Program Analysis for Security

Original slides created by Prof. John Mitchell

Facebook missed a

single secusity.eheck.. =

.+

Man Finds Easy Hack to Delete Any

Facebook Photo Album

Facebook awards him a $12,500 "bug bounty” for his discovery

App stores

Apps for whatever you're up for.

Stay on top of the news. Stay on top of your finances. Or plan your dream vacation. No matter
what you want to do with your iPhone, there’s probably an app to help you do it.

Business

iPhone is ready for work. Manage
projects, track stocks, monitor
finances, and more with these 9-to-
5apps.

View business apps
in the App Store >

E Family & Kids

Turn every nightinto family night with
interactive apps thatare fun for the
whole house.

View family and kids apps
in the App Store >

(5 Education

Keep up with your studies using
intelligent education apps like King of
Math and NatureTap.

View education apps
in the App Store >

" ‘ .
“ Finance

Create budgets, pay bills, and more
with financial apps that take
everything into account.

View finance apps
in the App Store >

','59 Entertainment

Kick back and enjoy the show. Or find
countless other ways to entertain
yourself. These apps offer hours of
viewing pleasure.

View entertainmentapps
in the App Store >

Food & Drink

Hungry? Thirsty? A little of both? Learn
new recipes, drinks, and the secrets
behind what makes a great meal.

View food and drink apps
in the App Store »

How can you tell whether

software you
— Develop
— Buy

is safe to install and run?

Two options

e Static analysis

— Inspect code or run automated method to find
errors or gain confidence about their absence

* Dynamic analysis

— Run code, possibly under instrumented
conditions, to see if there are likely problems

Code

¢

Spec

S

Program Analyzers

Program

Analyzer

—

1
2
3
4
5

10,502

mem leak
buffer oflow
sql injection
stack oflow

dang ptr

info leak

324
4,353,245
23,212
86,923
8,491

10,921

B

Manual testing
~only examines
small subset of
behaviors

Software

>4 21224

=>4 > 1234

—>3 122 24> Hé\rﬂ4

>4 L2 23 H?,E

g 0 g Y g 3 g T e Y e D i

4212224212324
Behaviors

Static vs Dynamic Analysis

e Static

— Can consider all possible inputs

— Find bugs and vulnerabilities

— Can prove absence of bugs, in some cases
* Dynamic

— Need to choose sample test input

— Can find bugs vulnerabilities

— Cannot prove their absence

Cost of Fixing a Defect

Development QA Release Maintenance

Credit: Andy Chou, Coverity

Cost of security or data privacy
vulnerability?

Dynamic analysis

* |Instrument code for testing
— Heap memory: Purify
— Perl tainting (information flow)
— Java race condition checking

* Black-box testing
— Fuzzing and penetration testing
— Black-box web application security analysis

Static Analysis

* Long research history

* Decade of commercial products
— FindBugs, Fortify, Coverity, MS tools, ...

Static Analysis: Outline

* General discussion of static analysis tools
— Goals and limitations
— Approach based on abstract states

 More about one specific approach
— Property checkers from Engler et al., Coverity
— Sample security checkers results

 Static analysis for of Android apps

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, ...

Static analysis goals

* Bug finding

— |dentify code that the programmer wishes to
modify or improve

e Correctness

— Verify the absence of certain classes of errors

Soundness, Completeness

Property ____|Definition

Soundness “Sound for reporting correctness”

Analysis says no bugs — No bugs
or equivalently

There is a bug — Analysis finds a bug

Completeness “Complete for reporting correctness”
No bugs — Analysis says no bugs

Recall: A — B is equivalentto (—=B) — (=A)

Sound

Unsound

Complete

Reports all errors
Reports no false alarms

Undecidable

May not report all errors
Reports no false alarms

Decidable

Incomplete

Reports all errors
May report false alarms

Decidable

May not report all errors
May report false alarms

Decidable

Code

¢

Spec

S

Sound Program Analyzer

Analyze large
code bases

1

mem leak 24

2 buffer oflow 4,353,245 4mm f3]se alarm
3 sql injection 23,212
‘ 4 stack oflow 86,923
5

dang ptr 8491 ¢ false alarm

Program

Analyzer

10,502 info leak 10,921

Sound: may
report many
warnings

May emit
false alarms

o

Software

Sound
- Medatted Over-approximation of
Error Behaviors

-
-
-
-
-
-
-
u
u

1L

False approximation is too coarse...
Alarm Behaliotso many false alarms

Outline

 General discussion of tools
— Goals and limitations
m=s) Approach based on abstract states

 More about one specific approach
— Property checkers from Engler et al., Coverity
— Sample security-related results

 Static analysis for Android malware

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, ...

Does this program ever crash?

entry
X€<0
IsY=07? [€
yes no
XEX+1 X€EX-1

IsY=0"7

yes

IsX<0?

nNo

exit

yes no

crash

Does this program ever crash?

entry
{
X&€<0
|
IsY=07? [€
yes no
X € X+1 [x€x-1 |
IsY=07?
yes no
IsX<0? [exit]
yes no

crash

infeasible path!
... program will never crash

Try analyzing without approximating...

entry
X€<0
X=0) oo l
IsY=07? [€
yes no
X=2) Ty
XEX+1 X€EX-1
X=3 \/
X=3)
IsY=0"7
IsX<0? exit
yes no

non-termination!
... therefore, need to approximate

dataflow elements

transfer function

dout = f(dm)

dataflow equation

inl
\ 4 \ 4
XEX+1 f1 _
______________ d doutl - fl(dinl)
_____________ ! iz Y doutl - din2
IsY=0"7 f2
dour = f2(di)
"""""""" doutZ"""""""'

din3

d
d
igin = doutll_| dout2
d
d

out3 — f3 in3)

least upper bound operator

. Example: union of possible values
What is the space of dataflow elements, A?

What is the least upper bound operator, L1?

Try analyzing with “signs” approximation...

entry
X&€<0
X=0) e l
IsY=07? [€
es
Ry - ---------- Y— no— ------------------ X=0

lost
precision

terminates...
... but reports false alarm
... therefore, need more precision

refirsighsigaitilattice Boolean formula lattice

Try analyzing with “path-sensitive signs” approximation...

entry

Cy=0 HX = 909

no precision loss

— e ; IsY=07?
- GBES

> (=0) @=pod

— refinement

IsX<0? exit

yes no

terminates... crash
... ho false alarm
... soundly proved never crashes

Outline

e General discussion of tools
— Goals and limitations
— Approach based on abstract states

More about one specific approach
— Property checkers from Engler et al., Coverity
— Sample security-related results

 Static analysis for Android malware

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, ...

Unsound Program Analyzer

Code

¢

Spec

S

Program

—)

Analyzer

Not sound: may
miss some bugs

analyze large
code bases

1

2
3
4
5

mem leak 24
buffer oflow 4,353,245 4mm f3|se alarm
sql injection 23,212

stack oflow 86,923
dang ptr 8491 ¢ false alarm
may emit

false alarms

Demo

e Coverity video: http://youtu.be/ Vt4niZfNeA
* Observations

— Code analysis integrated into development workflow

— Program context important: analysis involves sequence of
function calls, surrounding statements

— This is a sales video: no discussion of false alarms

Bugs to Detect

Some examples

» Crash Causing Defects Uninitialized variables

* Null pointer dereference » Invalid use of negative values
 Use after free Passing large parameters by value
* Double free » Underallocations of dynamic data
 Array indexing errors * Memory leaks

» Mismatched array new/delete * File handle leaks

* Potential stack overrun * Network resource leaks

 Potential heap overrun » Unused values

* Return pointers to local variables * Unhandled return codes

* Logically inconsistent code » Use of invalid iterators

Slide credit: Andy Chou

Example: Check for missing optional args

* Prototype for open() syscall:
int open(const char * , int oflag, /™ mode_t */.);

* Typical mistake:
fd = open("file", O_CREAT);

* Result: file has random permissions

* Check: Look for oflags == O_CREAT without mode
argument

Example: Chroot protocol checker

* Goal: confine process to a “jail” on the filesystem
— chroot() changes filesystem root for a process

* Problem
— chroot() itself does not change current working directory

chroot() chdir(*/")
O

open("../file",...)

Error if open
before chdir

TOCTOU

 Race condition between time of check and use

* Not applicable to all programs

Qcheck(fooj/\ use("foo) ‘
N

Tainting checkers

Tainted data
accepted from
source

Y
Unvetted
data taints
other data
transitively

Y
Tainted data
f/,/”/is used in an —~———
operator or T
function

¥ v
Example Sinks: system() printf() malloc() strcpyl() Sent to RDBMS Included in HTML

Resultant command format integer/ @ buffer SQL injection cross site
Vulnerability: injection @ string buffer overflow scripting
manip. overflow

Example code with function def, calls

#include <stdlib.h>
#include <stdio.h>

void say hello(char * name, int size) {
printh"Enter your name: ") ;
fgets (name, size, stdin);
printf ("Hello %s.\n", name);

}

int main(int argc, char *argv[]) {

if (argc !'= 2) {
printf ("Error, must provide an input buffer size.\n");
exit(-1);

}

int size = atoi(argv[1l]);

char * name = (char*)malloc(size);

if (name) {
say hello(name, size);
free (name) ;

} else {
printf ("Failed to allocate %d bytes.\n", size);

}

Callgraph

Reverse Topological Sort

3 [main

s | [wn) [wea | (oo | [smyvei]

3 4 . 6 A7

|ldea: analyze function [fgets } [printf

before you analyze caller 5 1

Apply Library Models

3 [main

- Em -

Tool has built-in summaries of
library function behavior

Bottom Up Analysis

3 [main

4 5

Analyze function using known
properties of functions it calls

Bottom Up Analysis

3 [main

A 4

3 4 5 6

Analyze function using known
properties of functions it calls

Bottom Up Analysis

3 4 5

Finish analysis by analyzing all
functions in the program

Finding Local Bugs

##define SIZE 8
void set _a b(char * a, char * b) {
char * buf[SIZE];

if (a) {
b = new char[5];
} else {

if (a && b) {
buf[SIZE] = a;
return;

} else {

delete [] b;

Control Flow Graph
S

char * buf[8];
l Represent logical structure of
code in graph form

if (a)
a la
b = new char [5]; if (a && b)
a&&b l(a && b)
— buf[8] = a; delete [] b;
*b = X’;
*a — *b,

Path Traversal

Conceptually Analyze each path

—1— through control graph separately

har * buf[8]; '
STE - [2UI7[E] Actually Perform some checking

l computation once per node;
if (a) combine paths at merge nodes
a N‘
b = new char [5]; if (a && b)
buf[8] = a; delete [] b;
*b — ‘X’.
*a =*Db;

Apply Checking

Null pointers Use after free Array overrun

- - 0 -

char * buf[8]; See how three checkers are run for this path
if (a)
la Checker
B Defined by a state diagram, with state
e) transitions and error states
l(a && b)
delete [] b; Run Checker
» Assign initial state to each program var
*h = X State at program point depends on
state at previous point, program actions
3 « Emit error if error state reached
*a — * ,

END

Apply Checking

Null pointers Use after free Array overrun

e ——

char * buf[8];
l “buf is 8 bytes”

if (a)

a |

if (a && b)
I(a&&b) |
delete [] b;

Apply Checking

Null pointers Use after free Array overrun

e ———

char * buf[8];
l “buf is 8 bytes”
if (a)
la l “ais null”

if (a && b)
I(a&&b) |
delete [] b;

Apply Checking

Null pointers Use after free Array overrun

char * buf[8];
l “buf is 8 bytes”

if (a)

'a l “a is null”
if (a && b)

(a&&b) | Already knew
delete [] b; a was null

*b — ‘X’;

Apply Checking

Null pointers Use after freeArray overrun

e —————

char * buf[8];
l “buf is 8 bytes”

if (a)

2 l “ais null”
if (@ && b)

I(a&&b) |
delete [] b;

“b is deleted”

Apply Checking

Null pointers Use after free Array overrun

e ———

char * buf[8];
l “buf is 8 bytes”

if (a)

'a l “a is null”
if (a && b)

I(a&&b) |
delete [] b;

“b is deleted”

“b dereferenced!”

Apply Checking

Null pointers Use after free Array overrun

- - 0 -

char * buf[8];

l “buf is 8 bytes”
if (a)
'a l “a is null”
if (a && b)
I(a&&b) |
delete [] b;
“b is deleted”
*b = x
| “b dereferenced!”
*a="b

| No more errors
END reported for b

False Positives

« What is a bug? Something the user will fix.

 Many sources of false positives
— False paths
- |ldioms
— Execution environment assumptions
— Killpaths
— Conditional compilation
— “third party code”
— Analysis imprecision

A False Path
—1——

char * buf[8];

l

if (a)
a la
b = new char [5]; if (a && b)
a&&b l(a && b)
— buf[8] = a; delete [] b;
*b — ‘X!;
*a — *b,

False Path Pruning

Integer Range Disequality Branch

char * buf[8];

|

if (a)

o |

if (@ && b)
a&&b |
buf[8] = a;

END

False Path Pruning

Integer Range Disequality Branch

char * buf[8];
if (a)
la l “ain [0,0]” “a==01s true”
if (a && b)

a&&b |
buf[8] = a;

END

False Path Pruning

Integer Range Disequality Branch

char * buf[8];
if (a)
la l “ain [0,0]” “a==01s true”
if (a && b)

a&b | “3 1= 0”
buf[8] = a;

END

False Path Pruning

Integer Range Disequality Branch

char * buf[8]; .
l Impossible

if (a)
la l “ain [0,0]” “a==01s true”
if (a && b)
a&b | “3 1= 0”
buf[8] = a;

END

Environment Assumptions

* Should the return value of malloc() be checked?

int *p = malloc(sizeof (int));
*p = 42;

OS Kernel: File server: Web application:
Crash machine. || Pause filesystem. || 200ms downtime

Spreadsheet: Game: IP Phone:
Lose unsaved changes. || Annoy user. | | Annoy user.

Library: | | Medical device:
? malloc?!

Statistical Analysis

 Assume the code is usually right

3/4
deref

’

int *p = malloc(sizeof(int));

*p = 42;

int *p = malloc(sizeof (int));

*p = 42;

int *p = malloc(sizeof(int));

*p = 42;

int *p = malloc(sizeof(int));

if(p) *p =42

int *p = malloc(sizeof(int));

if(p) *p = 42;

int *p = malloc(sizeof(int));

if(p) *p = 42;

int *p = malloc(sizeof(int));

if(p) *p = 42;

int *p = malloc(sizeof(int));

*p = 42;

1/4
deref

Example security holes

 Remote exploit, no checks

/* 2.4.9/drivers/isdn/act2000/capi.c:actcapi_dispatch */
isdn ctrl cmd;

while ((skb = skb dequeue (&card->rcvq))) {
msg = skb->data;

memcpy (cmd.parm. setup.phone,
msg->msg.connect ind.addr.num,

msg->msg.connect ind.addr.len - 1);

Example security holes

 Missed lower-bound check:

/* 2.4.5/drivers/char/drm/i810 dma.c */

if (copy from user(&d, arg, sizeof(arg)))
return -EFAULT;
if(d.idx > dma->buf count)
return -EINVAL;
buf = dma->buflist[d.idx];
Copy from user (buf priv->virtual, d.address, d.used);

Summary

Static vs dynamic analyzers

* General properties of static analyzers
— Fundamental limitations
— Basic method based on abstract states

* More details on one specific method
— Property checkers from Engler et al., Coverity
— Sample security-related results

Static analysis for Android malware
— STAMP method, sample studies

Slides from: S. Bugrahe, A. Chou, I&T Dillig, D. Engler, J. Franklin, A. Aiken, ...

