
Mobile Platform
Security Models

*Original slides by Prof. John Mitchell

2

Outline

Introduction: platforms and attacks
Apple iOS security model
Android security model
Windows 7, 8 Mobile security model

Announcement: See web site for second homework, third project

3

Change takes time

Apple Newton, 1987

Palm Pilot, 1997

iPhone, 2007

4

Global smartphone market share

5

Zillions of apps

6

Two attack vectors

Web browser

Installed apps

Both increasing in prevalence and sophistication

source: https://www.mylookout.com/mobile-threat-report

7

Mobile malware attacks

Unique to phones:
n  Premium SMS messages
n  Identify location
n  Record phone calls
n  Log SMS

Similar to desktop/PCs:
n  Connects to botmasters
n  Steal data
n  Phishing
n  Malvertising

8

Kaspersky: Aug 2013 – Mar 2014

3,408,112 malware detections 1,023,202 users.
69,000 attacks in Aug 2013 -> 644,000 in Mar 2014
35,000 users -> 242,000 users
59.06% related to stealing users’ money
Russia, India, Kazakhstan, Vietnam, Ukraine and
Germany have largest numbers of reported attacks
Trojans sending SMS were 57.08% of all detections

9

Typical scenario

Cybercriminals create an affiliate website and invite
Internet users to become their accomplices
A unique modification of the malware and a landing
page for download is created for each accomplice
Participants of the affiliate program trick Android
users into installing malicious application
Infected device sends SMS messages to premium
numbers, making money for the cybercriminals
Part of money is paid to the affiliate partners

http://media.kaspersky.com/pdf/Kaspersky-Lab-KSN-Report-mobile-cyberthreats-web.pdf

10

Mobile malware examples

DroidDream (Android)
n  Over 58 apps uploaded to Google app market
n  Conducts data theft; send credentials to attackers

Ikee (iOS)
n  Worm capabilities (targeted default ssh pwd)
n  Worked only on jailbroken phones with ssh installed

Zitmo (Symbian,BlackBerry,Windows,Android)
n  Propagates via SMS; claims to install a “security certificate”
n  Captures info from SMS; aimed at defeating 2-factor auth
n  Works with Zeus botnet; timed with user PC infection

11

Comparison between platforms

Operating system (recall security features from lecture 5)
n  Unix
n  Windows

Approval process for applications
n  Market: Vendor controlled/Open
n  App signing: Vendor-issued/self-signed
n  User approval of permission

Programming language for applications
n  Managed execution: Java, .Net
n  Native execution: Objective C

12

Outline

Introduction: platforms and attacks
Apple iOS security model
Android security model
Windows 7 Mobile security model

13

Apple iOS

From: iOS App Programming Guide

14

iOS Application Development

Apps developed in Objective-C using Apple SDK
Event-handling model based on touch events
Foundation and UIKit frameworks provide the key services used by
all iOS applications

15

iOS Platform

Cocoa Touch: Foundation framework, OO support for
collections, file management, network operations; UIKit
Media layer: supports 2D and 3D drawing, audio, video
Core OS and Core Services: APIs for files, network, …
includes SQLite, POSIX threads, UNIX sockets
Kernel: based on Mach kernel like Mac OS X

 Implemented in C and Objective-C

16

Apple iOS Security

Device security
n  Prevent unauthorized use of device

Data security
n  Protect data at rest; device may be

lost or stolen

Network security
n  Networking protocols and encryption

of data in transmission

App security
n  Secure platform foundation

https://www.apple.com/business/docs/iOS_Security_Guide.pdf

17

App Security

Runtime protection
n  System resources, kernel shielded from user apps
n  App “sandbox” prevents access to other app’s data
n  Inter-app communication only through iOS APIs
n  Code generation prevented

Mandatory code signing
n  All apps must be signed using Apple-issued certificate

Application data protection
n  Apps can leverage built-in hardware encryption

18

Limit app’s access to files,
preferences, network, other
resources
Each app has own sandbox directory
Limits consequences of attacks
Same privileges for each app

iOS Sandbox

19

File encryption

The content of a file is encrypted with a per-file key, which is
wrapped with a class key and stored in a file’s metadata, which
is in turn encrypted with the file system key.
n  When a file is opened, its metadata is decrypted with the file system key,

revealing the wrapped per-file key and a notation on which class protects it
n  The per-file key is unwrapped with the class key, then supplied to the

hardware AES engine, decrypting the file as it is read from flash memory

The metadata of all files is encrypted with a random key. Since
it’s stored on the device, used only for quick erased on demand.

20

“Masque Attack”

iOS app installed using enterprise/ad-
hoc provisioning could replace genuine
app installed through the App Store, if
both apps have same bundle identifier
This vulnerability existed because iOS
didn't enforce matching certificates for
apps with the same bundle identifier

21

Comparison

iOS Android Windows

Unix x

Windows

Open market

Closed market x

Vendor signed x

Self-signed

User approval of permissions

Managed code

Native code x

22

Outline

Introduction: platforms and attacks
Apple iOS security model
Android security model
Windows 7, 8 Mobile security model

23

Android

Platform outline:
n  Linux kernel, browser, SQL-lite database
n  Software for secure network communication

w  Open SSL, Bouncy Castle crypto API and Java library

n  C language infrastructure
n  Java platform for running applications
n  Also: video stuff, Bluetooth, vibrate phone, etc.

24

25

Android market

Self-signed apps
App permissions granted on user installation
Open market
n  Bad applications may show up on market
n  Shifts focus from remote exploit to privilege

escalation

26

Security Features

Isolation
n  Multi-user Linux operating system
n  Each application normally runs as a different user

Communication between applications
n  May share same Linux user ID

w  Access files from each other
w  May share same Linux process and Dalvik VM

n  Communicate through application framework
w  “Intents,” based on Binder, discussed in a few slides

Battery life
n  Developers must conserve power
n  Applications store state so they can be stopped (to

save power) and restarted – helps with DoS

27

Application development process

28

Application development concepts

Activity – one-user task
n  Example: scroll through your inbox
n  Email client comprises many activities

Service – Java daemon that runs in background
n  Example: application that streams an mp3 in background

Intents – asynchronous messaging system
n  Fire an intent to switch from one activity to another
n  Example: email app has inbox, compose activity, viewer

activity
w  User click on inbox entry fires an intent to the viewer activity,

which then allows user to view that email

Content provider
n  Store and share data using a relational database interface

Broadcast receiver
n  “mailboxes” for messages from other applications

29

Exploit prevention

100 libraries + 500 million lines new code
n  Open source -> public review, no obscurity

Goals
n  Prevent remote attacks, privilege escalation
n  Secure drivers, media codecs, new and custom features

Overflow prevention
n  ProPolice stack protection

w  First on the ARM architecture
n  Some heap overflow protections

w  Chunk consolidation in DL malloc (from OpenBSD)
ASLR
n  Avoided in initial release

w  Many pre-linked images for performance
n  Later developed and contributed by Bojinov, Boneh

30

Application sandbox

Application sandbox
n  Each application runs with its UID in its own Dalvik

virtual machine
w  Provides CPU protection, memory protection
w  Authenticated communication protection using Unix

domain sockets
w  Only ping, zygote (spawn another process) run as root

n  Applications announces permission requirement
w  Create a whitelist model – user grants access

n  But don’t want to ask user often – all questions asked as
install time

w  Inter-component communication reference monitor
checks permissions

31

Layers of security
n  Each application executes as its own user identity
n  Android middleware has reference monitor that

mediates the establishment of inter-component
communication (ICC)

Source: Penn State group Android security paper

32 Source: Penn State group, Android security tutorial

33

dlmalloc (Doug Lea)

Stores meta data in band
Heap consolidation attack
n  Heap overflow can overwrite pointers to previous

and next unconsolidated chunks
n  Overwriting these pointers allows remote code

execution

Change to improve security
n  Check integrity of forward and backward pointers

w  Simply check that back-forward-back = back, f-b-f=f

n  Increases the difficulty of heap overflow

34

Java Sandbox

Four complementary mechanisms
n  Class loader

w  Separate namespaces for separate class loaders
w  Associates protection domain with each class

n  Verifier and JVM run-time tests
w  NO unchecked casts or other type errors, NO array

overflow
w  Preserves private, protected visibility levels

n  Security Manager
w  Called by library functions to decide if request is allowed
w  Uses protection domain associated with code, user policy

35

Comparison: iOS vs Android

App approval process
n  Android apps from open app store
n  iOS vendor-controlled store of vetted apps

Application permissions
n  Android permission based on install-time manifest
n  All iOS apps have same set of “sandbox” privileges

App programming language
n  Android apps written in Java; no buffer overflow…
n  iOS apps written in Objective-C

36

Comparison

iOS Android Windows

Unix x x

Windows

Open market x

Closed market x

Vendor signed x

Self-signed x

User approval of permissions x

Managed code x

Native code x

37

Outline

Introduction: platforms and attacks
Apple iOS security model
Android security model
Windows Phone 7, 8 security model

38

Windows Phone 7, 8 security

Secure boot
All binaries are signed
Device encryption
Security model with isolation, capabilities

39

 Windows Phone OS 7.0 security model

Principles of isolation and least privilege
Each chamber
n  Provides a security and isolation boundary
n  Is defined and implemented using a policy system

The security policy of a chamber
n  Specifies the OS capabilities that processes in that

chamber can access

40

Windows Phone 7 security model

Policy system
n  Central repository of rules
n  3-tuple {Principal, Right, Resource

Chamber Model
n  Chamber boundary is security

boundary
n  Chambers defined using policy rules
n  4 chamber types, 3 fixed size, one can

be expanded with capabilities (LPC)
Capabilities
n  Expressed in application manifest
n  Disclosed on Marketplace
n  Defines app’s security boundary on

phone

Least Privilege
Chamber (LPC)

Trusted
Computing
Base (TCB)

Elevated
Rights

Standard
Rights

Windows Phone 8 security model

Least Privilege
Chamber (LPC)

Trusted
Computing
Base (TCB)

Services and Application all in chambers
WP8 has a richer capabilities list

42

Isolation

Every application runs in own isolated chamber
n  All apps have basic permissions, incl a storage file
n  Cannot access memory or data of other applications,

including the keyboard cache.
No communication channels between
applications, except through the cloud
Non-MS applications distributed via marketplace
stopped in background
n  When user switches apps, previous app is shut down
n  Reason: application cannot use critical resources or

communicate with Internet–based services while the
user is not using the application

43

Four chamber types

Three types have fixed permission sets
Fourth chamber type is capabilities-driven
n  Applications that are designated to run in the

fourth chamber type have capability requirements
that are honored at installation and at run-time

44

Overview of four chambers

Trusted Computing Base (TCB) chamber
n  unrestricted access to most resources
n  can modify policy and enforce the security model.
n  kernel and kernel-mode drivers run in the TCB
n  Minimizing the amount of software that runs in the

TCB is essential for minimizing the Windows
Phone 7, 8 attack surface

45

Overview of four chambers

Elevated Rights Chamber (ERC)
n  Can access all resources except security policy
n  Intended for services and user-mode drivers

Standard Rights Chamber (SRC)
n  Default for pre-installed applications that do not

provide device-wide services
n  Outlook Mobile is an example that runs in the SRC

Least Privileged Chamber (LPC)
n  Default chamber for all non-Microsoft applications
n  LPCs configured using capabilities (see next slide)

46

Granting privileges to applications

Goal: Least Privilege
n  Application gets capabilities needed to perform all its use

cases, but no more

Developers
n  Use the capability detection tool to create the capability list
n  The capability list is included in the application manifest

Each application discloses its capabilities to the user,
n  Listed on Windows Phone Marketplace.
n  Explicit prompt upon application purchase
n  Disclosure within the application, when the user is about to

use the location capability for the first time.

47

Windows Phone 7 “Capabilities”

W7 Capability: a resource associated with
user privacy, security, cost, or business
concerns
Examples: geographical location information,
camera, microphone, networking, and
sensors.

48

Managed code

Application development model uses of
managed code only

49

.NET Code Access Security

Default Security Policy is part of the .NET Framework
n  Default permission for code access to protected resources

Permissions can limit access to system resources.
n  Use EnvironmentPermission class for environment variables

access permission.
n  The constructor defines the level of permission (read, write,

…)

Deny and Revert
n  The Deny method of the permission class denies access to

the associated resource
n  The RevertDeny method will cause the effects of any

previous Deny to be cancelled

50

Example: code requires permission

class NativeMethods
{
 // This is a call to unmanaged code. Executing this method
 // requires the UnmanagedCode security permission. Without
 // this permission, an attempt to call this method will throw a
 // SecurityException:
 [DllImport("msvcrt.dll")]
 public static extern int puts(string str);
 [DllImport("msvcrt.dll")]
 internal static extern int _flushall();
}

51

Example: Code denies permission not needed

 [SecurityPermission(SecurityAction.Deny, Flags =
 SecurityPermissionFlag.UnmanagedCode)]
 private static void MethodToDoSomething()
 { try
 {
 Console.WriteLine(“ … ");
 SomeOtherClass.method();
 }
 catch (SecurityException)
 {
 …
 }
 }

52

calls

.NET Stackwalk

Demand must be satisfied by all callers
n  Ensures all code in causal chain is authorized
n  Cannot exploit other code with more privilege

Code B

Code C Demand P

B has P?

A has P?

calls

Code A

53

Stackwalk: Assert

The Assert method can be used to limit the
scope of the stack walk
n  Processing overhead decreased
n  May inadvertently result in weakened security

54

Comparison between platforms

Operating system
n  Unix
n  Windows

Approval process for applications
n  Market: Vendor controlled/Open
n  App signing: Vendor-issued/self-signed
n  User approval of permissions

Programming language for applications
n  Managed execution: Java, .Net
n  Native execution: Objective C

55

Comparison

iOS Android Windows

Unix x x

Windows x

Open market x

Closed market x x

Vendor signed x

Self-signed x x

User approval of permissions x 7-> 8

Managed code x x

Native code x

56

Conclusion

Introduction: platforms and attacks
Apple iOS security model
Android security model
Windows 7, 8 Mobile security model

Announcement: See web site for second homework, third project

