
Program	Analysis	for	Security	

Original	slides	created	by	Prof.	John	Mitchell	

http://www.popphoto.com/news/2015/02/man-finds-easy-hack-to-delete-any-facebook-photo-album

[PopPhoto.com Feb 10]

Facebook missed a
single security check…

App	stores	

			How	can	you	tell	whether		
			so>ware	you	

– Develop		
– Buy	

			is	safe	to	install	and	run?	

Two	opDons	

•  StaDc	analysis	
–  Inspect	code	or	run	automated	method	to	find	
errors	or	gain	confidence	about	their	absence	

•  Dynamic	analysis	
– Run	code,	possibly	under	instrumented	
condiDons,	to	see	if	there	are	likely	problems	

Program	Analyzers	

Code	
Report		 Type	 Line	

1	 mem	leak	 324	

2	 buffer	oflow	 4,353,245	

3	 sql	injecDon	 23,212	

4	 stack	oflow	 86,923	

5	 dang	ptr	 8,491	

…	 …	 …	

10,502	 info	leak	 10,921	

Program	
Analyzer	

Spec	

Entry	

1	

2	 3	

4	

So.ware	

Exit	

Behaviors	

Entry	

1	

2	

4	

Exit	

1	 2	 4	1	 2	 4	

1	 3	 4	

1	 2	 4	 1	 2	 4	

1	 2	 3	 1	 2	 4	 1	 3	 4	

1	 2	 4	 1	 2	 3	 1	 3	 4	

1	 2	 3	 1	 2	 3	 1	 3	 4	

1	 2	 4	 1	 2	 4	 1	 3	 4	

.	.	.	

1	 2	 4	 1	 3	 4	

Manual	tesDng	
only	examines	
small	subset	of	
behaviors	

7

StaDc	vs	Dynamic	Analysis	

•  StaDc	
– Can	consider	all	possible	inputs	
– Find	bugs	and	vulnerabiliDes	
– Can	prove	absence	of	bugs,	in	some	cases	

•  Dynamic	
– Need	to	choose	sample	test	input	
– Can	find	bugs	vulnerabiliDes	
– Cannot	prove	their	absence	

Cost	of	Fixing	a	Defect	

Development QA Release Maintenance

Credit: Andy Chou, Coverity

Cost	of	security	or	data	privacy	
vulnerability?	

Dynamic	analysis	

•  Instrument	code	for	tesDng	
– Heap	memory:	Purify	
– Perl	tainDng			(informaDon	flow)	
–  Java	race	condiDon	checking	

•  Black-box	tesDng	
– Fuzzing	and	penetraDon	tesDng	
– Black-box	web	applicaDon	security	analysis	

11	

StaDc	Analysis	

•  Long	research	history	
•  Decade	of	commercial	products	

– FindBugs,	ForDfy,	Coverity,	MS	tools,	…	

StaDc	Analysis:		Outline	

•  General	discussion	of	staDc	analysis	tools	
– Goals	and	limitaDons	
– Approach	based	on	abstract	states	

•  More	about	one	specific	approach	
– Property	checkers	from	Engler	et	al.,	Coverity	
– Sample	security	checkers	results	

•  StaDc	analysis	for	of	Android	apps	

Slides	from:	S.	Bugrahe,	A.	Chou,	I&T	Dillig,	D.	Engler,	J.	Franklin,	A.	Aiken,	…	

StaDc	analysis	goals	

•  Bug	finding	
–  IdenDfy	code	that	the	programmer	wishes	to	
modify	or	improve	

•  Correctness	
– Verify	the	absence	of	certain	classes	of	errors	

	

Soundness,	Completeness	
Property	 Defini8on	

Soundness	 “Sound	for	reporDng	correctness”	
Analysis	says	no	bugs	→	No	bugs	
or	equivalently	
There	is	a	bug	→	Analysis	finds	a	bug	

Completeness	 “Complete	for	reporDng	correctness”	
No	bugs	→	Analysis	says	no	bugs		

Recall:		A	→ B		is	equivalent	to		(¬B)	→ (¬A)

Complete	 Incomplete	
So
un

d	
U
ns
ou

nd
	

Reports	all	errors	
Reports	no	false	alarms	

Reports	all	errors	
May	report	false	alarms	

Undecidable	 Decidable	

Decidable	

May	not	report	all	errors	
May	report	false	alarms	

Decidable	

May	not	report	all	errors	
Reports	no	false	alarms	

Sound	Program	Analyzer	

Code	
Report		 Type	 Line	

1	 mem	leak	 324	

2	 buffer	oflow	 4,353,245	

3	 sql	injecDon	 23,212	

4	 stack	oflow	 86,923	

5	 dang	ptr	 8,491	

…	 …	 …	

10,502	 info	leak	 10,921	

Program	
Analyzer	

Spec	

Sound:	may		
report	many	
warnings	

May	emit		
false	alarms	

Analyze	large		
code	bases	

false	alarm	

false	alarm	

So.ware	

.	.	.	

Behaviors	

Sound	
Over-approxima8on	of	

Behaviors	

False	
Alarm	

Reported	
Error	

approximaDon	is	too	coarse…	
…yields	too	many	false	alarms	

Modules	

Outline	

•  General	discussion	of	tools	
– Goals	and	limitaDons	
– Approach	based	on	abstract	states	

•  More	about	one	specific	approach	
– Property	checkers	from	Engler	et	al.,	Coverity	
– Sample	security-related	results	

•  StaDc	analysis	for	Android	malware	
– …	

Slides	from:	S.	Bugrahe,	A.	Chou,	I&T	Dillig,	D.	Engler,	J.	Franklin,	A.	Aiken,	…	

entry	

X	ß	0	

Is	Y	=	0	?	

X	ß	X	+	1	 X	ß	X	-	1	

Is	Y	=	0	?	

Is	X	<	0	?	 exit	

crash	

yes	

no	yes	

no	

yes	 no	

Does	this	program	ever	crash?	

entry	

X	ß	0	

Is	Y	=	0	?	

X	ß	X	+	1	 X	ß	X	-	1	

Is	Y	=	0	?	

Is	X	<	0	?	 exit	

crash	

yes	

no	yes	

no	

yes	 no	

infeasible	path!	
…	program	will	never	crash	

Does	this	program	ever	crash?	

entry	

X	ß	0	

Is	Y	=	0	?	

X	ß	X	+	1	 X	ß	X	-	1	

Is	Y	=	0	?	

Is	X	<	0	?	 exit	

crash	

yes	

no	yes	

no	

yes	 no	

X	=	0	

X	=	0	

X	=	1	

X	=	1	

X	=	1	

X	=	1	

X	=	1	

X	=	2	

X	=	2	

X	=	2	

X	=	2	

X	=	2	

X	=	3	

X	=	3	

X	=	3	

X	=	3	

non-termina8on!	
…	therefore,	need	to	approximate	

Try	analyzing	without	approximaDng…	

X	ß	X	+	1	 f	

din	

dout	

dout	=	f(din)	

X	=	0	

X	=	1	

dataflow	elements	

transfer	func8on	
dataflow	equa8on	

X	ß	X	+	1	 f1	

din1	

dout1	=	f1(din1)	

Is	Y	=	0	?	 f2	

dout2	

dout1	

din2	 dout1	=	din2	

dout2	=	f2(din2)	

X	=	0	

X	=	1	

X	=	1	

X	=	1	

dout1	=	f1(din1)	

djoin	=	dout1	⊔ dout2	

dout2	=	f2(din2)	f1	 f2	

f3	

dout1	

din1	 din2	

dout2	
djoin	
din3	

dout3	

djoin	=	din3	
dout3	=	f3(din3)	

least	upper	bound	operator	
Example:	union	of	possible	values	

What	is	the	space	of	dataflow	elements,	Δ?	
What	is	the	least	upper	bound	operator,	⊔?	

entry	

X	ß	0	

Is	Y	=	0	?	

X	ß	X	+	1	 X	ß	X	-	1	

Is	Y	=	0	?	

Is	X	<	0	?	 exit	

crash	

yes	

no	yes	

no	

yes	 no	

X	=	0	

X	=	0	

X	=	pos	
X	=	T		

X	=	neg	

X	=	0	

X	=	T		 X	=	T		

X	=	T		

Try	analyzing	with	“signs”	approximaDon…	

terminates...	
…	but	reports	false	alarm	
…	therefore,	need	more	precision	

lost		
precision	

X	=	T		

X	=	T		

X	=	pos	 X	=	0	 X	=	neg	

X	=	⊥	

X	≠	neg	 X	≠	pos	
true	

Y	=	0	 Y	≠	0	

false	

X	=	T		

X	=	pos	 X	=	0	 X	=	neg	

X	=	⊥	

signs	laUce	 Boolean	formula	laUce	refined	signs	laUce	

entry	

X	ß	0	

Is	Y	=	0	?	

X	ß	X	+	1	 X	ß	X	-	1	

Is	Y	=	0	?	

Is	X	<	0	?	 exit	

crash	

yes	

no	yes	

no	

yes	 no	

X	=	0	true	

X	=	0	Y=0	

X	=	pos	Y=0	 X	=	neg	 Y≠0	

X	=	pos	Y=0	
X	=	neg	Y≠0	

X	=	pos	Y=0	

X	=	pos	 Y=0	

X	=	neg	 Y≠0	

X	=	0	 Y≠0	

Try	analyzing	with	“path-sensiDve	signs”	approximaDon…	

terminates...	
…	no	false	alarm	
…	soundly	proved	never	crashes	

no	precision	loss	

refinement	

Outline	

•  General	discussion	of	tools	
– Goals	and	limitaDons	
– Approach	based	on	abstract	states	

•  More	about	one	specific	approach	
– Property	checkers	from	Engler	et	al.,	Coverity	
– Sample	security-related	results	

•  StaDc	analysis	for	Android	malware	
– …	

Slides	from:	S.	Bugrahe,	A.	Chou,	I&T	Dillig,	D.	Engler,	J.	Franklin,	A.	Aiken,	…	

Unsound	Program	Analyzer	

Code	
Report		 Type	 Line	

1	 mem	leak	 324	

2	 buffer	oflow	 4,353,245	

3	 sql	injecDon	 23,212	

4	 stack	oflow	 86,923	

5	 dang	ptr	 8,491	

…	 …	 …	

Program	
Analyzer	

Spec	

may	emit		
false	alarms	

analyze	large		
code	bases	

false	alarm	

false	alarm	

Not	sound:	may	
miss	some	bugs	

Demo	

•  Coverity	video:	hnp://youtu.be/_Vt4niZfNeA		
•  ObservaDons	

–  Code	analysis	integrated	into	development	workflow	
–  Program	context	important:	analysis	involves	sequence	of	
funcDon	calls,	surrounding	statements	

–  This	is	a	sales	video:	no	discussion	of	false	alarms	

Bugs to Detect

Some examples
•  Crash Causing Defects
•  Null pointer dereference
•  Use after free
•  Double free
•  Array indexing errors
•  Mismatched array new/delete
•  Potential stack overrun
•  Potential heap overrun
•  Return pointers to local variables
•  Logically inconsistent code

•  Uninitialized variables
•  Invalid use of negative values
•  Passing large parameters by value
•  Underallocations of dynamic data
•  Memory leaks
•  File handle leaks
•  Network resource leaks
•  Unused values
•  Unhandled return codes
•  Use of invalid iterators

Slide	credit:	Andy	Chou	

33

Example: Check for missing optional args

•  Prototype for open() syscall:

•  Typical mistake:

•  Result: file has random permissions

•  Check: Look for oflags == O_CREAT without mode
argument

int open(const char *path, int oflag, /* mode_t mode */...);

fd = open(“file”, O_CREAT);

34

Example: Chroot protocol checker

•  Goal: confine process to a “jail” on the filesystem
−  chroot() changes filesystem root for a process

•  Problem
−  chroot() itself does not change current working directory

chroot() chdir(“/”)

open(“../file”,…)

35

Error if open
before chdir

TOCTOU

•  Race condition between time of check and use

•  Not applicable to all programs

check(“foo”) use(“foo”)

36

Tainting checkers

37

Example code with function def, calls

#include <stdlib.h>
#include <stdio.h>

void say_hello(char * name, int size) {
 printf("Enter your name: ");
 fgets(name, size, stdin);
 printf("Hello %s.\n", name);
}

int main(int argc, char *argv[]) {
 if (argc != 2) {
 printf("Error, must provide an input buffer size.\n");
 exit(-1);
 }
 int size = atoi(argv[1]);
 char * name = (char*)malloc(size);
 if (name) {
 say_hello(name, size);
 free(name);
 } else {
 printf("Failed to allocate %d bytes.\n", size);
 }
}

38

atoi

main

exit free malloc

printf fgets

say_hello

Callgraph

39

atoi

main

exit free malloc

printf fgets

say_hello

Reverse Topological Sort

1 2

3 4 5 6 7

8

Idea: analyze function
before you analyze caller

40

atoi

main

exit free malloc

printf fgets

say_hello

Apply Library Models

1 2

3 4 5 6 7

8

Tool has built-in summaries of
library function behavior

41

atoi

main

exit free malloc

printf fgets

say_hello

Bottom Up Analysis

1 2

3 4 5 6 7

8

Analyze function using known
properties of functions it calls

42

atoi

main

exit free malloc

printf fgets

say_hello

Bottom Up Analysis

1 2

3 4 5 6 7

8

Analyze function using known
properties of functions it calls

43

atoi

main

exit free malloc

printf fgets

say_hello

Bottom Up Analysis

1 2

3 4 5 6 7

8

Finish analysis by analyzing all
functions in the program

44

Finding Local Bugs

#define SIZE 8
void set_a_b(char * a, char * b) {
char * buf[SIZE];
if (a) {

b = new char[5];
} else {

if (a && b) {
buf[SIZE] = a;
return;
} else {
delete [] b;
}
*b = ‘x’;

}
*a = *b;
}

45

char * buf[8];

if (a)

b = new char [5]; if (a && b)

buf[8] = a; delete [] b;

*b = ‘x’;

END

*a = *b;

a !a

a && b !(a && b)

Control Flow Graph

Represent logical structure of
code in graph form

46

char * buf[8];

if (a)

b = new char [5]; if (a && b)

buf[8] = a; delete [] b;

*b = ‘x’;

END

*a = *b;

a !a

a && b !(a && b)

Path Traversal

Conceptually: Analyze each path
through control graph separately

Actually Perform some checking
computation once per node;
combine paths at merge nodes

Conceptually

Actually

47

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

See how three checkers are run for this path

• 
• Defined by a state diagram, with state

transitions and error states

Checker

• 
• Assign initial state to each program var
• State at program point depends on

state at previous point, program actions
• Emit error if error state reached

Run Checker

48

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

49

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

50

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

Already knew
a was null

51

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

“b is deleted”

52

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

“b is deleted”

“b dereferenced!”

53

char * buf[8];

if (a)

if (a && b)

delete [] b;

*b = ‘x’;

END

*a = *b;

!a

!(a && b)

Apply Checking

Null pointers Use after free Array overrun

“buf is 8 bytes”

“a is null”

“b is deleted”

“b dereferenced!”

No more errors
reported for b

54

False Positives

•  What is a bug? Something the user will fix.

•  Many sources of false positives
− False paths
−  Idioms
− Execution environment assumptions
− Killpaths
− Conditional compilation
−  “third party code”
− Analysis imprecision
− …

55

char * buf[8];

if (a)

b = new char [5]; if (a && b)

buf[8] = a; delete [] b;

*b = ‘x’;

END

*a = *b;

a !a

a && b !(a && b)

A False Path

56

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning

Integer Range Disequality Branch

57

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning

“a in [0,0]” “a == 0 is true”

Integer Range Disequality Branch

58

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning

“a in [0,0]” “a == 0 is true”

“a != 0”

Integer Range Disequality Branch

59

char * buf[8];

if (a)

if (a && b)

buf[8] = a;

END

!a

a && b

False Path Pruning

“a in [0,0]” “a == 0 is true”

“a != 0”

Impossible

Integer Range Disequality Branch

60

Environment Assumptions

•  Should the return value of malloc() be checked?

int *p = malloc(sizeof(int));
*p = 42;

OS Kernel:
Crash machine.

File server:
Pause filesystem.

Spreadsheet:
Lose unsaved changes.

Game:
Annoy user.

Library:
?

Medical device:
malloc?!

Web application:
200ms downtime

IP Phone:
Annoy user.

61

Statistical Analysis

•  Assume the code is usually right

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

int *p = malloc(sizeof(int));
*p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

int *p = malloc(sizeof(int));
if(p) *p = 42;

3/4
deref

1/4
deref

62

Example security holes

/* 2.4.9/drivers/isdn/act2000/capi.c:actcapi_dispatch */
isdn_ctrl cmd;
...
while ((skb = skb_dequeue(&card->rcvq))) {
 msg = skb->data;
 ...
 memcpy(cmd.parm.setup.phone,
 msg->msg.connect_ind.addr.num,
 msg->msg.connect_ind.addr.len - 1);

•  Remote exploit, no checks

63

Example security holes

/* 2.4.5/drivers/char/drm/i810_dma.c */

if(copy_from_user(&d, arg, sizeof(arg)))
 return –EFAULT;
if(d.idx > dma->buf_count)
 return –EINVAL;
buf = dma->buflist[d.idx];
Copy_from_user(buf_priv->virtual, d.address, d.used);

•  Missed lower-bound check:

64

Summary	

•  StaDc	vs	dynamic	analyzers	
•  General	properDes	of	staDc	analyzers	

–  Fundamental	limitaDons	
–  Basic	method	based	on	abstract	states	

•  More	details	on	one	specific	method	
–  Property	checkers	from	Engler	et	al.,	Coverity	
–  Sample	security-related	results	

•  StaDc	analysis	for	Android	malware	
–  STAMP	method,	sample	studies	

Slides	from:	S.	Bugrahe,	A.	Chou,	I&T	Dillig,	D.	Engler,	J.	Franklin,	A.	Aiken,	…	

