
Dan	Boneh	

Isola,on	

The	confinement	
principle	

Original	slides	were	created	by	Prof.	Dan	Boneh	

Dan	Boneh	

Running untrusted code
We often need to run buggy/unstrusted code:

–  programs from untrusted Internet sites:
•  apps, extensions, plug-ins, codecs for media player

–  exposed applications: pdf viewers, outlook

–  legacy daemons: sendmail, bind

–  honeypots

Goal: if application “misbehaves” ⇒ kill it

Dan	Boneh	

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

–  Hardware: run application on isolated hw (air gap)

 ⇒ difficult to manage

air	gap	 network	1	Network	2	

app	1	 app	2	

Dan	Boneh	

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
–  Virtual machines: isolate OS’s on a single machine

Virtual	Machine	Monitor		(VMM)	

OS1	
	

OS2	
	

app1	 app2	

What	are	some	of	the	drawbacks	of	this	approach?	

Dan	Boneh	

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
–  Process: System Call Interposition

 Isolate a process in a single operating system

Opera,ng	System	

process	2	

process	1	

Dan	Boneh	

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

–  Threads: Software Fault Isolation (SFI)
•  Isolating threads sharing same address space

–  Application: e.g. browser-based confinement

Dan	Boneh	

Implementing confinement
Key component: reference monitor
–  Mediates requests from applications

•  Implements protection policy
•  Enforces isolation and confinement

–  Must always be invoked:
•  Every application request must be mediated

–  Tamperproof:
•  Reference monitor cannot be killed
•  … or if killed, then monitored process is killed too

–  Small enough to be analyzed and validated

Dan	Boneh	

A old example: chroot
Often used for “guest” accounts on ftp sites

To use do: (must be root)

 chroot /tmp/guest root dir “/” is now “/tmp/guest”
 su guest EUID set to “guest”

Now “/tmp/guest” is added to file system accesses for applications in jail
 open(“/etc/passwd”, “r”) ⇒

 open(“/tmp/guest/etc/passwd” , “r”)

⇒  application cannot access files outside of jail

Dan	Boneh	

Jailkit
Problem: all utility progs (ls, ps, vi) must live inside jail

•  jailkit project: auto builds files, libs, and dirs needed in jail env

•  jk_init: creates jail environment
•  jk_check: checks jail env for security problems

•  checks for any modified programs,
•  checks for world writable directories, etc.

•  jk_lsh: restricted shell to be used inside jail

•  note: simple chroot jail does not limit network access

Dan	Boneh	

Escaping from jails
Early escapes: relative paths

 open(“../../etc/passwd”, “r”) ⇒
 open(“/tmp/guest/../../etc/passwd”, “r”)

chroot should only be executable by root.
–  otherwise jailed app can do:
•  create dummy file “/aaa/etc/passwd”
•  run chroot “/aaa”
•  run su root to become root

(bug in Ultrix 4.0)

Dan	Boneh	

Many ways to escape jail as root

•  Create device that lets you access raw disk

•  Send signals to non chrooted process

•  Reboot system

•  Bind to privileged ports

Dan	Boneh	

Freebsd jail
Stronger mechanism than simple chroot

To run: jail jail-path hostname IP-addr cmd

–  calls hardened chroot (no “../../” escape)

–  can only bind to sockets with specified IP address
and authorized ports

–  can only communicate with processes inside jail

–  root is limited, e.g. cannot load kernel modules

Dan	Boneh	

Not	all	programs	can	run	in	a	jail	
Programs	that	can	run	in	jail:							
•  audio	player	
•  web	server	
	
Programs	that	cannot:					
•  web	browser	
•  mail	client	

Dan	Boneh	

Problems with chroot and jail
Coarse policies:
–  All or nothing access to parts of file system
–  Inappropriate for apps like a web browser

•  Needs read access to files outside jail
 (e.g. for sending attachments in Gmail)

Does not prevent malicious apps from:
–  Accessing network and messing with other machines
–  Trying to crash host OS

Dan	Boneh	

Isola,on	

System	Call	
Interposi,on	

Dan	Boneh	

System call interposition
Observation: to damage host system (e.g. persistent changes)
app must make system calls:

–  To delete/overwrite files: unlink, open, write
–  To do network attacks: socket, bind, connect, send

Idea: monitor app’s system calls and block unauthorized calls

Implementation options:
–  Completely kernel space (e.g. GSWTK)
–  Completely user space (e.g. program shepherding)
–  Hybrid (e.g. Systrace)

Dan	Boneh	

Initial implementation (Janus) [GWTB’96]

Linux ptrace: process tracing
 process calls: ptrace (… , pid_t pid , …)
 and wakes up when pid makes sys call.

Monitor kills application if request is disallowed

OS	Kernel	

monitored	
applica1on	
(browser)	

monitor	

user space

open(“/etc/passwd”, “r”)

Dan	Boneh	

Complications
•  If app forks, monitor must also fork
–  forked monitor monitors forked app

•  If monitor crashes, app must be killed

•  Monitor must maintain all OS state associated with app

–  current-working-dir (CWD), UID, EUID, GID

–  When app does “cd path” monitor must update its CWD
•  otherwise: relative path requests interpreted incorrectly

cd(“/tmp”)	
open(“passwd”,		“r”)	
	

cd(“/etc”)	
open(“passwd”,		“r”)	
	
	

Dan	Boneh	

Problems with ptrace
Ptrace is not well suited for this application:
–  Trace all system calls or none

inefficient: no need to trace “close” system call
–  Monitor cannot abort sys-call without killing app

Security problems: race conditions
–  Example: symlink: me ⟶ mydata.dat

 proc 1: open(“me”)
 monitor checks and authorizes
 proc 2: me ⟶ /etc/passwd
 OS executes open(“me”)

Classic TOCTOU bug: time-of-check / time-of-use

tim
e

not atomic

Dan	Boneh	

Alternate design: systrace [P’02]

•  systrace only forwards monitored sys-calls to monitor (efficiency)

•  systrace resolves sym-links and replaces sys-call
path arguments by full path to target

•  When app calls execve, monitor loads new policy file

OS	Kernel	

monitored	
applica1on	
(browser)	

monitor	

user space

open(“etc/passwd”, “r”)

sys-call	
gateway	

systrace	
permit/deny

policy file
for app

Dan	Boneh	

Os,a:		a	delega,on	architecture				[GPR’04]	
Previous	designs	use	filtering:	
•  Filter	examines	sys-calls	and	decides	whether	to	block	
•  Difficulty	with	syncing	state	between	app	and	monitor		(CWD,		UID,		..)	

–  Incorrect	syncing	results	in	security	vulnerabili,es	(e.g.	disallowed	file	opened)	

A	delega,on	architecture:	

OS	Kernel	

monitored	
applica1on	 agent	

user space

policy file
for app open(“etc/passwd”, “r”)

Dan	Boneh	

Os,a:		a	delega,on	architecture				[GPR’04]	
•  Monitored	app	disallowed	from	making	monitored	sys	calls	

–  Minimal	kernel	change					(…	but	app	can	call	close()	itself)	

•  Sys-call	delegated	to	an	agent	that	decides	if	call	is	allowed	
–  Can	be	done	without	changing	app	

	 	(requires	an	emula,on	layer	in	monitored	process)	

•  Incorrect	state	syncing	will	not	result	in	policy	viola,on	

•  What	should	agent	do	when	app	calls	execve?	
–  Process	can	make	the	call	directly.			Agent	loads	new	policy	file.	

Dan	Boneh	

Policy
Sample policy file:

 path allow /tmp/*
 path deny /etc/passwd
 network deny all

Manually specifying policy for an app can be difficult:

–  Systrace can auto-generate policy by learning how app
behaves on “good” inputs

–  If policy does not cover a specific sys-call, ask user
… but user has no way to decide

Difficulty with choosing policy for specific apps (e.g. browser) is
the main reason this approach is not widely used

Dan	Boneh	

NaCl: a modern day example

•  game: untrusted x86 code

•  Two sandboxes:

–  outer sandbox: restricts capabilities using system call interposition

–  Inner sandbox: uses x86 memory segmentation to isolate
 application memory among apps

Browser	
	

HTML	
JavaScript	

NPAPI

NaCl	run,me	

game	

Dan	Boneh	

Isola,on	

Isola,on	via	
Virtual	Machines	

Dan	Boneh	

Virtual Machines

Virtual Machine Monitor (VMM)
Guest OS 2

Apps

Guest OS 1

Apps

Hardware
Host OS

VM2 VM1

Example: NSA NetTop

single HW platform used for both classified and unclassified data

Dan	Boneh	

Why so popular now?
VMs in the 1960’s:
–  Few computers, lots of users
–  VMs allow many users to shares a single computer

VMs 1970’s – 2000: non-existent

VMs since 2000:
–  Too many computers, too few users

•  Print server, Mail server, Web server, File server, Database , …

–  Wasteful to run each service on different hardware
–  More generally: VMs heavily used in cloud computing

Dan	Boneh	

VMM security assumption
VMM Security assumption:
–  Malware can infect guest OS and guest apps
–  But malware cannot escape from the infected VM
•  Cannot infect host OS
•  Cannot infect other VMs on the same hardware

Requires that VMM protect itself and is not buggy
–  VMM is much simpler than full OS
 … but device drivers run in Host OS

Dan	Boneh	

Problem: covert channels
•  Covert channel: unintended communication channel

between isolated components
–  Can be used to leak classified data from secure

component to public component

Classified	VM	 Public	VM	

secret	
doc	

m
alw

are	

listener	
covert

channel

VMM	

Dan	Boneh	

An example covert channel
Both VMs use the same underlying hardware

To send a bit b ∈ {0,1} malware does:
–  b= 1: at 1:00am do CPU intensive calculation

–  b= 0: at 1:00am do nothing

At 1:00am listener does CPU intensive calc. and measures completion time

 b = 1 ⇔ completion-time > threshold

Many covert channels exist in running system:
–  File lock status, cache contents, interrupts, …
–  Difficult to eliminate all

Dan	Boneh	

Suppose	the	system	in	ques,on	has	two	CPUs:		the	classified	VM		
runs	on	one	and	the	public	VM	runs	on	the	other.	

Can	there	be	a	covert	channel	between	the	VMs?	

There	can	be	covert	channels,	for	example,	based	on	the		
,me	needed	to	read	from	main	memory	

Dan	Boneh	

VMM Introspection: [GR’03]

 protecting the anti-virus system

Dan	Boneh	

Intrusion Detection / Anti-virus
Runs as part of OS kernel and user space process

–  Kernel root kit can shutdown protection system
–  Common practice for modern malware

Standard solution: run IDS system in the network
–  Problem: insufficient visibility into user’s machine

Better: run IDS as part of VMM (protected from malware)
–  VMM can monitor virtual hardware for anomalies
–  VMI: Virtual Machine Introspection

•  Allows VMM to check Guest OS internals

Dan	Boneh	

Infected	VM	m
alw

are	

VMM	

Guest	OS	

Hardware	

IDS	

Dan	Boneh	

Sample checks
Stealth root-kit malware:

–  Creates processes that are invisible to “ps”
–  Opens sockets that are invisible to “netstat”

1. Lie detector check
–  Goal: detect stealth malware that hides processes

and network activity
–  Method:

•  VMM lists processes running in GuestOS

•  VMM requests GuestOS to list processes (e.g. ps)

•  If mismatch: kill VM

Dan	Boneh	

Sample checks
2. Application code integrity detector

–  VMM computes hash of user app code running in VM
–  Compare to whitelist of hashes

•  Kills VM if unknown program appears

3. Ensure GuestOS kernel integrity
–  example: detect changes to sys_call_table

4. Virus signature detector
–  Run virus signature detector on GuestOS memory

Dan	Boneh	

Isola,on	

Subvir,ng	VM	
Isola,on	

Dan	Boneh	

Subvirt [King et al. 2006]

Virus idea:
–  Once on victim machine, install a malicious VMM
–  Virus hides in VMM
–  Invisible to virus detector running inside VM

HW
OS

⇒

HW

OS
VMM and virus

anti-virus

anti-virus

Dan	Boneh	

The MATRIX

Dan	Boneh	

Dan	Boneh	

VM Based Malware (blue pill virus)
•  VMBR: a virus that installs a malicious VMM (hypervisor)

•  Microsoft Security Bulletin: (Oct, 2006)

–  Suggests disabling hardware virtualization features

by default for client-side systems

•  But VMBRs are easy to defeat
–  A guest OS can detect that it is running on top of VMM

Dan	Boneh	

VMM Detection
Can an OS detect it is running on top of a VMM?

Applications:

–  Virus detector can detect VMBR

–  Normal virus (non-VMBR) can detect VMM
•  refuse to run to avoid reverse engineering

–  Software that binds to hardware (e.g. MS Windows) can
refuse to run on top of VMM

–  DRM systems may refuse to run on top of VMM

Dan	Boneh	

VMM detection (red pill techniques)
•  VM platforms often emulate simple hardware

–  VMWare emulates an ancient i440bx chipset
 … but report 8GB RAM, dual CPUs, etc.

•  VMM introduces time latency variances
–  Memory cache behavior differs in presence of VMM
–  Results in relative time variations for any two operations

•  VMM shares the TLB with GuestOS
–  GuestOS can detect reduced TLB size

•  … and many more methods [GAWF’07]

Dan	Boneh	

VMM Detection
Bottom line: The perfect VMM does not exist

VMMs today (e.g. VMWare) focus on:

Compatibility: ensure off the shelf software works

Performance: minimize virtualization overhead

•  VMMs do not provide transparency

–  Anomalies reveal existence of VMM

Dan	Boneh	

Isola,on	

Soaware	Fault	
Isola,on	

Dan	Boneh	

Software Fault Isolation [Whabe et al., 1993]

Goal: confine apps running in same address space
–  Codec code should not interfere with media player
–  Device drivers should not corrupt kernel

Simple solution: runs apps in separate address spaces
–  Problem: slow if apps communicate frequently

•  requires context switch per message

Dan	Boneh	

Software Fault Isolation
SFI approach:

–  Partition process memory into segments

•  Locate unsafe instructions: jmp, load, store
–  At compile time, add guards before unsafe instructions
–  When loading code, ensure all guards are present

code	
segment	

data	
segment	

code	
segment	

data	
segment	

app #1 app #2

Dan	Boneh	

Segment matching technique
•  Designed for MIPS processor. Many registers available.

•  dr1, dr2: dedicated registers not used by binary
–  compiler pretends these registers don’t exist
–  dr2 contains segment ID

•  Indirect load instruction R12 ← [R34] becomes:

 dr1 ← R34
 scratch-reg ← (dr1 >> 20) : get segment ID
 compare scratch-reg and dr2 : validate seg. ID
 trap if not equal
 R12 ← [dr1] : do load

Guard	ensures	code	does	not		

load	data	from	another	segment	

Dan	Boneh	

Address sandboxing technique
•  dr2: holds segment ID

•  Indirect load instruction R12 ← [R34] becomes:

 dr1 ← R34 & segment-mask : zero out seg bits
 dr1 ← dr1 | dr2 : set valid seg ID
 R12 ← [dr1] : do load

•  Fewer instructions than segment matching

… but does not catch offending instructions
•  Similar guards places on all unsafe instructions

Dan	Boneh	

Problem:			what	if				jmp	[addr]				jumps	directly	into	indirect	load?	

	 	(bypassing	guard)					

Solu1on:	

jmp	guard	must	ensure	[addr]	does	not	bypass	load	guard	

Dan	Boneh	

Cross domain calls
caller

domain
callee

domain

call draw call stub draw:

return

br	addr	
br	addr	
br	addr	

ret stub

•  Only stubs allowed to make cross-domain jumps
•  Jump table contains allowed exit points

–  Addresses are hard coded, read-only segment

br	addr	
br	addr	
br	addr	

Dan	Boneh	

SFI Summary
•  Shared memory: use virtual memory hardware

–  map same physical page to two segments in addr space

•  Performance
–  Usually good: mpeg_play, 4% slowdown

•  Limitations of SFI: harder to implement on x86 :
–  variable length instructions: unclear where to put guards
–  few registers: can’t dedicate three to SFI
–  many instructions affect memory: more guards needed

Dan	Boneh	

Isolation: summary
•  Many sandboxing techniques:

 Physical air gap, Virtual air gap (VMMs),
 System call interposition, Software Fault isolation
 Application specific (e.g. Javascript in browser)

•  Often complete isolation is inappropriate
–  Apps need to communicate through regulated interfaces

•  Hardest aspects of sandboxing:
–  Specifying policy: what can apps do and not do
–  Preventing covert channels

Dan	Boneh	

THE		END	

