Symbolic Execution

Suman Jana

Acknowledgement: Baishakhi Ray (Uva), Omar Chowdhury (Purdue),
Saswat Anand (GA Tech), Rupak Majumdar (UCLA), Koushik Sen
(UCB)

What is the goal?

SSLVerifySignedServerkKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,
uint8_t *signature, UInti6é signaturelLen)
{

OSStatus err;

Qops...
((err = SSLHashSHAl.upda®~(&hashttx, &serverRandom)) != 0)
fail;
((err = SSLHash3HAL.upagate(&hashCtx, &signedParams)) != 0)
fail;
fail;
((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 0)

feits Never gets called
(but needed to be)...

err = sslRawVerify(ctx,
ctx->peerPubKey,
dataToSign,
dataToSignLen,
signature,
signaturelLen);
(err) {
sslErrorLog("SSLDecodeSignedServerKeyExchange: sslRawVerify "
"returned %d\n", (int)err);
fail;

}

fail: Despite the name, always
SSLF Buffer(&signedHashes); "migt "
SSLFrehuffor(EhashCtx)s returns "it's OK!!!

err;

Testing
*Testing approaches are in general manual
*Time consuming process
*Error-prone

°Incomplete

*Depends on the quality of the test cases or
Inputs

*Provides little in terms of coverage

n we some
automatic?

Given a propositional formula in CNF, find if there exists
an assignment to Boolean variables that makes the
formula true:

literals

a)l(ch)//

Clauses<w2 —(=ay S d)
w;=(-bv d
= 4 SATisfying

Q= W AW, A Ws assignment!
A = {a=0, b=1, c=0, d=1}

3ackground: SMT
(Satisfiability Modulo Theory)

= An SMT instance is a generalization of a Boolean SAT instance

= Various sets of variables are replaced by predicates from a variety of
underlying theories.

Input: a first-order formula ¢ over background theory (Arithmetic, Arrays, Bit-
vectors, Algebraic Datatypes)

Output: is @ satisfiable?
> does ¢ have a model?
° |s there a refutation of ¢ = proof of —?

Background: SMT

b+2=c]land ﬂread(kvrite(a,b,?;) c-Z)l) # Ifflc-

Uninterpreted

Arithmetic Function

Array
Theory

Example SMT Solving

b+2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)
[Substituting c by b+2]

b + 2 = cand f(read(write(a,b,3), b+2-2)) # f(b+2-b+1)
[Arithmetic simplification]

b + 2 = c and f(read(write(a,b,3), b)) # f(3)
[Applying array theory axiom]
forall a,i,v:read(write(a,i,v), i) = v]

b+2 =cand f(3) # f(3) [NOT SATISFIABLE]

read : array x index - element
write : array x index x element - array

Program Validation
Approaches

Verification

Concolic Execution ‘ _ .
& White-box 6 Extended Static Analysis

Fuzzing (dynamic) Symbolic Execution

Confidence

Ad-hoc testing (dynamic)

Cost (programmer effort, time, expertise)

Automatic Test Generation

Symbolic & Concolic Execution

How do we automatically generate test inputs that induce the program
to go in different paths?

Intuition:

> Divide the whole possible input space of the program into equivalent classes
of input.

o For each equivalence class, all inputs in that equivalence class will induce the
same program path.

o Test one input from each equivalence class.

Symbolic Execution

Void func(int x, int y)}{
_ SMT solver
intz=2"%y;
Path Satisfying
if(z == x{ constraint Assignment
>V +
Tx>y+10) Symbolic
ERROR Execution
) Engine
L High coverage
test inputs
int main(){
int Xx = sym_input();
inty = sym_input();
func(x, y); Symbolic Execution
return 0;}

Symbolic Execution

Execute the program with symbolic valued inputs (Goal: good path
coverage)

Represents equivalence class of inputs with first order logic formulas
(path constraints)

One path constraint abstractly represents all inputs that induces the
program execution to go down a specific path

Solve the path constraint to obtain one representative input that
exercises the program to go down that specific path

Symbolic execution implementations: KLEE, Java PathFinder, etc.

More details on Symbolic
Execution

Instead of concrete state, the program maintains symbolic states, each
of which maps variables to symbolic values

Path condition is a quantifier-free formula over the symbolic inputs that
encodes all branch decisions taken so far

All paths in the program form its execution tree, in which some paths
are feasible and some are infeasible

Void func(int x, int y){
intz=2*y;

if(z == x){
if (x>y+ 10)
ERROR

}
h

int main(){

int X = sym_input();
inty = sym_input();
func(x, y);

return 0O;

}

How does symbolic execution work?
func(x =a,y =b)

Path constraint

2iq

(@ i <))

Generated
Test inputs
for this path

Note: Require inputs to be marked as symbol

Symbolic Execution

How does symbolic execution work?
func(x =a,y =b)

Path constraints represent
equivalence classes of inputs

SMT Queries

Counterexample queries (generate a test case)

Branch queries (whether a branch is valid)

Path Constraints = {C,, C,, ..., C};
SAT

Use queries to determine validity of a branch
else path is impossible: C; A C, A ... A C, A -Kis
UNSAT

then path is impossible: C; A C, A ... A C, A Kis
UNSAT

Optimizing SMT Queries

Expression rewriting
o Simple arithmetic simplifications (x * 0 = 0)
o Strength reduction (x * 2" = x << n)
° Linear simplification (2 * x - x = x)

Constraint set simplification
° X<10&&x=5 --> x=5

Implied Value Concretization
°x+1=10 --> x=9

Constraint Independence
° i<j &&j<20&& k>0&&i=20 --> i<j&& <20 && i=20

Optimizing SMT Queries
(contd.)

Counter-example Cache
°© <10 && i =10 (no solution)

° <10 && j =8 (satisfiable, with variable assignmentsi > 5,j - 8)

Superset of unsatisfiable constraints
o {i<10,i=10, =12} (unsatisfiable)

Subset of satisfiable constraints
° i—>5,j—> 8, satisfies i< 10

Superset of satisfiable constraints
o Same variable assignments might work

How does Symbolic Execution Find

bugs: o&‘°°¢° N

It is possible to extend symbolic execution to helr \i(\é) (\‘e%e \
How: Dedicated checkers 3(:(\ ‘\
> Divide by zero example ---y=x/z wr o(2 ‘QO -1es and

assume current PCis f < " o\le
> Even though we only fork i~ e(,\ke e‘ «ne division

operator C\\ . (\‘e% \
° One branch in w* X 6 ‘\ ‘(\0\‘\\ =0
> We will ge* 6\(4’3 ‘QO 66‘/ <onstraints:

z- 363 o“e \)‘\

- '\\'e 9(\3‘ .oLf}\li” give us concrete input values that will
“Q(\3\) _error.

Classic Symbolic Execution ---

Practical Issues

Loops and recursions --- infinite execution tree

Path explosion --- exponentially many paths

Heap modeling --- symbolic data structures and pointers

SMT solver limitations --- dealing with complex path constraints

Environment modeling --- dealing with native/system/library calls/file
operations/network events

Coverage Problem --- may not reach deep into the execution tree,
specially when encountering loops.

Solution: Concolic Execution

Concolic = Concrete + Symbolic

Combining Classical Testing with Automatic

Program Analysis

Also called dynamic symbolic execution

The intention is to visit deep into the program execution tree

Program is simultaneously executed with concrete and symbolic inputs
Start off the execution with a random input

Specially useful in cases of remote procedure call

Concolic execution implementations: SAGE (Microsoft), CREST

Concolic Execution Steps

= Generate a random seed input to start execution

= Concretely execute the program with the random seed input and
collect the path constraint

" Example: a && b && ¢

= In the next iteration, negate the last conjunct to obtain the constraint a
&& b && Ic

= Solve it to get input to the path which matches all the branch decisions

except the last one
\ Why not from
the first?

Example

void testme (int x, int y)

{

z=2%;
if (z==x){
if (x >y+10) {
ERROR;
}
}

Concolic execution example

Concrete Symbolic
Execution Execution

. , _ concrete symbolic | path
void testme (int x, inty) { state state condition

— X=22,y=7 X=a,y=b

if (z==x){
if (x >y+10) {
ERROR;
}
}

Concolic execution example

Concrete Symbolic
Execution Execution
. _ _ concrete symbolic | path
void testme (int x, inty) { state state condition
z=2%y;
— X =22 y=7 X=a,y=b
z=14 z=2%
if (z==x){
if (x >y+10) {
ERROR;
}
}
}

Concolic execution example

Concrete Symbolic
Execution Execution
. _ _ concrete symbolic | path
void testme (int x, inty) { state state condition
z=2%y;
— X =22 y=7 X=a,y=b
z=14 z=2%
if (z==x){
if (x >y+10) {
ERROR;
}
}
}

Concolic execution example

Concrete
Execution

concrete
state
void testme (int x, int y) {
z=2%y;
if (z==x) {
if (x >y+10) {
ERROR;
}
} ‘_ Xx=22,y=17,
) z=14

Symbolic
Execution

symbolic
state

path
condition

2*bl=a

Concolic execution example

Concrete
Execution

concrete
state

symbolic

void testme (int x, int y) {

Solve: 2*b == a

z=2%y; Solution:a=2,b=1
if (z==x) {
if (x >y+10) {
ERROR;
}
}

Symbolic
Execution

path
condition

2*bl=a

Concolic execution example

Concrete Symbolic
Execution Execution

. , _ concrete symbolic | path
void testme (int x, inty) { state state condition

— X=2,y=1 X=a,y=b

if (z==x){
if (x >y+10) {
ERROR;
}
}

Concolic execution example

void testme (int x, int y) {

z=2%y;

Y ———

if (z==x){
if (x >y+10) {
ERROR;

Concrete
Execution

concrete
state

symbolic

Symbolic
Execution

path
condition

Concolic execution example

Concrete
Execution

. . _ concrete
void testme (int x, int y) { state
z=2%y;
if (z==x) {

— X=2,y=1,
Z:

if (x > y+10) { 2
ERROR;

Symbolic
Execution

symbolic

state

path
condition

2*b ==

Concolic execution example

Concrete
Execution

. . _ concrete
void testme (int x, int y) { state
z=2%y;
if (z==x) {

if (x >y+10) {
ERROR;

)

} — x=2,y=1,

Symbolic
Execution

symbolic

state

path
condition

2*b ==
a<b+10

Concolic execution example

Concrete Symbolic
Execution Execution
. . . concrete symbolic | path
void testme (int x, inty) { state state condition
z=2%y,
, Solve: (2*b == a) * (a - b> 10)
if (z==x) { Solution: a =30, b =15 o
2"b ==
a-b<10

if (x >y+10) {
ERROR;

Concolic execution example

Concrete Symbolic
Execution Execution
concrete symbolic | path
void testme (int x, inty) { state state condition
z=2%y;
4— x=30,y=15 X=a,y=b
if (z==x){
if (x >y+10) {
ERROR;
}
}
}

Concolic execution example

Concrete Symbolic
Execution Execution

_ ' . symbolic | path
void testme (int x, inty) { state condition
;= Q% V: Program Error
if (z==x){
2*b==a
if (x > y+10) { a>b¥io
— X=30,y=15 X=a,y=b
z =230
ERROR;
}

Limitations

Entire Computation
Tree

Path Space of a Large Program is Huge
o Path Explosion Problem

Limitations

Entire Computation
Tree

Path Space of a Large Program is Huge
o Path Explosion Problem

Explored by
Concolic Testing

Limitations:
a comparative view

Concolic: Broadi shallow Random: Narrow, deeE

Example () {

1: state = 0;
2: while(1) {
3: s =input{); «Want to hit COVER_ME
4: c=input(); «input() denotes external input
5 if(c=="" && state==0) «Can be hit on an input sequence
state=1; s = “|CSE”
6: else if(c=="\n’ && state==1) c: ‘’a\n’
state=2;
7: elseif (s[0]=="I" &&
s[1]=="C’ && o .
s[2]=="S" && S]rmll:\r gptde in
s[3]=='F’ && -Pex edi lors (vi)
aa “Event.driven.
COVER_ME:;
) programs (GUI)
}

Example () {

o

1
2
3:
4
5

: state = 0;

: while(1) {

s = input();

. c=input();

. if(c=="" && state==0)
state=1;

else if(c=="\n" && state==1)
state=2;

else if (s[0]=="I" &&
s[1]==C’' &&
s[2]==S’ &&
s[3]==F’ &&
state==2) {

COVER_ME:;

«Pure random testing can get to
state = 2

But difficult to get ‘ICSE’ as a

Sequence

Probability 1/(28)¢ » 3X10-1°

«Conversely, concolic testing
can generate ‘ICSE’ but explores

many paths to get to state = 2

Hybrid concolic testing

while (not required coverage) {

while (not saturation)
perform random testing;
Checkpoint;
while (not increase in coverage)
perform concolic testing;
Restore;

Interleave Random Testing and

Concolic Testing to increase coverage

Hybrid Concolic Testing

while (not required coverage) {

while (not saturation)
perform random testing;
Checkpoint;
while (not increase in coverage)
perform concolic testing;
Restore;

} Interleave Random Testing and

Concolic Testing to increase coverage

Deep, broad search
Hybrid Search

Hybrid Concolic Testing

Example () {
1: state = 0;
32; "‘;h_”‘ierg:))ui()' Random Phase
4: c=input(); OIE"&'_'G':'%'A'\n’X’
5t if(c=="" && state==0) ° Saturates after many (~10000) iterations
StaFe=1; > |nless than 1 second
6: else if(c=="\n" && state==1) © COVER ME is not reached
state=2; B
7: elseif (s[0]=="I" &&
s[1]==C' &&
s[2]=="S" &&
s[3]==F" &&
state==2) {
COVER_ME;;
}
}

Hybrid Concolic Testing

Example () {
1: state = 0;
323 "‘;h_”‘i?rg:))ui()- Random Phase
4: c=input(); O,E,’&’_’G’:’%’A’\n’x'
3 |f(c==’;' && state==0) o Saturates after many (~10000) iterations
statce=1; ° Inless than 1 second
6: elseif(c=="\n" && state==1) . COVER ME is not reached
state=2; B
7: elseif (s[0]=="1" && Concolic Phase
s[1]=="C" && o s[0]="1, s[1]='C’, s[2]='S’, s[3]="F’
s[2]=="S" && ° Reaches COVER_ME
s[3]==F" &&
state==2) {
COVER_ME;;
}
}

Hybrid Concolic Testing

(A

* 4x more coverage than random
e 2X more coverage than concolic

,‘
/)
(|

(

7

Random
Testing

Concolic
Testing

Hybrid Concolic
Testing

Further reading

Symbolic execution and program testing - James King

KLEE: Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs - Cadar et. al.

Symbolic Execution for Software Testing: Three Decades Later - Cadar
and Sen

DART: Directed Automated Random Testing - Godefroid et. al.

CUTE: A Concolic Unit Testing Engine for C - Sen et. al.

