL → Log-bilinear model (NLP-inspired)
- AVGB1RNN (birectional RNN)

Evaluation

- LOC → captures little information
- AVGLBL/AVGB1RNN → captures some info
- Generalization --> unknown types/vocabulary

Evaluation

- LOC → captures little information
- AVGLBL/AVGB1RNN → captures some info
- Generalization --> unknown types/vocabulary

Evaluation

- Lacking semantic info hurts both
- Lacking syntactic info hurts VarMisuse

Evaluation

- Only syntactic info impacts both
- Only semantic info impacts VarMisuse
- Node initial labeling impacts VarNaming

Contributions

- VarMisuse tasks and its practicality
- Learning Program Representations

over Graphs

Questions/Discussion

- References
- http://snap.stanford.edu/proj/embeddings-

www/

