
Modern client-side defenses

Deian Stefan

Modern web “site”

Modern web “site”

Modern web “site”

Page code

Modern web “site”

Page code Ad code

Modern web “site”

Page code Ad code

Third-party APIs

Modern web “site”

Page code

Third-party
libraries

Ad code

Third-party APIs

Modern web “site”

Page code

Third-party
libraries

Ad code

Third-party APIs

Extensions

Sites handle sensitive data

• Financial data

➤ Online banking, tax filing, shopping, budgeting, …

• Health data

➤ Genomics, prescriptions, …

• Personal data

➤ Email, messaging, affiliations, …

Others want this information

• Financial data

➤ Black-hat hackers, …

• Health data

➤ Insurance companies, …

• Personal data

➤ Ad companies, big governments, …

Others want this information

• Financial data

➤ Black-hat hackers, …

• Health data

➤ Insurance companies, …

• Personal data

➤ Ad companies, big governments, …

Others want this information

• Financial data

➤ Black-hat hackers, …

• Health data

➤ Insurance companies, …

• Personal data

➤ Ad companies, big governments, …

Others want this information

• Financial data

➤ Black-hat hackers, …

• Health data

➤ Insurance companies, …

• Personal data

➤ Ad companies, big governments, …

• Page developer

• Library developers

• Service providers

• Data provides

• Ad providers

• Other users

• CDNs

• Extension developers

The acting parties on a site

Basic questions

• How do we protect page from ads/services?

• How to share data with cross-origin page?

• How to protect one user from another’s content?

• How do we protect the page from a library?

• How do we protect page from CDN?

• How do we protect extension from page?

Recall: Same origin policy

Idea: isolate content from different origins

➤ E.g., can’t access document of cross-origin page

➤ E.g., can’t inspect responses from cross-origin  
 
 
 
 
 

c.com b.coma.com

 postMessage

✓
JSON

DOM access✓

Is the same origin policy good
enough?

The SOP is not strict enough

• Third-party libs run with privilege of the page

• Code within page can arbitrarily leak data

➤ How?

• iframes isolation is limited

➤ Can’t isolate user-provided content from page (why?)

➤ Can’t isolate third-party ad placed in iframe (why?)

The SOP is not strict enough

• Third-party libs run with privilege of the page

• Code within page can arbitrarily leak data

➤ How?

• iframes isolation is limited

➤ Can’t isolate user-provided content from page (why?)

➤ Can’t isolate third-party ad placed in iframe (why?)

The SOP is not flexible enough
• Can’t read cross-origin responses

➤ What if we want to fetch data from provider.com?

➤ JSONP

- To fetch data, insert new script tag:  
<script src=“https://provider.com/getData?cb=f”></script>

- To share data, reply back with script wrapping data  
f({ ...data...})

➤ Why is this a terrible idea?

- Provider data can easily be leaked (CSRF)

- Page is not protected from provider (XSS)

The SOP is not flexible enough
• Can’t read cross-origin responses

➤ What if we want to fetch data from provider.com?

➤ JSONP

- To fetch data, insert new script tag:  
<script src=“https://provider.com/getData?cb=f”></script>

- To share data, reply back with script wrapping data  
f({ ...data...})

➤ Why is this a terrible idea?

- Provider data can easily be leaked (CSRF)

- Page is not protected from provider (XSS)

Outline: modern mechanisms

• iframe sandbox

• Content security policy (CSP)

• Web workers

➤ Not originally intended for security; but they help

• Subresource integrity (SRI)

• Cross-origin resource sharing (CORS)

iframe sandbox

Idea: restrict actions iframe can perform

Approach: set sandbox attribute, by default:

➤ disallows JavaScript and triggers (autofocus,
autoplay videos etc.)

➤ disallows form submission

➤ disallows popups

➤ disallows navigating embedding page

➤ runs page in unique origin: no storage/cookies

Whitelisting privileges

Can enable dangerous features by whitelisting:

➤ allow-scripts: allows JS + triggers (autofocus,
autoplay, etc.)

➤ allow-forms: allow form submission

➤ allow-pointer-lock: allow fine-grained mouse moves

➤ allow-popups: allow iframe to create popups

➤ allow-top-navigation: allow breaking out of frame

➤ allow-same-origin: retain original origin

What can you do with iframe
sandbox?

• Run content in iframe with least privilege

➤ Only grant content privileges it needs

• Privilege separate page into multiple iframes

➤ Split different parts of page into sandboxed iframes

E.g., least privilege: twitter button

➤ What’s the problem with this embedding approach?

• Using iframes 
 

➤ What’s the problem with this approach?

<iframe src="https://platform.twitter.com/widgets/tweet_button.html"
 style="border: 0; width:130px; height:20px;"></iframe>

Tweet
<script>
window.twttr=(function(d,s,id){var js,fjs=d.getElementsByTagName(s)
[0],t=window.twttr||{};if(d.getElementById(id))return
t;js=d.createElement(s);js.id=id;js.src="https://platform.twitter.com/
widgets.js";fjs.parentNode.insertBefore(js,fjs);t._e=[];t.ready=function(f)
{t._e.push(f);};return t;}(document,"script","twitter-wjs"));
</script>

E.g., least privilege: twitter button

• With sandbox: remove all permissions and then
enable JS, popups, form submission, etc.  
 
 

➤ Why is are these required (e.g., same origin)?

<iframe src=“https://platform.twitter.com/widgets/tweet_button.html"
 sandbox=“allow-same-origin allow-scripts allow-popups allow-forms”
 style="border: 0; width:130px; height:20px;"></iframe>

E.g., privilege separation: feed
• Typically include user content inline: 
 
 

➤ Problem with this?

• With iframe sandbox:  
 
 

➤ May need allow-scripts - why? allow-same-origin ok?

<div class=“post”> 
 <div class=“author”>{{post.author}}</div> 
 <div class=“body”>{{post.body}}</div> 
</div>

<iframe sandbox srcdoc=“... 
<div class=“post”> 
 <div class=“author”>{{post.author}}</div> 
 <div class=“body”>{{post.body}}</div> 
</div>...”></iframe>

Basic questions

• How do we protect page from ads/services?

• How to share data with cross-origin page?

• How to protect one user from another’s content?

• How do we protect the page from a library?

• How do we protect page from CDN?

• How do we protect extension from page?

✓

✓

Limitations/questions on sandbox
• Research: How can you determine what

privileges you need to run a page with?

➤ Being overly restricting: breaks functionality

➤ Bing overly permissive: can cause more damage

• Research: Automatically compartmentalization?

• Is the loose definition of “least privilege” good
enough?

➤ It mostly restricts features, not what you can do
with the features; what can go wrong?

Motivation for CSP

• Consider running library in sandboxed iframes

➤ E.g., password strength checker  
 
 

➤ Desired guarantee: checker cannot leak password

• Problem: sandbox does not restrict exfiltration

➤ Can use XHR to write password to b.ru

b.ru/chk.htmla.com

Motivation for CSP

• Can we limit the origins that the page (iframe
or otherwise) can talk talk to?

➤ Can only leak to a trusted set of origins

➤ Gives us a more fine-grained notion of least privilege

• Can we extend this idea to prevent or limit
damages due to XSS?

Content security policy

• Goal: prevent or limit damage due to XSS

• Idea: restrict resource loading to a white list

➤ By restricting to whom page can talk to: restrict
where data is leaked!

• Approach: send page with CSP header that
contains fine-grained directives

➤ E.g., allow loads from CDN, no frames, no plugins
Content-Security-Policy: default-src https://cdn.example.net;

child-src 'none'; object-src 'none'

Example directives

• connect-src: limits the origins you can XHR to

• font-src: where to fetch web fonts form

• form-action: where forms can be submitted

• child-src: where to load frames/workers from

• frame-ancestors: sources that can embed this
page

• default-src: default whitelist

Special keywords

• ‘none’ - match nothing

• ‘self’ - match this origin

• ‘unsafe-inline’ - allow unsafe JS & CSS

• ‘unsafe-eval’ - allow unsafe eval (and the like)

• http: - match anything with http scheme

• https: - match anything with https scheme

• * - match anything

How can CSP prevent XSS?

• If you whitelist all places you can load scripts
from:

➤ Only execute code from trusted origins

➤ Remaining vector for attack: inline scripts

• CSP by default disallows inline scripts

➤ If scripts are enabled at least it disallows eval

Adoption challenge

• Problem: inline scripts are widely-used

➤ Page authors use the ‘unsafe-inline' directive

➤ Is this a problem?

• Solution: script nonce and script hash

➤ Allow scripts that have a particular hash

➤ Allow scripts that have a white-listed nonce

Other adoption challenges

• Goal: set most restricting CSP that is
permissive enough to not break existing app

• How can you figure this out for a large app?

• CSP has report-only header and report-uri
directive

➤ Report violations to server; don’t enforce

Basic questions

• How do we protect page from ads/services?

• How to share data with cross-origin page?

• How to protect one user from another’s content?

• How do we protect the page from a library?

• How do we protect page from CDN?

• How do we protect extension from page?

✓

✓

✓

Limitations/questions on CSP

• Can still exfiltrate data (postMessage, navigation)

• Research: setting flexible CSP policy
automatically

➤ Dynamic loading content vs. CSP (Reddit imgurl)

• Research: set CSP automatically with inline
scripts in presence of user-supplied content?

➤ Stored XSS problem: user code vs. your inline code

• Research [COWL]: is whitelisting enough?

Web workers

• Run code in separate context (in new thread)

➤ No DOM: no postMessage to iframes/navigation to
leak

➤ Only pure JavaScript + XHR + postMessage/
onmessage with parent

• CSP header on worker can be more restricting
than page

➤ A more secure sandbox for running untrusted code

Outline: modern mechanisms

• iframe sandbox

• Content security policy (CSP)

• Web workers

➤ Not originally intended for security; but they help

• Subresource integrity (SRI)

• Cross-origin resource sharing (CORS)

Motivation for SRI

• CSP can be used to limit the damage of code,
but can’t really defend against malicious code

• How do you know that the library you’re
loading is the correct one? 
 

➤ Won’t using HTTPS address this problem?  
 

Motivation for SRI

• CSP can be used to limit the damage of code,
but can’t really defend against malicious code

• How do you know that the library you’re
loading is the correct one? 
 

➤ Won’t using HTTPS address this problem?  
 

Subresource integrity

• Idea: page author specifies hash of
(sub)resource they are loading; browser checks
integrity

➤ E.g., integrity for scripts  
 

➤ E.g., integrity for link elements 

<link rel="stylesheet" href="https://site53.cdn.net/style.css"
 integrity="sha256-SDfwewFAE...wefjijfE">

<script src="https://code.jquery.com/jquery-1.10.2.min.js"
 integrity="sha256-C6CB9UYIS9UJeqinPHWTHVqh/E1uhG5Tw+Y5qFQmYg=">

What happens when check fails?

• Case 1 (default):

➤ Browser reports violation and does not render/
execute resource

• Case 2: CSP directive with integrity-policy
directive set to report

➤ Browser reports violation, but may render/execute
resource

Multiple hash algorithms

• Authors may specify multiple hashes

➤ E.g.,  
 

• Browser uses strongest algorithm

• Why support multiple algorithms?

➤ Don’t break page on old browser

<script src="hello_world.js"
 integrity=“sha256-...
 sha512-...
 "></script>

Multiple hash algorithms

• Authors may specify multiple hashes

➤ E.g.,  
 

• Browser uses strongest algorithm

• Why support multiple algorithms?

➤ Don’t break page on old browser

<script src="hello_world.js"
 integrity=“sha256-...
 sha512-...
 "></script>

Basic questions

• How do we protect page from ads/services?

• How to share data with cross-origin page?

• How to protect one user from another’s content?

• How do we protect the page from a library?

• How do we protect page from CDN?

• How do we protect extension from page?

✓

✓

✓
✓

Limitations/questions on SRI

• Only supports stylesheets and scripts

• Can extend to other elements? UI integrity?

• Can extend to downloads?

• Research: what if you used signatures?

➤ Talk to Henry Corrigan-Gibbs and Amit Levy

Outline: modern mechanisms

• iframe sandbox

• Content security policy (CSP)

• Web workers

➤ Not originally intended for security; but they help

• Subresource integrity (SRI)

• Cross-origin resource sharing (CORS)

Recall: SOP is also inflexible

• Problem: Can’t fetch cross-origin data

➤ Leads to building insecure sites/services: JSONP

• Solution: Cross-origin resource sharing (CORS)

➤ Data provider explicitly whitelists origins that can
inspect responses

➤ Browser allows page to inspect response if its origin
is listed in the header

E.g., CORS usage: amazon

• Amazon has multiple domains

➤ E.g., amazon.com and aws.com

• Problem: amazon.com can’t read cross-origin
aws.com data

• With CORS amazon.com 
can whitelist aws.com

amazon.com evil.biz

aws.com

How CORS works
• Browser sends Origin header with XHR request

➤ E.g., Origin: https://amazon.com

• Server can inspect Origin header and respond
with Access-Control-Allow-Origin header

➤ E.g., Access-Control-Allow-Origin: https://amazon.com

➤ E.g., Access-Control-Allow-Origin: *

• CORS XHR may send cookies + custom headers

➤ Need “preflight” request to authorize this

Basic questions

• How do we protect page from ads/services?

• How to share data with cross-origin page?

• How to protect one user from another’s content?

• How do we protect the page from a library?

• How do we protect page from CDN?

• How do we protect extension from page?

✓

✓

✓

✓

✓

Limitations/questions on CORS

• Can’t share data with sandboxed iframe
without making it completely public

• Research [COWL]: is whitelisting enough?

➤ Why doesn’t chase.com share bank statements with
mint.com?

• Research: CORS + crypto for better sharing?

Outline: modern mechanisms

• iframe sandbox

• Content security policy (CSP)

• Web workers

➤ Not originally intended for security; but they help

• Subresource integrity (SRI)

• Cross-origin resource sharing (CORS)

How do we protect extensions
from pages?

• Firefox and Chrome:

➤ Isolated worlds: extension script’s heap is different
from the heap of the page. Why?

➤ E.g., getElementById = function() {...evil stuff…}

How do we protect extensions
from pages?

• Chrome forces developers to follow:

➤ Privilege separation by breaking extension into

- Core extension script: has access to privileged APIs

- Content script: can manipulate page but must ask
core script to use privileged APIs on its behalf

➤ Principle of least privileged via permission system

- User must approve APIs granted to core extension
scripts, so developers should be kept in line

Basic questions

• How do we protect page from ads/services?

• How to share data with cross-origin page?

• How to protect one user from another’s content?

• How do we protect the page from a library?

• How do we protect page from CDN?

• How do we protect extension from page?

✓

✓

✓

✓

✓
✓

Limitations/questions on
extension systems

• Page can’t protect itself from extension

➤ Extensions do directly inject code and have removed
CSP headers [RAID]

• Research [HotOS]: is trust model realistic? Is
Chrome’s system working? Can we do better?

➤ Extensions are third-party code; there have been
malicious extensions in the wild

➤ Extensions are not least privileged: over 71% of top
1000 need to read/write everything for every origin

Continuing w/ research questions

• Can we build an extension systems with more
realistic attacker model?

• Where do existing mechanisms for the Web fall
short?

Motivation for COWL  
(working spec draft)

• Same Origin Policy

• Content Security Policy

• Sandboxing  
 
 

Motivation for COWL  
(working spec draft)

• Same Origin Policy

• Content Security Policy

• Sandboxing  
 
 

All-or-nothing discretionary access control:  
access data ➠ ability to leak it

Where DAC falls short…

Where DAC falls short…

Third-party APIs

Where DAC falls short…

Third-party APIs

Mashups

Where DAC falls short…

Third-party APIs

Third-party libraries

Mashups

Where DAC falls short…

Third-party APIs

Third-party libraries

Mashups

Third-party mashups

Where DAC falls short…

Third-party APIs

Third-party libraries

Mashups

Third-party mashups

 
 
 
Guarantee: checker cannot leak password

➤ At worst: checker lies about strength of password

Recall: password-strength checker

b.ru/chk.htmla.com

Confining the checker using
existing mechanisms

• Host the checker code on a.com

• Use CSP & Sandboxing

➤ Need JavaScript: sandbox allow-scripts

➤ Limit communication to postMessage with parent:  
default-src ‘none’ ‘unsafe-inline’  

a.com/chk.htmla.com b.ru

Confining the checker using
existing mechanisms

• Host the checker code on a.com

• Use CSP & Sandboxing

➤ Need JavaScript: sandbox allow-scripts

➤ Limit communication to postMessage with parent:  
default-src ‘none’ ‘unsafe-inline’  

a.com/chk.htmla.com b.ru

p45s

Confining the checker using
existing mechanisms

• Host the checker code on a.com

• Use CSP & Sandboxing

➤ Need JavaScript: sandbox allow-scripts

➤ Limit communication to postMessage with parent:  
default-src ‘none’ ‘unsafe-inline’  

a.com/chk.htmla.com b.ru

Confining the checker using
existing mechanisms

• Host the checker code on a.com

• Use CSP & Sandboxing

➤ Need JavaScript: sandbox allow-scripts

➤ Limit communication to postMessage with parent:  
default-src ‘none’ ‘unsafe-inline’  

a.com/chk.htmla.com b.ru

Confining the checker using
existing mechanisms

• Host the checker code on a.com

• Use CSP & Sandboxing

➤ Need JavaScript: sandbox allow-scripts

➤ Limit communication to postMessage with parent:  
default-src ‘none’ ‘unsafe-inline’  

a.com/chk.htmla.com b.ru

Confining the checker using
existing mechanisms

• Host the checker code on a.com

• Use CSP & Sandboxing

➤ Need JavaScript: sandbox allow-scripts

➤ Limit communication to postMessage with parent:  
default-src ‘none’ ‘unsafe-inline’  

a.com/chk.htmla.com b.ru

Confining the checker using
existing mechanisms

• Host the checker code on a.com

• Use CSP & Sandboxing

➤ Need JavaScript: sandbox allow-scripts

➤ Limit communication to postMessage with parent:  
default-src ‘none’ ‘unsafe-inline’  

a.com/chk.htmla.com b.ru

Confining the checker using
existing mechanisms

• Host the checker code on a.com

• Use CSP & Sandboxing

➤ Need JavaScript: sandbox allow-scripts

➤ Limit communication to postMessage with parent:  
default-src ‘none’ ‘unsafe-inline’  

a.com/chk.htmla.com b.ru

Confining the checker using
existing mechanisms

• Host the checker code on a.com

• Use CSP & Sandboxing

➤ Need JavaScript: sandbox allow-scripts

➤ Limit communication to postMessage with parent:  
default-src ‘none’ ‘unsafe-inline’  

a.com/chk.htmla.com b.ru

 Actually can leak to iframes, so  
 need to use Worker…

Why is this unsatisfactory?

• Functionality of library is limited

➤ E.g., library cannot fetch resources from network

➤ A more flexible CSP policy would weaken security

• Security policy is not first-class

➤ Library cannot use code it itself doesn’t trust

• Security policy is not symmetric

➤ Library cannot consider parent untrusted

A new approach: COWL

Idea (a): Provide means for associating security
label with data

➤ E.g., password is sensitive to a.com

Idea (b): Ensure code is confined to obey labels
by associating labels with browsing contexts

➤ E.g., password can only be sent to entities that
are as sensitive as a.com  
(via XHR, postMessage, storage, …)

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.rua.com

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru

public b.ru

a.com

a.com

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru

public b.ru?

a.com

a.com

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru

public b.ru

a.com

a.com

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru/chk.html b.ru

publicpublic b.ru

a.com

a.com

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru/chk.html b.ru

publicpublic b.ru

a.com

a.com

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru/chk.html b.ru

publicpublic b.ru

a.com

a.com

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru/chk.html b.ru

publicpublic b.ru

a.com

a.com

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru/chk.html b.ru

publicpublic b.ru

a.com

a.com

postMessage(Label({pass: …}, “a.com”), “b.ru”))

?

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru/chk.html b.ru

publicpublic b.ru

a.com

a.com

postMessage(Label({pass: …}, “a.com”), “b.ru”))

{pass: ...}

a.com

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru/chk.html b.ru

publicpublic b.ru

a.com

a.com

{pass: ...}

a.com

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru/chk.html b.ru

publicpublic b.ru

a.com

a.com

{pass: ...}

onmessage = function (labeledPass) {
 var pass = unlabel(labeledPass);
 var strength = checkStrength(pass);
 ...
}

a.com

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru/chk.html b.ru

public b.rua.com

a.com

a.com

{pass: ...}

onmessage = function (labeledPass) {
 var pass = unlabel(labeledPass);
 var strength = checkStrength(pass);
 ...
}

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru/chk.html b.ru

public b.rua.com

a.com

a.com ?
{pass: ...}

onmessage = function (labeledPass) {
 var pass = unlabel(labeledPass);
 var strength = checkStrength(pass);
 ...
}

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru/chk.html b.ru

public b.rua.com

a.com

a.com

{pass: ...}

onmessage = function (labeledPass) {
 var pass = unlabel(labeledPass);
 var strength = checkStrength(pass);
 ...
}

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru/chk.html b.ru

public b.rua.com

a.com

a.com

onmessage = function (labeledPass) {
 var pass = unlabel(labeledPass);
 var strength = checkStrength(pass);
 ...
}

Confining the checker with COWL

• Express sensitivity of data

➤ Checker can only receive password if its context
label is as sensitive as the password

• Use postMessage to send labeled password

➤ Source specifies sensitivity of data at time of send  
 

a.com b.ru/chk.html b.ru

public b.rua.com

a.com

a.com
Can leak password to a.com  
Fix: create fresh labels to
ensure checker is fully confined

onmessage = function (labeledPass) {
 var pass = unlabel(labeledPass);
 var strength = checkStrength(pass);
 ...
}

• SOP has reached its limit for modern web apps
• New mechanisms: sandboxing, CSP, CORS, SRI

➤ Address limitations of SOP by reducing amount of
trust authors need to place in code (by reducing the
amount of damage code can cause)

➤ Each has their own shortcomings
- COWL address limitation of whitelists
- Signatures can address limitations of SRI
- Lot of work to do

• Web apps do not run stand-alone: extensions
➤ Extension systems protect privileged code from

untrusted app code, though design needs revising

Summary

References
• [Sandbox] - Play safely in sandboxed IFrames by Mike West.

➤ http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/

➤ http://www.w3.org/TR/2010/WD-html5-20100624/the-iframe-element.html

• [CSP] - An Introduction to Content Security Policy by Mike West.

➤ http://www.html5rocks.com/en/tutorials/security/content-security-policy/

➤ http://www.w3.org/TR/CSP2/

• [CORS] - Using CORS by Monsur Hossain.

➤ http://www.html5rocks.com/en/tutorials/cors/

➤ http://www.w3.org/TR/cors

• [SRI] - Subresource Integrity by Frederik Braun, Francois Marier, Devdatta
Akhawe, and Joel Weinberger.

➤ http://www.w3.org/TR/SRI

• [COWL] - Protecting Users by Confining JavaScript with COWL by Deian
Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, Dave Herman, Brad
Karp, and David Mazières. In OSDI 2014

➤ http://cowl.ws

• [HotOS] - The Most Dangerous Code in the Browser by Stefan Heule, Devon
Rifkin, Deian Stefan, and Alejandro Russo. In HotOS 2015

➤ http://deian.org/pubs/heule:2015:the-most.pdf

• [RAID] - Why is CSP Failing? Trends and Challenges in CSP Adoption by
Michael Weissbacher, Tobias Lauinger, and William Robertson. In RAID, 2014.

➤ http://www.iseclab.org/people/mweissbacher/publications/csp_raid.pdf

References

