Mobile Platform
Security Models

*QOriginal slides by Prof. John Mitchell

Outline

N

L/

Introduction: platforms and attacks
@ Apple iOS security model

4 Android security model

4 Windows 7, 8 Mobile security model

Announcement: See web site for second homework, third project

Change takes time

iPhone, 2007

Apple Newton, 1987

Palm Pilot, 1997

Global smartphone market share

100%
90%
80%
70%
60%
50%
40%

30%

v
-~
c
@
£
'9
r
(7
=
c
2
©
2
o
O
k)
e
&

20%

10%

0%
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3
2009 2009 2010 2010 2010 2010 2011 2011 2011 2011 2012 2012 2012 2012 2013 2013 2013

Source: IDC, Strateqgy Analytics

Zillions of apps

N

Two attack vectors

N

@ Web browser

Installed apps

Both increasing in prevalence and sophistication

Mobile malware attacks

N

Unique to phones:
= Premium SMS messages
= Identify location
= Record phone calls
= Log SMS

Similar to desktop/PCs:

= Connects to botmasters
= Steal data

= Phishing

= Malvertising

Kaspersky: Aug 2013 — Mar 2014

N

@ 3,408,112 malware detections 1,023,202 users.

@ 69,000 attacks in Aug 2013 -> 644,000 in Mar 2014
@ 35,000 users -> 242,000 users

@ 59.06% related to stealing users” money

@ Russia, India, Kazakhstan, Vietham, Ukraine and
Germany have largest numbers of reported attacks

@ Trojans sending SMS were 57.08% of all detections

Typical scenario

N

L/

@ Cybercriminals create an affiliate website and invite
Internet users to become their accomplices

@ A unique modification of the malware and a landing
page for download is created for each accomplice

@ Participants of the affiliate program trick Android
users into installing malicious application

@ Infected device sends SMS messages to premium
numbers, making money for the cybercriminals

@ Part of money is paid to the affiliate partners

http://media.kaspersky.com/pdf/Kaspersky-Lab-KSN-Report-mobile-cyberthreats-web. pdf

10

Mobile malware examples

N

L/
@ DroidDream (Android)
= Over 58 apps uploaded to Google app market
= Conducts data theft; send credentials to attacker g

& End Call

@ Ikee (i0S)
= Worm capabilities (targeted default ssh pwd)
= Worked only on jailbroken phones with ssh installed

@ Zitmo (Symbian,BlackBerry, Windows,Android)
= Propagates via SMS; claims to install a “security certificate”
= Captures info from SMS; aimed at defeating 2-factor auth
= Works with Zeus botnet; timed with user PC infection

11

Comparison between platforms

j& Operating system (recall security features from lecture 5)
s Unix

x Windows

Approval process for applications

= Market: Vendor controlled/Open

= App signing: Vendor-issued/self-signed

= User approval of permission

4 Programming language for applications

= Managed execution: Java, .Net

= Native execution: Objective C

12

Outline

N

L/

Introduction: platforms and attacks
@ Apple iOS security model

4 Android security model

@ Windows 7 Mobile security model

13

Apple i0S

From: iOS App Programming Guide

14

iIOS Application Development

Event source

Event
PortJ | queue

Main run loop
Operating
system

Application object

Core objects

@ Apps developed in Objective-C using Apple SDK
@ Event-handling model based on touch events

Foundation and UIKit frameworks provide the key services used by

all iOS applications

I0S Platform

L/

Cocoa Touch

N

Media

Core Services

AVEEANES

Core OS

\

Cocoa Touch: Foundation framework, OO support for
collections, file management, network operations; UIKit

@ Media layer: supports 2D and 3D drawing, audio, video

@ Core OS and Core Services: APIs for files, network, ...
includes SQLite, POSIX threads, UNIX sockets

@ Kernel: based on Mach kernel like Mac OS X

Implemented in C and Objective-C

15

16

Apple i0OS Security

N

L/

@ Device security
s Prevent unauthorized use of device

Data security

= Protect data at rest; device may be
lost or stolen

@ Network security

= Networking protocols and encryption
of data in transmission

@ App security

= Secure platform foundation

https://www.apple.com/business/docs/iOS_Security_Guide.pdf

Software

Hardware and
Firmware

Data Protection Class

App Sandbox

User Partition

0OS Partition

Encrypted File System

v

Kernel

Secure Secure
Enclave Element
A 4
Crypto Engine
\ 4
Device Key

Group Key
Apple Root Certificate

17

App Security

\V

Runtime protection

= System resources, kernel shielded from user apps

= App “sandbox” prevents access to other app’s data

= Inter-app communication only through iOS APIs

= Code generation prevented

4 Mandatory code signing

= All apps must be signed using Apple-issued certificate

@ Application data protection
= Apps can leverage built-in hardware encryption

I0S Sandbox

N

App Sandbox

—>\\/§C MyApp.app

—> Documents

———

— Library

—> tmp

[—————]

App Sandbox

~ App

S A

Limit app’s access to files,
preferences, network, other
resources

Each app has own sandbox directory

Limits consequences of attacks
Same privileges for each app

—— — — -

App Sandbox

18

19

File encryption
& AN

File System Key

Hardware Key

File Metadata

File Contents
File Key

Class Key

Passcode Key

@ The content of a file is encrypted with a per-file key, which is
wrapped with a class key and stored in a file’'s metadata, which
is in turn encrypted with the file system key.

= When a file is opened, its metadata is decrypted with the file system key,
revealing the wrapped per-file key and a notation on which class protects it

= The per-file key is unwrapped with the class key, then supplied to the
hardware AES engine, decrypting the file as it is read from flash memory

#® The metadata of all files is encrypted with a random key. Since
it's stored on the device, used only for quick erased on demand.

“"Masque Attack”

@ i0S app installed using enterprise/ad-
hoc provisioning could replace genuine
app installed through the App Store, if
both apps have same bundle identifier

@ This vulnerability existed because iOS
didn't enforce matching certificates for
apps with the same bundle identifier

20

Untrusted App Developer
Do you trust the developer “John Q
Developer (ABC1D23456)” to run apps

on your iPhone?

Don't Trust

21

Comparison

N

L

Unix

Windows
Open market
Closed market

Vendor signed

Self-signed

User approval of permissions
Managed code

Native code

22

Outline

N

L/

Introduction: platforms and attacks
@ Apple iOS security model

4 Android security model

4 Windows 7, 8 Mobile security model

23

Android

N

@ Platform outline:
= Linux kernel, browser, SQL-lite database

= Software for secure network communication
* Open SSL, Bouncy Castle crypto API and Java library

= C language infrastructure
= Java platform for running applications
= Also: video stuff, Bluetooth, vibrate phone, etc.

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Activity Manager mgg::: f,g?i?:é s;/:f;vm
Package Manager Tﬂ:ﬁ:&? ':‘?:r?:gr:re 'ﬁﬁ;ﬁ? Nﬁtaif:::glgt? -
LIBRARIES ANDROID RUNTIME
Surface Manager Franeeev‘% < SQLite ' Core Libraries
OpenGL | ES FreeType WebKit Machine
SGL SSL libc
LINUX KERNEL
e Comer e o ——
Keypad Driver WiFi Driver lg‘r}i’\(rt?s M am’:‘,’,fem

Android market

N

@ Self-signed apps
@ App permissions granted on user installation

4 Open market

= Bad applications may show up on market

= Shifts focus from remote exploit to privilege
escalation

25

26

Security Features

N

L/
@ [solation
= Multi-user Linux operating system
= Each application normally runs as a different user

4 Communication between applications

= May share same Linux user ID
» Access files from each other
+ May share same Linux process and Dalvik VM

s Communicate through application framework
+ “Intents,” based on Binder, discussed in a few slides

Battery life

s Developers must conserve power

= Applications store state so they can be stopped (to
save power) and restarted — helps with DoS

Application development process

i

Application
Reources

aapt

\J

Compiled
Resources

27

: Application Java
Rjava Source Code Interfaces
Java
Compiler
\J
.class Files

.dex files

.aidl Files

3rd Party

Libraries

and .class
Files

v

v

Android Package
(-apk)

Jarsigner

Debug or
Release
Keystore

Signed .apk

Other Resources

Zipalign
(release
mode)

\4

Signed and
Aligned .apk

28

Application development concepts

N

L/
@ Activity — one-user task
= Example: scroll through your inbox
= Email client comprises many activities

@ Service — Java daemon that runs in background
s Example: application that streams an mp3 in background

@ Intents — asynchronous messaging system
= Fire an intent to switch from one activity to another

s Example: email app has inbox, compose activity, viewer
activity
+ User click on inbox entry fires an intent to the viewer activity,
which then allows user to view that email

@ Content provider
= Store and share data using a relational database interface

@ Broadcast receiver
= "mailboxes” for messages from other applications

29

Exploit prevention

N

100 libraries + 500 million lines new code
= Open source -> public review, no obscurity

@ Goals

= Prevent remote attacks, privilege escalation
= Secure drivers, media codecs, new and custom features

@ Overflow prevention

= ProPolice stack protection
+ First on the ARM architecture
= Some heap overflow protections
+ Chunk consolidation in DL malloc (from OpenBSD)

@ ASLR

= Avoided in initial release
+ Many pre-linked images for performance

= Later developed and contributed by Bojinov, Boneh

30

Application sandbox

N

@ Application sandbox

= Each application runs with its UID in its own Dalvik
virtual machine
+ Provides CPU protection, memory protection

+ Authenticated communication protection using Unix
domain sockets

* Only ping, zygote (spawn another process) run as root

= Applications announces permission requirement

» Create a whitelist model — user grants access

= But don’t want to ask user often — all questions asked as
install time

+ Inter-component communication reference monitor
checks permissions

Android middleware

‘@ Layers of securlw |
= Each appllcatlon executes as its own user |dent|ty

= Android middleware has reference monltor that
mediates the establlshment of inter- component
communlcatlon (ICC) |

31 | | ~ Source: Penn Statezgroup Android securitylpaper

MAC Policy Enforcementin Android. This is how applications access
components of other applications via the reference monitor. Component A
can access components B and C if permission labels of application 1 are equal
or dominate labels of application 2.

32 | | Source: Penn State group, Android security tutorial

dlmalloc (Doug Lea)

L/

@ Stores meta data in band

Heap consolidation attack

= Heap overflow can overwrite pointers to previous
and next unconsolidated chunks

= Overwriting these pointers allows remote code
execution
Change to improve security

s Check integrity of forward and backward pointers
+ Simply check that back-forward-back = back, f-b-f=f

= Increases the difficulty of heap overflow

N

33

Java Sandbox

L/

N

@ Four complementary mechanisms

» Class loader
+ Separate namespaces for separate class loaders
+ Associates protection domain with each class

= Verifier and JVM run-time tests

+ NO unchecked casts or other type errors, NO array
overflow

+ Preserves private, protected visibility levels
= Security Manager

» Called by library functions to decide if request is allowed
» Uses protection domain associated with code, user policy

34

35

Comparison: iOS vs Android

N

@ App approval process
= Android apps from open app store
= {OS vendor-controlled store of vetted apps
@ Application permissions
= Android permission based on install-time manifest
= All iOS apps have same set of “sandbox” privileges
@ App programming language
= Android apps written in Java; no buffer overflow...
= iOS apps written in Objective-C

36

Comparison

N

L

Unix

Windows
Open market
Closed market

Vendor signed

Self-signed

User approval of permissions
Managed code

Native code

37

Outline

N

L/

Introduction: platforms and attacks
@ Apple iOS security model

4 Android security model

4 Windows Phone 7, 8 security model

38

Windows Phone 7, 8 security

N

L/

@ Secure boot

All binaries are signed

Device encryption

@ Security model with isolation, capabilities

39

Windows Phone OS 7.0 security model

@ Principles of isolation and least privilege

#® Each chamber

= Provides a security and isolation boundary
= [s defined and implemented using a policy system

@ The security policy of a chamber

= Specifies the OS capabilities that processes in that
chamber can access

N

40

Windows Phone 7 security model

@ Policy system
= Central repository of rules
= 3-tuple {Principal, Right, Resource

Fixed
Permissions 4 Chamber Model
Chamber = Chamber boundary is security
Types boundary

= Chambers defined using policy rules

= 4 chamber types, 3 fixed size, one can
be expanded with capabilities (LPC)

@ Capabilities
= Expressed in application manifest

Pg'ng?(;?‘] s = Disclosed on Marketplace
(LPC) = Defines app’s security boundary on

phone

Windows Phone 8 security model

Similar to WP7

Trusted
il \\/P8 chambers are
built on the Windows
security infrastructure

Services and Application all in chambers

Least Privil
Cﬁ:ﬁ]be?‘(ﬁg& WHP8 has a richer capabilities list

Dynamic
Permissions
(LPC)

TechEd E7 Windows Phone

Isolation

N

@ Every application runs in own isolated chamber
= All apps have basic permissions, incl a storage file

= Cannot access memory or data of other applications,
including the keyboard cache.

#® No communication channels between
applications, except through the cloud

Non-MS applications distributed via marketplace
stopped in background
= When user switches apps, previous app is shut down

= Reason: application cannot use critical resources or
communicate with Internet—based services while the
user is not using the application

42

43

Four chamber types

N

L/

@ Three types have fixed permission sets

@ Fourth chamber type is capabilities-driven

= Applications that are designated to run in the
fourth chamber type have capability requirements
that are honored at installation and at run-time

Overview of four chambers

N

Trusted Computing Base (TCB) chamber
= unrestricted access to most resources
= can modify policy and enforce the security model.
= kernel and kernel-mode drivers run in the TCB

= Minimizing the amount of software that runs in the
TCB is essential for minimizing the Windows
Phone 7, 8 attack surface

44

45

Overview of four chambers

N

Elevated Rights Chamber (ERC)
= Can access all resources except security policy

s Intended for services and user-mode drivers

Standard Rights Chamber (SRC)

= Default for pre-installed applications that do not
provide device-wide services

= Outlook Mobile is an example that runs in the SRC

@ Least Privileged Chamber (LPC)

= Default chamber for all non-Microsoft applications
= |LPCs configured using capabilities (see next slide)

Granting privileges to applications

A

Goal: Least Privilege

= Application gets capabilities needed to perform all its use
cases, but no more

Developers
= Use the capability detection tool to create the capability list
= The capability list is included in the application manifest

@ Each application discloses its capabilities to the user,
= Listed on Windows Phone Marketplace.
= Explicit prompt upon application purchase

s Disclosure within the application, when the user is about to
use the location capability for the first time.

46

Windows Phone 7 “Capabilities”

N

#® W7/ Capability: a resource associated with
user privacy, security, cost, or business
concerns

@ Examples: geographical location information,
camera, microphone, networking, and
SEensors.

47

48

Managed code

N

L/

@ Application development model uses of
managed code only

49

.NET Code Access Security

N

L/
@ Default Security Policy is part of the .NET Framework
= Default permission for code access to protected resources

@ Permissions can limit access to system resources.

n Use EnvironmentPermission class for environment variables
access permission.

= The constructor defines the level of permission (read, write,
...)
@ Deny and Revert

= The Deny method of the permission class denies access to
the associated resource

= The RevertDeny method will cause the effects of any
previous Deny to be cancelled

50

Example: code requires permission

N

L/
class NativeMethods

{
// This is a call to unmanaged code. Executing this method
// requires the UnmanagedCode security permission. Without
// this permission, an attempt to call this method will throw a
// SecurityException:
[DlIImport("msvcert.dll")]
public static extern int puts(string str);
[DllImport("msvcrt.dll™)]
internal static extern int _flushall();

51

Example: Code denies permission not needed

p
T [SecurityPermission(SecurityActi Flags =
SecurityPermissionFlag.UnmanagedCode)]
private static void MethodToDoSomething()

{ try
{
Console.WriteLine(™ ... ");
SomeOtherClass.method();
}

catch (SecurityException)

{

¥
¥

52

.NET Stackwalk

4 Demand must be satisfied by all callers
= Ensures all code in causal chain is authorized
= Cannot exploit other code with more privilege

calls
Code B

k @ Demand P

calls

53

Stackwalk: Assert

N

L/

@ The Assert method can be used to limit the
scope of the stack walk
= Processing overhead decreased
= May inadvertently result in weakened security

54

Comparison between platforms

j‘@ Operating system

s Unix

x Windows

Approval process for applications

= Market: Vendor controlled/Open

= App signing: Vendor-issued/self-signed

= User approval of permissions

4 Programming language for applications
= Managed execution: Java, .Net

= Native execution: Objective C

55

Comparison

N

L

Unix

Windows
Open market
Closed market

Vendor signed

Self-signed

User approval of permissions
Managed code

Native code

/-> 8

56

Conclusion

N

L/

Introduction: platforms and attacks
@ Apple iOS security model

4 Android security model

4 Windows 7, 8 Mobile security model

Announcement: See web site for second homework, third project

