
Dan	Boneh	

Isola,on	

The	confinement	
principle	

Original	slides	were	created	by	Prof.	Dan	Boneh	



Dan	Boneh	

Running untrusted code 
We often need to run buggy/unstrusted code: 

–  programs from untrusted Internet sites: 
•  apps,   extensions,   plug-ins,   codecs for media player 

–  exposed applications:    pdf viewers,  outlook 

–  legacy daemons:   sendmail,  bind 

–  honeypots 

Goal:    if application “misbehaves”  ⇒  kill it 
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Approach:   confinement 
Confinement:   ensure misbehaving app cannot harm rest of system 

Can be implemented at many levels: 

–  Hardware:   run application on isolated hw  (air gap) 
 
 
 
 

   ⇒  difficult to manage 

air	gap	 network	1	Network	2	

app	1	 app	2	
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Approach:   confinement 
Confinement:   ensure misbehaving app cannot harm rest of system 

Can be implemented at many levels: 
–  Virtual machines:   isolate OS’s on a single machine   

Virtual	Machine	Monitor		(VMM)	

OS1	
	

OS2	
	

app1	 app2	

What	are	some	of	the	drawbacks	of	this	approach?	
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Approach:   confinement 
Confinement:   ensure misbehaving app cannot harm rest of system 

Can be implemented at many levels: 
–  Process:     System Call Interposition 

       Isolate a process in a single operating system 

 

Opera,ng	System	

process	2	

process	1	
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Approach:   confinement 
Confinement:   ensure misbehaving app cannot harm rest of system 

Can be implemented at many levels: 

–  Threads:      Software Fault Isolation (SFI) 
•  Isolating threads sharing same address space   

–  Application:  e.g.   browser-based confinement 
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Implementing confinement 
Key component:    reference monitor 
–  Mediates requests from applications 

•  Implements protection policy 
•  Enforces isolation and confinement 

–  Must always be invoked: 
•  Every application request must be mediated 

–  Tamperproof: 
•  Reference monitor cannot be killed 
•  … or if killed, then monitored process is killed too 

–  Small enough to be analyzed and validated 
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A old example:    chroot 
Often used for “guest” accounts on ftp sites 

To use do:   (must be root) 
  
 chroot   /tmp/guest      root dir “/” is now “/tmp/guest” 
 su guest       EUID set to “guest” 

Now  “/tmp/guest”  is added to file system accesses for applications in jail 
  open(“/etc/passwd”,   “r”)    ⇒ 

      open(“/tmp/guest/etc/passwd” ,   “r”) 

⇒   application cannot access files outside of jail 
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Jailkit 
Problem:   all utility progs (ls, ps, vi) must live inside jail 

 
•  jailkit project:    auto builds files, libs, and dirs needed in jail env 

•  jk_init:    creates jail environment 
•  jk_check:   checks jail env for security problems 

•  checks for any modified programs, 
•  checks for world writable directories, etc. 

•  jk_lsh:   restricted shell to be used inside jail 

•  note:  simple chroot jail does not limit network access 
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Escaping from jails 
Early escapes:    relative paths 

     open( “../../etc/passwd”,   “r”)   ⇒ 
      open(“/tmp/guest/../../etc/passwd”,   “r”) 

 
chroot  should only be executable by root. 
–  otherwise jailed app can do: 
•  create dummy file   “/aaa/etc/passwd” 
•  run    chroot   “/aaa” 
•  run    su  root    to become root 

(bug in Ultrix 4.0) 
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Many ways to escape jail as root 

•  Create device that lets you access raw disk 

•  Send signals to non chrooted process 

•  Reboot system 

•  Bind to privileged ports 
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Freebsd jail 
Stronger mechanism than simple   chroot 

To run:      jail   jail-path   hostname  IP-addr   cmd 

–  calls hardened  chroot    (no  “../../”  escape) 

–  can only bind to sockets with specified IP address  
and authorized ports 

–  can only communicate with processes inside jail 

–  root is limited, e.g. cannot load kernel modules 
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Not	all	programs	can	run	in	a	jail	
Programs	that	can	run	in	jail:							
•  audio	player	
•  web	server	
	
Programs	that	cannot:					
•  web	browser	
•  mail	client	
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Problems with chroot and jail 
Coarse policies: 
–  All or nothing access to parts of file system 
–  Inappropriate for apps like a web browser 

•  Needs read access to files outside jail  
 (e.g. for sending attachments in Gmail) 

Does not prevent malicious apps from: 
–  Accessing network and messing with other machines 
–  Trying to crash host OS 
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Isola,on	

System	Call	
Interposi,on	
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System call interposition 
Observation:   to damage host system (e.g. persistent changes)   
app must make system calls: 

–  To delete/overwrite files:  unlink, open, write 
–  To do network attacks:  socket, bind, connect, send 

Idea:    monitor app’s system calls and block unauthorized calls 

Implementation options: 
–  Completely kernel space (e.g. GSWTK) 
–  Completely user space (e.g.  program shepherding) 
–  Hybrid  (e.g.  Systrace) 
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Initial implementation  (Janus)      [GWTB’96] 

Linux ptrace:    process tracing 
 process calls:     ptrace (… ,  pid_t  pid ,  …) 
 and wakes up when  pid  makes sys call. 

 
 
 
 
 

Monitor kills application if request is disallowed 

OS	Kernel	

monitored	
applica1on	
(browser)	

monitor	

user space 

open(“/etc/passwd”,  “r”) 
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Complications 
•  If app forks, monitor must also fork 
–  forked monitor monitors forked app 

•  If monitor crashes, app must be killed 

•  Monitor must maintain all OS state associated with app 

–  current-working-dir (CWD),    UID,   EUID,   GID 

–  When app does “cd path” monitor must update its CWD 
•  otherwise:   relative path requests interpreted incorrectly   

cd(“/tmp”)	
open(“passwd”,		“r”)	
	

cd(“/etc”)	
open(“passwd”,		“r”)	
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Problems with ptrace 
Ptrace is not well suited for this application: 
–  Trace all system calls or none 

inefficient:   no need to trace “close” system call  
–  Monitor cannot abort sys-call without killing app 

Security problems:   race conditions 
–  Example:  symlink:    me  ⟶  mydata.dat 

 proc 1:   open(“me”) 
 monitor checks and authorizes 
 proc 2:   me  ⟶  /etc/passwd 
 OS executes    open(“me”)  

Classic TOCTOU bug:   time-of-check /  time-of-use 

tim
e 

not atomic 
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Alternate design:  systrace    [P’02] 

•  systrace only forwards monitored sys-calls to monitor  (efficiency) 

•  systrace resolves sym-links and replaces sys-call  
path arguments by full path to target 

•  When app calls  execve,  monitor loads new policy file 

OS	Kernel	

monitored	
applica1on	
(browser)	

monitor	

user space 

open(“etc/passwd”,  “r”) 

sys-call	
gateway	

systrace	
permit/deny 

policy file 
for app 
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Os,a:		a	delega,on	architecture				[GPR’04]	
Previous	designs	use	filtering:	
•  Filter	examines	sys-calls	and	decides	whether	to	block	
•  Difficulty	with	syncing	state	between	app	and	monitor		(CWD,		UID,		..)	

–  Incorrect	syncing	results	in	security	vulnerabili,es	(e.g.	disallowed	file	opened)	

A	delega,on	architecture:	

OS	Kernel	

monitored	
applica1on	 agent	

user space 

policy file 
for app open(“etc/passwd”,  “r”) 
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Os,a:		a	delega,on	architecture				[GPR’04]	
•  Monitored	app	disallowed	from	making	monitored	sys	calls	

–  Minimal	kernel	change					(…	but	app	can	call	close()	itself	)	

•  Sys-call	delegated	to	an	agent	that	decides	if	call	is	allowed	
–  Can	be	done	without	changing	app	

	 	(requires	an	emula,on	layer	in	monitored	process)	

•  Incorrect	state	syncing	will	not	result	in	policy	viola,on	

•  What	should	agent	do	when	app	calls	execve?	
–  Process	can	make	the	call	directly.			Agent	loads	new	policy	file.	



Dan	Boneh	

Policy 
Sample policy file: 

   path allow  /tmp/* 
   path deny  /etc/passwd 
   network deny all 

 
Manually specifying policy for an app can be difficult: 

–  Systrace can auto-generate policy by learning how app  
behaves on “good” inputs 

–  If policy does not cover a specific sys-call, ask user 
… but user has no way to decide 

Difficulty with choosing policy for specific apps (e.g. browser) is  
the main reason this approach is not widely used 
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NaCl:  a modern day example 

•  game:  untrusted x86 code 

•  Two sandboxes: 

–  outer sandbox:  restricts capabilities using system call interposition 

–  Inner sandbox: uses x86 memory segmentation to isolate 
 application memory among apps 

Browser	
	

HTML	
JavaScript	

NPAPI 

NaCl	run,me	

game	
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Virtual	Machines	
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Virtual Machines 

Virtual Machine Monitor (VMM) 
Guest OS 2

Apps

Guest OS 1

Apps

Hardware
Host OS

VM2 VM1

Example:    NSA  NetTop 

single HW platform used for both classified and unclassified data 
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Why so popular now? 
VMs in the 1960’s: 
–  Few computers,  lots of users 
–  VMs allow many users to shares a single computer 

VMs  1970’s – 2000:    non-existent 

VMs since 2000: 
–  Too many computers, too few users 

•   Print server,  Mail server,  Web server, File server,  Database , … 

–  Wasteful to run each service on different hardware 
–  More generally:   VMs heavily used in cloud computing 
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VMM security assumption 
VMM Security assumption: 
–  Malware can infect guest OS and guest apps 
–  But malware cannot escape from the infected VM 
•    Cannot infect host OS 
•    Cannot infect other VMs on the same hardware  

Requires that VMM protect itself and is not buggy  
–  VMM is much simpler than full OS  
       … but device drivers run in Host OS 
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Problem:   covert channels 
•  Covert channel:    unintended communication channel 

between isolated components 
–  Can be used to leak classified data from secure 

component to public component 

Classified	VM	 Public	VM	

secret	
doc	

m
alw

are	

listener	
covert 

channel 

VMM	
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An example covert channel 
Both VMs use the same underlying hardware 

To send a bit   b ∈ {0,1}   malware does: 
–  b= 1:   at  1:00am  do CPU intensive calculation 

–  b= 0:   at  1:00am  do nothing 

At  1:00am listener does CPU intensive calc. and measures completion time 

         b = 1     ⇔     completion-time > threshold 

Many covert channels exist in running system: 
–  File lock status,    cache contents,    interrupts,  … 
–  Difficult to eliminate all 
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Suppose	the	system	in	ques,on	has	two	CPUs:		the	classified	VM		
runs	on	one	and	the	public	VM	runs	on	the	other.	

Can	there	be	a	covert	channel	between	the	VMs?	

There	can	be	covert	channels,	for	example,	based	on	the		
,me	needed	to	read	from	main	memory	
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VMM Introspection:  [GR’03] 

 protecting the anti-virus system 
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Intrusion Detection / Anti-virus 
Runs as part of OS kernel and user space process 

–  Kernel root kit can shutdown protection system 
–  Common practice for modern malware 

Standard solution:     run  IDS  system in the network 
–  Problem:   insufficient visibility into user’s machine 

Better:   run IDS as part of VMM  (protected from malware) 
–  VMM can monitor virtual hardware for anomalies 
–  VMI:   Virtual Machine Introspection 

•    Allows VMM to check Guest OS internals 
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Infected	VM	m
alw

are	

VMM	

Guest	OS	

Hardware	

IDS	
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Sample checks 
Stealth root-kit malware: 

–  Creates processes that are invisible to  “ps” 
–  Opens sockets that are invisible to  “netstat” 

1. Lie detector check 
–  Goal:   detect stealth malware that hides processes  

and network activity 
–  Method: 

•    VMM lists processes running in GuestOS 

•    VMM requests GuestOS to list processes (e.g.  ps) 

•    If mismatch:     kill VM 
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Sample checks 
2. Application code integrity detector 

–  VMM computes hash of user app code running in VM 
–  Compare to whitelist of hashes 

•    Kills VM if unknown program appears 

3. Ensure GuestOS kernel integrity 
–  example:   detect changes to  sys_call_table 

4. Virus signature detector 
–  Run virus signature detector on GuestOS memory 
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Isola,on	

Subvir,ng	VM	
Isola,on	
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Subvirt   [King et al. 2006] 

Virus idea: 
–  Once on victim machine, install a malicious VMM 
–  Virus hides in VMM 
–  Invisible to virus detector running inside VM 

HW     
OS     

⇒

HW     

OS     
VMM and virus

anti-virus

anti-virus
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The MATRIX 
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VM Based Malware  (blue pill virus) 
•  VMBR:    a virus that installs a malicious VMM  (hypervisor) 

•  Microsoft Security Bulletin:   (Oct, 2006)  

–  Suggests disabling hardware virtualization features  

by default for client-side systems 

•  But VMBRs are easy to defeat 
–  A guest OS can detect that it is running on top of VMM 
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VMM Detection 
Can an OS detect it is running on top of a VMM? 

Applications: 

–  Virus detector can detect VMBR 

–  Normal virus (non-VMBR) can detect VMM 
•  refuse to run to avoid reverse engineering 

–  Software that binds to hardware (e.g. MS Windows) can  
refuse to run on top of VMM 

–  DRM systems may refuse to run on top of VMM 
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VMM detection    (red pill techniques) 
•  VM platforms often emulate simple hardware 

–  VMWare emulates an ancient i440bx chipset 
  … but report  8GB RAM,  dual CPUs, etc. 

•  VMM introduces time latency variances 
–  Memory cache behavior differs in presence of VMM 
–  Results in relative time variations for any two operations 

•  VMM shares the TLB with GuestOS 
–  GuestOS can detect reduced TLB size 

•  … and many more methods  [GAWF’07] 
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VMM Detection 
Bottom line:      The perfect VMM does not exist 

VMMs today   (e.g. VMWare)  focus on: 

Compatibility:   ensure off the shelf software works 

Performance:    minimize virtualization overhead 

•  VMMs do not provide transparency 

–     Anomalies reveal existence of VMM  
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Isola,on	

Soaware	Fault	
Isola,on	
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Software Fault Isolation  [Whabe et al., 1993] 

Goal:    confine apps running in same address space 
–  Codec code should not interfere with media player 
–  Device drivers should not corrupt kernel  

Simple solution:   runs apps in separate address spaces 
–  Problem:  slow if apps communicate frequently 

•  requires context switch per message 
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Software Fault Isolation 
SFI approach: 

–  Partition process memory into segments 

 

•  Locate unsafe instructions:   jmp, load, store 
–  At compile time, add guards before unsafe instructions 
–  When loading code, ensure all guards are present 

code	
segment	

data	
segment	

code	
segment	

data	
segment	

app #1 app #2 
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Segment matching technique 
•  Designed for MIPS processor.   Many registers available. 

•  dr1,  dr2:   dedicated registers not used by binary 
–  compiler pretends these registers don’t exist 
–  dr2 contains segment ID 

•  Indirect load instruction       R12 ← [R34]      becomes: 

  dr1 ← R34 
  scratch-reg ← (dr1 >> 20)   : get segment ID 
  compare scratch-reg  and  dr2  : validate seg. ID 
  trap if not equal 
  R12 ← [dr1]     : do load 

Guard	ensures	code	does	not		

load	data	from	another	segment	
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Address sandboxing technique 
•  dr2:    holds segment ID 

•  Indirect load instruction     R12 ← [R34]     becomes: 

  dr1 ← R34  &  segment-mask  : zero out seg bits 
  dr1 ← dr1  |  dr2    : set valid seg ID 
  R12 ← [dr1]     : do load 

 
•  Fewer instructions than segment matching 

… but does not catch offending instructions 
•  Similar guards places on all unsafe instructions 
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Problem:			what	if				jmp	[addr]				jumps	directly	into	indirect	load?	

	 	(bypassing	guard)					

Solu1on:	

jmp	guard	must	ensure	[addr]	does	not	bypass	load	guard	
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Cross domain calls 
caller 

domain 
callee 

domain 

call draw call stub draw: 
 
return 

br	addr	
br	addr	
br	addr	

ret stub 

•  Only stubs allowed to make cross-domain jumps 
•  Jump table contains allowed exit points  

–  Addresses are hard coded,   read-only segment 

br	addr	
br	addr	
br	addr	
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SFI  Summary 
•  Shared memory:  use virtual memory hardware 

–  map same physical page to two segments in addr space 

•  Performance 
–  Usually good:    mpeg_play,   4%  slowdown 

•  Limitations of SFI:   harder to implement on x86 : 
–  variable length instructions:  unclear where to put guards 
–  few registers:   can’t dedicate three to SFI 
–  many instructions affect memory:  more guards needed 
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Isolation:   summary 
•  Many sandboxing techniques: 

 Physical air gap,   Virtual air gap (VMMs), 
 System call interposition,  Software Fault isolation 
 Application specific (e.g. Javascript in browser) 

•  Often complete isolation is inappropriate 
–  Apps need to communicate through regulated interfaces 

•  Hardest aspects of sandboxing: 
–  Specifying policy:    what can apps do and not do 
–  Preventing covert channels 
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THE		END	


