
Symbolic Execu.on

	 Acknowledgement:	Baishakhi	Ray	(Uva),	Omar	Chowdhury	(Purdue),	
Saswat	Anand	(GA	Tech),	Rupak	Majumdar	(UCLA),	Koushik	Sen	
(UCB)	

Suman Jana

What is the goal?

Tes.ng

• Tes%ng	approaches	are	in	general	manual		
• Time	consuming	process		
• Error-prone		
• Incomplete		
• Depends	on	the	quality	of	the	test	cases	or	
inputs		
• Provides	li=le	in	terms	of	coverage		

Can we do better in terms of
test generation? Can we some

how make it automatic?

Background: SAT

SATisfying
assignment!

Given a propositional formula in CNF, find if there exists
an assignment to Boolean variables that makes the
formula true:

ω1 = (b c)

ω2 = (¬ a ¬ d)

ω3 = (¬ b d)

ϕ = ω1 ω2 ω3

A = {a=0, b=1, c=0, d=1}

∧ ∧

clauses

literals

∨∨

∨

∨

Background: SMT

(Sa.sfiability Modulo Theory)

§ 	An	SMT	instance	is	a	generaliza%on	of	a	Boolean	SAT	instance		

§ 	Various	sets	of	variables	are	replaced	by	predicates	from	a	variety	of	
underlying	theories.	
Input:	a	first-order	formula	ϕ	over	background	theory	(Arithme%c,	Arrays,	Bit-
vectors,	Algebraic	Datatypes)	

Output:	is	ϕ	sa%sfiable?	
◦  does	ϕ	have	a	model?	
◦  Is	there	a	refuta%on	of	ϕ		=	proof	of	 ¬ϕ?	

Background: SMT

	 b	+	2	=	c		and		f(read(write(a,b,3),	c-2))	≠	f(c-b+1)	
	

Array
Theory Arithmetic Uninterpreted

Function

Example SMT Solving

	 b	+	2	=	c		and		f(read(write(a,b,3),	c-2))	≠	f(c-b+1)	
[Subs%tu%ng	c	by	b+2]	
	 b	+	2	=	c	and	f(read(write(a,b,3),	b+2-2))	≠	f(b+2-b+1)	
[Arithme%c	simplifica%on]	
	 b	+	2	=	c	and	f(read(write(a,b,3),	b))	≠	f(3)	
[Applying	array	theory	axiom]						
forall	a,i,v:read(write(a,i,v),	i)	=	v]	
	 b+2	=	c	and	f(3)	≠	f(3)	[NOT	SATISFIABLE]	
	
	

	

read	:	array	×	index	→	element		
write	:	array	×	index	×	element	→	array	

Program Valida.on

Approaches

Cost (programmer effort, time, expertise)

C
on

fid
en

ce

Verification

Extended Static Analysis

Symbolic Execution

Concolic Execution
& White-box
Fuzzing (dynamic)

Ad-hoc testing (dynamic)

Automa.c Test Genera.on
Symbolic & Concolic Execu.on

	 How	do	we	automa%cally	generate	test	inputs	that	induce	the	program	
to	go	in	different	paths?		

	 IntuiNon:		
◦  Divide	the	whole	possible	input	space	of	the	program	into	equivalent	classes	
of	input.		

◦  For	each	equivalence	class,	all	inputs	in	that	equivalence	class	will	induce	the	
same	program	path.	

◦  Test	one	input	from	each	equivalence	class.		

Symbolic Execu.on

Void func(int x, int y){

 int z = 2 * y;

 if(z == x){

 if (x > y + 10)

 ERROR

 }

}

int main(){
int x = sym_input();
int y = sym_input();
func(x, y);
return 0;}

Symbolic
Execution

Engine

SMT solver

Path
constraint

Satisfying
Assignment

High coverage
test inputs

Symbolic Execution

Symbolic Execu.on

	 Execute	the	program	with	symbolic	valued	inputs	(Goal:	good	path	
coverage)	

	 Represents	equivalence	class	of	inputs	with	first	order	logic	formulas	
(path	constraints)		

	 One	path	constraint	abstractly	represents	all	inputs	that	induces	the	
program	execu%on	to	go	down	a	specific	path		

	 Solve	the	path	constraint	to	obtain	one	representa%ve	input	that	
exercises	the	program	to	go	down	that	specific	path		

	 Symbolic	execuNon	implementaNons:	KLEE,	Java	PathFinder,	etc.	

More details on Symbolic

Execu.on

	 Instead	of	concrete	state,	the	program	maintains	symbolic	states,	each	
of	which	maps	variables	to	symbolic	values	

	 Path	condiNon	is	a	quan%fier-free	formula	over	the	symbolic	inputs	that	
encodes	all	branch	decisions	taken	so	far	

	 All	paths	in	the	program	form	its	execuNon	tree,	in	which	some	paths	
are	feasible	and	some	are	infeasible		

Symbolic Execu.on

Void func(int x, int y){

 int z = 2 * y;

 if(z == x){
 if (x > y + 10)
 ERROR

 }

}

int main(){
int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}

x	=	a	=	0	
y	=	b	=	1	

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

x	=	a	=	2	
y	=	b	=	1	

x	=	a	=	30	
y	=	b	=15	

ERROR

Path constraint z = 2b

Note: Require inputs to be marked as symbolic

Generated
Test inputs
for this path

How does symbolic execution work?

Symbolic Execu.on

x	=	a	=	0	
y	=	b	=	1	

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

x	=	a	=	2	
y	=	b	=	1	

x	=	a	=	30	
y	=	b	=15	

ERROR

z = 2b

How does symbolic execution work?

x	=	a	=	0	
y	=	b	=	1	

x	=	a	=	2	
y	=	b	=	3	

x	=	a	=	5	
y	=	b	=	4	

…
…
…	

…
…
…	

x	=	a	=	2	
y	=	b	=	1	

x	=	a	=	4	
y	=	b	=	2	

x	=	a	=	-6	
y	=	b	=	-3	

x	=	a	=	40	
y	=	b	=	20	

x	=	a	=	30	
y	=	b	=	15	

x	=	a	=	48	
y	=	b	=	24	

…
…
…	

Path	constraints	represent	
equivalence	classes	of	inputs	

SMT Queries

	 Counterexample	queries	(generate	a	test	case)	

	

	 Branch	queries	(whether	a	branch	is	valid)	

If	K	

Path Constraints = {C1, C2, …, Cn};
SAT

then	 else	

Use	queries	to	determine	validity	of	a	branch	
else	path	is	impossible:	C1 �	C2 �	…	� Cn	�	¬K	is	
UNSAT	
then	path	is	impossible:	C1 �	C2 �	…	� Cn	�	K	is	
UNSAT	

Op.mizing SMT Queries

	 Expression	rewri%ng		
◦  Simple	arithme%c	simplifica%ons	(x	*	0	=	0)	
◦  Strength	reduc%on	(x	*	2n	=	x	<<	n)	
◦  Linear	simplifica%on	(2	*	x	-	x	=	x)	

	 Constraint	set	simplifica%on	
◦  x	<	10	&&	x	=	5				-->				x	=	5		

	 Implied	Value	Concre%za%on	
◦  x	+	1	=	10				-->				x	=	9		

	 Constraint	Independence	
◦  i<j	&&	j	<	20	&&		k	>	0	&&	i	=	20				-->				i<j	&&	i<20	&&	i=20		

Op.mizing SMT Queries

(contd.)

	 Counter-example	Cache	
◦  i	<	10	&&	i	=	10	(no	solu%on)	
◦  i	<	10	&&		j	=	8	(sa%sfiable,	with	variable	assignments	i	→	5,	j	→	8)	

	 Superset	of	unsa%sfiable	constraints			
◦  {i	<	10,	i	=	10,	j	=	12}	(unsa%sfiable)	

	 Subset	of	sa%sfiable	constraints		
◦  i	→	5,	j	→	8,	sa%sfies	i	<	10		

	 Superset	of	sa%sfiable	constraints		
◦  Same	variable	assignments	might	work	

	 It	is	possible	to	extend	symbolic	execu%on	to	help	us	catch	bugs		

	 How:	Dedicated	checkers		
◦  Divide	by	zero	example	---	y	=	x	/	z	where	x	and	z	are	symbolic	variables	and	
assume	current	PC	is	f	

◦  Even	though	we	only	fork	in	branches	we	will	now	fork	in	the	division	
operator		

◦  One	branch	in	which	z	=	0	and	another	where	z	!=0		
◦  We	will	get	two	paths	with	the	following	constraints:		

			z	=	0	&&	f,							z	!=	0	&&	f	
◦  Solving	the	constraint	z	=	0	&&	f	will	give	us	concrete	input	values	that	will	
trigger	the	divide	by	zero	error.			

How does Symbolic Execu.on Find

bugs?

Classic Symbolic Execu.on ---

Prac.cal Issues

	 Loops	and	recursions	---	infinite	execu%on	tree		

	 Path	explosion	---	exponen%ally	many	paths		

	 Heap	modeling	---	symbolic	data	structures	and	pointers	

	 SMT	solver	limitaNons	---	dealing	with	complex	path	constraints		

	 Environment	modeling	---	dealing	with	na%ve/system/library	calls/file	
opera%ons/network	events		

	 Coverage	Problem	---	may	not	reach	deep	into	the	execu%on	tree,	
specially	when	encountering	loops.		

Solu.on: Concolic Execu.on

	 Concolic	=	Concrete	+	Symbolic	

		Also	called	dynamic	symbolic	execuNon		
	 The	inten%on	is	to	visit	deep	into	the	program	execu%on	tree		

	 Program	is	simultaneously	executed	with	concrete	and	symbolic	inputs		

	 Start	off	the	execu%on	with	a	random	input		

	 Specially	useful	in	cases	of	remote	procedure	call		

	 Concolic	execuNon	implementaNons:	SAGE	(Microsoh),	CREST		

Combining	Classical	TesNng	with	AutomaNc	
Program	Analysis	

Concolic Execu.on Steps

§ 	Generate	a	random	seed	input	to	start	execu%on		

§ 	Concretely	execute	the	program	with	the	random	seed	input	and	
collect	the	path	constraint	

§ 	Example:	a	&&	b	&&	c		

§ 	In	the	next	itera%on,	negate	the	last	conjunct	to	obtain	the	constraint	a	
&&	b	&&	!c		

§ 	Solve	it	to	get	input	to	the	path	which	matches	all	the	branch	decisions	
except	the	last	one		

Why	not	from	
the	first?	

ERROR

2*y == x

x > y+10

Y

Y

N

N

void	testme	(int	x,	int	y)		

{	

	z	=	2*y;	

	if	(z	==	x)	{	

	 	if	(x	>	y+10)	{	

	 							ERROR;	

	 	} 		

	}	

}	

Example

	

	

void	testme	(int	x,	int	y)	{	

		

z	=	2*	y;	

if	(z	==	x)	{	

	 	if	(x	>	y+10)	{	

	 							ERROR;	

	 	} 		

	}	

}	

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y = 7 x = a, y = b

Concolic execu.on example

	

	

void	testme	(int	x,	int	y)	{	

z	=	2*	y;	

	

if	(z	==	x)	{	

	 	if	(x	>	y+10)	{	

	 							ERROR;	

	 	} 		

	}	

}	

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y = 7,
z = 14

x = a, y = b,
z = 2*b

Concolic execu.on example

	

	

void	testme	(int	x,	int	y)	{	

z	=	2*	y;	

	

if	(z	==	x)	{	

	 	if	(x	>	y+10)	{	

	 							ERROR;	

	 	} 		

	}	

}	

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y = 7,
z = 14

x = a, y = b,
z = 2*b

Concolic execu.on example

	

	

void	testme	(int	x,	int	y)	{	

	z	=	2*	y;	

	if	(z	==	x)	{	

	 	if	(x	>	y+10)	{	

	 							ERROR;	

	 	} 		

	}	

}	

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y = 7,
z = 14

x = a, y = b,
z = 2*b

2*b != a

Concolic execu.on example

	

	

void	testme	(int	x,	int	y)	{	

	z	=	2*	y;	

	if	(z	==	x)	{	

	 	if	(x	>	y+10)	{	

	 							ERROR;	

	 	} 		

	}	

}	

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y = 7,
z = 14

x = a, y = b,
z = 2*b

2*b != a

Solve: 2*b == a
Solution: a = 2, b = 1

Concolic execu.on example

	

	

void	testme	(int	x,	int	y)	{	

	

	z	=	2*	y;	

	if	(z	==	x)	{	

	 	if	(x	>	y+10)	{	

	 							ERROR;	

	 	} 		

	}	

}	

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 2, y = 1 x = a, y = b

Concolic execu.on example

	

	

void	testme	(int	x,	int	y)	{	

	z	=	2*	y;	

	

	if	(z	==	x)	{	

	 	if	(x	>	y+10)	{	

	 							ERROR;	

	 	} 		

	}	

}	

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 2, y = 1,
z = 2

x = a, y = b,
z = 2*b

Concolic execu.on example

	

	

void	testme	(int	x,	int	y)	{	

	z	=	2*	y;	

	if	(z	==	x)	{	

	

	 	if	(x	>	y+10)	{	

	 							ERROR;	

	 	} 		

	}	

}	

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 2, y = 1,
z = 2

x = a, y = b,
z = 2*b

2*b == a

Concolic execu.on example

	

	

void	testme	(int	x,	int	y)	{	

	z	=	2*	y;	

	if	(z	==	x)	{	

	

	 	if	(x	>	y+10)	{	

	 							ERROR;	

	 	} 		

	}	

}	

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

2*b == a

x = 2, y = 1,
z = 2

x = a, y = b,
z = 2*b

a < b + 10

Concolic execu.on example

	

	

void	testme	(int	x,	int	y)	{	

	z	=	2*	y;	

	if	(z	==	x)	{	

	

	 	if	(x	>	y+10)	{	

	 							ERROR;	

	 	} 		

	}	

}	

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

2*b == a

x = 2, y = 1,
z = 2

x = a, y = b,
z = 2*b

a - b < 10

Solve: (2*b == a) ^ (a – b> 10)
Solution: a = 30, b = 15

Concolic execu.on example

	

	

void	testme	(int	x,	int	y)	{	

	z	=	2*	y;	

	

	if	(z	==	x)	{	

	 	if	(x	>	y+10)	{	

	 							ERROR;	

	 	} 		

	}	

}	

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 30, y = 15 x = a, y = b

Concolic execu.on example

	

	

void	testme	(int	x,	int	y)	{	

	

	z	=	2*	y;	

	if	(z	==	x)	{	

	

	 	if	(x	>	y+10)	{	

	

	 							ERROR;	

	 	} 		

	}	

	

}	

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 30, y = 15
z = 30

x = a, y = b

2*b == a

a > b+10

Program Error

Concolic execu.on example

	 Path	Space	of	a	Large	Program	is	Huge	
◦  Path	Explosion	Problem	

Entire Computation
Tree

Limita.ons

	 Path	Space	of	a	Large	Program	is	Huge	
◦  Path	Explosion	Problem	

Explored by
Concolic Testing

Entire Computation
Tree

Limita.ons

Concolic: Broad, shallow Random: Narrow, deep

Limita.ons:

a compara.ve view

Limita.ons: Example

	
Example	()	{	
1:	state	=	0;	
2:	while(1)	{	
3:			s	=	input();	
4:			c	=	input();	
5:			if(c==‘:’	&&	state==0)		
									state=1;	
6:			else	if(c==‘\n’	&&	state==1)		
									state=2;	
7:			else	if	(s[0]==‘I’	&&	
									s[1]==‘C’	&&	
									s[2]==‘S’	&&	
									s[3]==‘E’	&&	
									state==2)	{	

	 	COVER_ME:;	
					}	
			}	
}	

Similar code in
• Text editors (vi)
• Parsers (lexer)
• Event-driven
programs (GUI)

• Want to hit COVER_ME
• input() denotes external input
• Can be hit on an input sequence

s = “ICSE”
c : ‘:’ ‘\n’

	
Example	()	{	
1:	state	=	0;	
2:	while(1)	{	
3:			s	=	input();	
4:			c	=	input();	
5:			if(c==‘:’	&&	state==0)		
									state=1;	
6:			else	if(c==‘\n’	&&	state==1)		
									state=2;	
7:			else	if	(s[0]==‘I’	&&	
									s[1]==‘C’	&&	
									s[2]==‘S’	&&	
									s[3]==‘E’	&&	
									state==2)	{	

	 	COVER_ME:;	
					}	
			}	
}	

• Pure random testing can get to
 state = 2

But difficult to get ‘ICSE’ as a
Sequence

Probability 1/(28)6 » 3X10-15

• Conversely, concolic testing
 can generate ‘ICSE’ but explores
 many paths to get to state = 2

Limita.ons: Example

	 Interleave	Random	TesNng	and		
	 Concolic	TesNng	to	increase	coverage		

 while (not required coverage) {

while (not saturation)
 perform random testing;

Checkpoint;
while (not increase in coverage)

 perform concolic testing;
Restore;

}

Hybrid concolic tes.ng

Hybrid Concolic Tes.ng

	 Interleave	Random	TesNng	and		
	 Concolic	TesNng	to	increase	coverage		

 while (not required coverage) {

while (not saturation)

 perform random testing;
Checkpoint;
while (not increase in coverage)

 perform concolic testing;
Restore;

}

Deep, broad search
Hybrid Search

Hybrid Concolic Tes.ng

	 Random	Phase	
◦  ‘$’,	‘&’,	‘-’,	‘6’,	‘:’,	‘%’,	‘^’,	‘\n’,	‘x’,	
‘~’	…	
◦  Saturates	aher	many	(~10000)	itera%ons	
◦  In	less	than	1	second	
◦  COVER_ME	is	not	reached	

	
Example	()	{	
1:	state	=	0;	
2:	while(1)	{	
3:			s	=	input();	
4:			c	=	input();	
5:			if(c==‘:’	&&	state==0)		
									state=1;	
6:			else	if(c==‘\n’	&&	state==1)		
									state=2;	
7:			else	if	(s[0]==‘I’	&&	
									s[1]==‘C’	&&	
									s[2]==‘S’	&&	
									s[3]==‘E’	&&	
									state==2)	{	

	 	COVER_ME:;	
					}	
			}	
}	

Hybrid Concolic Tes.ng

	 Random	Phase	
◦  ‘$’,	‘&’,	‘-’,	‘6’,	‘:’,	‘%’,	‘^’,	‘\n’,	‘x’,	
‘~’	…	
◦  Saturates	aher	many	(~10000)	itera%ons	
◦  In	less	than	1	second	
◦  COVER_ME	is	not	reached	

	 Concolic	Phase	
◦  s[0]=‘I’,	s[1]=‘C’,	s[2]=‘S’,	s[3]=‘E’	

◦  Reaches	COVER_ME

	
Example	()	{	
1:	state	=	0;	
2:	while(1)	{	
3:			s	=	input();	
4:			c	=	input();	
5:			if(c==‘:’	&&	state==0)		
									state=1;	
6:			else	if(c==‘\n’	&&	state==1)		
									state=2;	
7:			else	if	(s[0]==‘I’	&&	
									s[1]==‘C’	&&	
									s[2]==‘S’	&&	
									s[3]==‘E’	&&	
									state==2)	{	

	 	COVER_ME:;	
					}	
			}	
}	

Hybrid Concolic Tes.ng

•  4x	more	coverage	than	random	
•  2x	more	coverage	than	concolic	

Summary

Concolic
Testing

Random
Testing

Hybrid Concolic
Testing

Further reading

	 Symbolic	execu%on	and	program	tes%ng	-	James	King	

	 KLEE:	Unassisted	and	Automa%c	Genera%on	of	High-Coverage	Tests	for	
Complex	Systems	Programs	-	Cadar	et.	al.		

	 Symbolic	Execu%on	for	Sohware	Tes%ng:	Three	Decades	Later	-	Cadar	
and	Sen		

	 DART:	Directed	Automated	Random	Tes%ng	-		Godefroid	et.	al.		

	 CUTE:	A	Concolic	Unit	Tes%ng	Engine	for	C		-	Sen	et.	al.		

