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Abstract

Recognition of planar shapes is an important problem in computer vision and pattern recognition. The same planar object
contour imaged from di1erent cameras or from di1erent viewpoints looks di1erent and their recognition is non-trivial. Tradi-
tional shape recognition deals with views of the shapes that di1er only by simple rotations, translations, and scaling. However,
shapes su1er more serious deformation between two general views and hence recognition approaches designed to handle
translations, rotations, and/or scaling would prove to be insu5cient. Many algebraic relations between matching primitives
in multiple views have been identi7ed recently. In this paper, we explore how shape properties and multiview relations can
be combined to recognize planar shapes across multiple views. We propose novel recognition constraints that a planar shape
boundary must satisfy in multiple views. The constraints are on the rank of a Fourier-domain measurement matrix computed
from the points on the shape boundary. Our method can additionally compute the correspondence between the curve points
after a match is established. We demonstrate the applications of these constraints experimentally on a number of synthetic and
real images.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Planar shape recognition has immense applications in
surveillance, robotic vision, etc. Two-dimensional objects
can be recognised based on their boundary information.
In some situations, three-dimensional objects can also be
recognised similarly, by assuming that the images are the
orthographic projections of the objects. An example is
the recognition of objects from satellite images. The cam-
eras on board the satellites are far away from the objects.
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The objects can then be considered to be planar as any dis-
tances within the objects become negligible.

Planar shape recognition has received widespread atten-
tion in literature for many years. In this class of recognition
problems, boundaries of objects are extracted using relevant
techniques and a set of appropriate features are extracted in a
suitable domain such that recognition can be carried out suc-
cessfully. Many planar object recognition e1orts have been
reported earlier for the simple case of similarity transfor-
mation between views [1–4]. A planar object can be recog-
nised by comparing it with the set of a priori known shapes.
Recognition by alignment was attempted by Huttenlocher
and Ullman [5]. They computed a match by determining the
existence of a transformation that when applied to a model
would result in the given view. Comparison can also be car-
ried out by generating a geometric model of the boundary,
as is done in algorithms based on polygonal approxima-
tion [4]. Linear or other parametric approximations of the
boundary can also be used. Algorithms based on computing
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geometrically invariant features from the discrete set of
boundary points have also been developed [6]. These fea-
tures can be curvatures, compactness, moments, etc. An-
other class of algorithms integrate the advantages of both
by modelling the boundary in a transform domain like the
Fourier one as was done by Zahn and Roskies [1].

In these algorithms, the reference and test images are re-
lated by similarity transformations, involving in-plane rota-
tions, translations and scaling. The transformation between
the reference and test images is more complex in typical
problems of interest. When a planar object is imaged from
multiple viewpoints, the image-to-image transformation is
a general projective homography [7]. The conventional ap-
proaches based on Euclidean and similarity frameworks are
insu5cient in this situation.

There exists a notably di1erent approach for recognition
across multiple views. These class of algorithms consider
recognition as establishing one-to-one relationships between
shapes, in the presence of unknown image-to-image trans-
formations. One of the algorithms in this category is due
to Ullman and Basri [8] who formulated mechanisms for
recognition of objects using linear combination of models
for orthographic views. This result hints that the various
views of an object lie in a lower-dimensional linear sub-
space. The performance of these algorithms depend on the
accuracy of the feature-to-feature correspondences. Arbter
et al. [9] formulated techniques for a5ne invariant recogni-
tion in the Fourier domain. Their emphasis was on choos-
ing a suitable set of a5ne invariant features and performing
matching using those features.

In this paper, we present a novel method for recognising
planar shape boundaries in multiple views. We derive recog-
nition constraints satis7ed by matching contours using a
complex vector representation of the boundary points in the
Fourier domain. These are in the form of rank constraints
on a measurement matrix computed in the Fourier domain.
It is not necessary to know the correspondence between the
shapes ahead of time. Our method can, instead, compute the
pixel-to-pixel correspondences once the match is established
using the rank constraints. The correspondence translates
to a shift in the point sequences and can be recovered from
the peak of the inverse Fourier transform of an appropriate
measure computed in the Fourier domain. Preliminary re-
sults were shown in an earlier paper [10]. Here we present
a comprehensive analysis of the multiview recognition
problem under di1erent classes of image-to-image transfor-
mations. We present mathematical proof of recognizability
constraints for the a5ne case and present experimental
evidence for the projective case.

In Section 2, we present the problem formulation, ne-
cessary background, and notation. The complex vector re-
presentation of the shape boundary we use and its Fourier
domain representation are presented in this section. In
Section 3, we present algebraic constraints for recognis-
ing shapes in views related by similarity transforms. The
theory for an algebraic a5ne invariant recognition scheme

that does not need explicit pixel-to-pixel correspondence
is described in Section 4. Section 5 presents the results of
several experiments on both synthetic and real images. We
also show how the recognition constraints for a5ne ho-
mographies hold good for the general situation in practice
using a few examples. Section 6 presents a few concluding
remarks.

2. Problem formulation

2.1. Recognisability constraints

Pattern recognition is concerned with the grouping of sim-
ilar feature vectors and assigning an appropriate label to the
test sample. The basic assumption has been the existence of a
physical process which provides these measurements with a
particular probability distribution. Classical pattern recogni-
tion algorithms focus on minimising the misclassi7cation by
an appropriate selection of features and classi7ers. The em-
phasis of these approaches has been mainly on recognising
similar objects.

The problem of recognising the same object in multi-
ple views is conceptually di1erent from the conventional
recognition problem, due to the additional geometric trans-
formation that exists from one image to the other. The sta-
tistical model of pattern distortion may not be appropriate to
characterise the deviation of planar shapes from one image
to another. The geometric transformations that exist among
multiple views is known precisely in terms of algebraic rela-
tions between matching scene primitives—points, lines, etc.
[7,11,12]. The variability in feature measurements can be re-
stricted, by using available geometric information, providing
tighter constraints for recognition. For example, given the
image location of a particular world point in one view, the
locus of its corresponding point in another view can be ex-
pressed in the form of a bilinear relationship [13,14]. Similar
relations hold for three and more views of points and lines
[15–19]. We can come up with recognizability constraints
based on algebraic relationships between measurements in
multiple views, exploiting the known algebraic multiview
relations.

A multiview recognizability constraint can be de7ned as
follows. Given a set ofM views of an object, identify a view
independent function f(·) such that f(x0; x1; : : : ; xM−1) = 0,
xl being the image measurements made in view l. This
recognition constraint can be linear or nonlinear in image
coordinates. The algebraic relation given by f(·) can be used
to answer the question whether the M observed views were
of the same object. Arriving at such constraints is the focus
of this paper.

2.2. Classes of image-to-image homographies

When a planar object is imaged from multiple view points
or when it is imaged by cameras having the same optical
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centre, the images are related by homographies. A homog-
raphy or a collineation is a linear mapping from one plane
to another such that the collinearity of any set of points is
preserved [7]. In other words, a homography is an invert-
ible mapping h from P2 to itself such that three points x1,
x2 and x3 lie on the same line if and only if h(x1), h(x2) and
h(x3) do. Plane-to-plane homographies can be categorised
into isometry, similarity, a5ne and projective [7]. The later
classes subsume the earlier ones, i.e., isometry ⊂ similarity
⊂ a5ne ⊂ projective.

Isometry: An isometry is a transformation of the plane
R2 that preserves Euclidean distance. Such a transformation
is represented as


x′

y′

1


=




� cos 	 −sin 	 tx

� sin 	 cos 	 ty

0 0 1






x

y

1


 ;

where � = ±1. If � = 1 then the isometry is orientation
preserving and is a Euclidean transformation. If �=−1 then
the isometry reverses orientation and involves a reOection.
The above can be expressed more compactly as x′ = HEx
where

HE =

[
R t

0T 1

]

where R is a 2 × 2 orthonormal rotation matrix and t is a
translational 2-vector.

Similarity: A similarity transformation is an isometry
with isotropic scaling. Such a transformation can be written
as


x′

y′

1


=




s cos 	 −s sin 	 tx

s sin 	 s cos 	 ty

0 0 1






x

y

1




or more compactly as x′ =HSx where

HS =

[
sR t

0T 1

]

and s is the isotropic scaling factor. A similarity transfor-
mation is also known as an equi-form transformation as its
preserves the shape form.

A1ne: An a5ne transformation is a non-singular linear
transformation followed by a linear translation. In the form
of a matrix it can be represented as


x′

y′

1


=




a11 a12 tx

a21 a22 ty

0 0 1






x

y

1




or more compactly as x′ =HAx where

HA =

[
A t

0T 1

]

and A is a non-singular 2× 2 matrix.
Projective: A projective transformation is a general

non-singular linear transformation of homogeneous coordi-
nates. This generalizes an a5ne transformation, which is the
composition of a general non-singular linear transformation
of inhomogeneous coordinates and a translation.

A projective transformation can be expressed as

x′ =HPx;

HP =

[
A t

VT v

]
and V is a vector [v1; v2]

T: (1)

The vector V is the projective component of the homogra-
phy that makes the transformation nonlinear in inhomoge-
neous coordinates [7]. The image-to-image homography is
projective (a) when the object being imaged is planar, or
(b) when the scene is imaged with cameras having the same
optical centre.

Fig. 1 shows various views of a hexagon under di1er-
ent image-to-image homographies. View (a) is the reference
view fromwhich other views were generated using appropri-
ate homographies. Views (a) and (b) are related by isomet-
ric homographies, (c) and (d) by similarity transformations,
(e) and (f) by a5ne homographies, while general projective
homographies relate views (g) and (h). It can be seen that
all lengths and angles are preserved in the views related by
isometries. The hexagons in the views related by similarity
transforms look similar (hence the name similarity) with all
angles preserved; however, lengths are not preserved. In the
views related by a5ne homographies, neither lengths nor
angles are preserved, but parallelism is maintained. While
in the views related by projective transformations none of
lengths, angles and parallelism are maintained.

2.3. Complex vector representation of a boundary

The representation we use for the rest of this discussion
is given below. Let O be a set of N points on the boundary
of a planar object and let Pl be its images in views Vl

where l is the view index. We assume that the object is
imaged in its entirety in all views, i.e. all of the object is
visible in all views; no part of the object is occluded. Let
(ul[i]; vl[i]; wl[i]) be the homogeneous coordinates of points
on the closed boundary in view Vl. We represent this shape
using a sequence xl[i] of complex vectors as given below.

xl[i] =




ul[i] + j0

vl[i] + j0

wl[i] + j0


 :
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Fig. 1. Several views of a hexagon under di1erent image-to-image homographies.
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We de7ne the Fourier domain representation of the complex
vectors as another complex vector sequence PXl[k] given by

PXl[k] =




Ul[k]

V l[k]

Wl[i]


 ; (2)

where Ul[k]; V l[k]; W l[k] are, respectively, the Fourier
transforms of the sequences ul[i]; vl[i]; wl[i]. The sequence
PXl[k] is periodic and conjugate symmetric, as xl[i] is real.
Let the image-to-image transformation of these points

from view 0 to view l be given by a 3× 3 matrix Ml.

xl[i] =Mlx
0[i]: (3)

Taking the Fourier transform on both sides, we obtain

PXl[k] =Ml PX
0[k]; (4)

where PX0 and PXl are the Fourier transform sequences of x0

and xl, respectively.
The matrix Ml in Eq. (3) is a homography relating the

image planes in views l and 0. The homography Ml has at
most eight degrees of freedom as overall scale is unimpor-
tant.

2.4. Planar shape recognition problem

The problem of planar shape recognition in two views
can be formulated as the identi7cation of the existence of
an appropriate image-to-image homography between them.
Two cases arise based on the information available about
the scene or the transformation:

(1) If the homography is known, recognition involves pro-
jection of the reference view into the questioned view
and matching or correlating the shapes using an appro-
priate measure.

(2) If point-to-point correspondences are known, the ho-
mography can be computed using a suitable number of
corresponding points. Matching or recognition can then
follow as in the previous case.

The interesting case, however, is when neither the homog-
raphy nor the correspondence is known. Can we recognize a
planar shape in multiple views if neither the transformation
nor the pixel-to-pixel correspondence is known? We o1er
a few solutions to this question in this paper. In fact, our
solution can provide the point-to-point correspondence and
hence the explicit homography matrix as a side products if
the boundary curves match. Our solutions are in the form
of constraints satis7ed by matching boundaries in multiple
views. We discuss the simpler case of similarity homogra-
phy 7rst followed by the more general cases.

3. Algebraic recognisability constraints under similarity

3.1. Unknown starting point

The algebraic relationships between scene primitives—
points, lines, conics, etc.—in di1erent views that have come
to light in recent years are for corresponding features. How-
ever, identi7cation of corresponding features in practice is
not trivial. In this subsection, we show how the Fourier do-
main representation is able to achieve recognition based on
an algebraic constraint, when correspondence information is
not available.

Let us start with the simplest case where the views of
a shape are identical, but its boundary representation starts
from a di1erent point in each view.M sequences of boundary
points can result by starting the representation in sequence
l from a boundary position �l away from the starting point
in sequence 0 (�0 = 0). Therefore, we have, for view l,

xl[i] = x0[i + �l];

where �l is the unknown shift. A shift in the spatial domain
translates into a rotation in the Fourier domain. Taking the
Fourier transform of the above expression gives

PXl[k] = PX0[k]ej2��lk=N ; 06 k ¡N: (5)

TheM boundary representations of the same scene, result
in the Fourier vector sequences

PX0[k]; PX1[k]; PX2[k]; : : : ; PXM−1[k];

From Eq. (5), it can be seen that PXl[k] has a phase di1erence
of 2��lk=N from PX0[k]. Let 	0; 	1; : : : ; 	N−1 be the phases
of the Fourier coe5cients U 0[k] (U is a component of PX
from Eq. (2)). We can form an M ×N measurement matrix
� with row l consisting of the phase angles of the Fourier
coe5cients Ul of view l.

�=




	0 	1 	2

	0 	1 + �1 	2 + 2�1

: : : : : : : : :

	0 	1 + �M−1 	2 + 2�M−1

	3 : : : 	N−1

	3 + 3�1 : : : 	N−1 + (N − 1)�1

: : : : : : : : :

	3 + 3�M−1 : : : 	N−1 + (N − 1)�M−1


 ; (6)

where �l is 2��l=N . It can be observed that any row of the
above matrix can be expressed as a linear combination of
two other rows. For instance, if Ri is the ith row,

R3 = R1 + (R2 − R1)�2=�1:
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Therefore, � is a rank-de7cient matrix with a 7xed rank
of 2, irrespective of the number of views M . Therefore,
the algebraic condition for recognition of a shape in such a
case is

rank(�) = 2: (7)

The shift values �l can be recovered using the cross power
spectrum, which is de7ned as

(Ul[k])∗TU 0[k]
|(Ul[k])TU 0[k]| = e

−2�j�lk
N :

The crosspower spectrum is a complex sinusoid. If we
take the inverse Fourier transform of this sinusoid, it will
exhibit a peak at �l. (Note: The same result can be achieved
using V instead of U .)

3.2. Similarity transformations

We now show how a Fourier domain representation is
capable of handling the image-to-image homographies in-
duced by translation, scaling, and rotation.

3.2.1. Translation
The translation transformation would look like

xl[i] = x0[i] + Tl;

where Tl is the translation vector. In the absence of know-
ledge of correspondence across views this would become

xl[i] = x0[i + �l] + Tl;

where cyclic shifting the order of points in view l by �l

would align it with the ordering of points in view 0. The
Fourier domain form of the above expression is

PXl[k] = PX0[k]ej2��lk=N +  (0)Tl; 06 k ¡N:

Ignoring the DC component (spatial frequency of zero)
would give

PXl[k] = PX0[k]ej2��lk=N ; 0¡k ¡N: (8)

The form in Eq. (8) is similar to Eq. (5) and the same
recognition mechanism would be valid. Translating the
shape, such that the origin is the centroid of the shape
would also provide invariance to translation.

3.2.2. Scaling
The scaling transformation would look like

xl[i] =Mlx
0[i];

where

Ml =




s 0 0

0 s 0

0 0 1


 :

s is the isotropic scaling factor. In the absence of correspon-
dence, scaling becomes

xl[i] =Mlx
0[i + �l];

where cyclic shifting the order of points in view l by �l

would align it with the ordering of points in view 0. The
Fourier domain representation of this is

PXl[k] =Ml PX
0[k]ej2��lk=N (9)

which in terms of U and V is

Ul[k] = sU 0[k]ej2��lk=N ;

V l[k] = sV 0[k]ej2��lk=N :

The technique described in the previous subsection depends
on the phases of U and V and from the above, it is evident
that the phases are una1ected by the scaling. Hence, we
conclude that scaling can be accounted for in this framework.

3.2.3. Rotation
Rotation is yet another important similarity transforma-

tion. Rotations can be handled by conventional Fourier de-
scriptors [4] by representing the boundary points in polar
coordinates, as opposed to Cartesian coordinates. A point
(x; y) in Cartesian coordinates can be represented by (r; 	)
in the polar coordinates, where x=r cos(	) and y=r sin(	).
Rotation of a point assumes the form of a translation in po-
lar coordinates. (r; 	) ↔ (r; 	 + �), where � represents the
angle of rotation. We can use the complex vector notation of

xl[i] =

[
rl[i] + j0

	 l[i] + j0

]
; 06 k ¡N:

A rotation transformation, in the absence of knowledge of
correspondence, assumes the form

xl[i] = x0[i + �l] + [ 0 � ]T; 06 k ¡N;

which in the Fourier domain becomes

PXl[k] = PX0[k]ej2��lk=N + [ 0 � ]T (0); 06 k ¡N:

On dropping the spatial frequency corresponding to k = 0,
we get

PXl[k] = PX0[k]ej2��lk=N ; 0¡k ¡N:

This transformation form is the same as the ones in Eqs. (5)
and (8), techniques for handling which we have discussed
above.

The major contribution of this paper is the derivation of
an algebraic recognition constraint for a5ne homographies
which we describe in the next section.

4. Recognisability constraints for a#ne homographies

Let us now look at the case when the homography between
two views is a5ne. In this case, the image-to-image mapping
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is given by

xl[i] =Mlx
0[i];

where

Ml =




m1 m2 m3

m4 m5 m6

0 0 1


 :

The above equation can be rewritten in inhomogeneous
coordinates as

xl[i] = Alx
0[i] + bl;

PXl[k] = Al PX
0[k] + bl (0);

in the spatial domain and Fourier domain, respectively,
where Al is a 2× 2 matrix([

m1 m2

m4 m5

]
=

[
a11 a12

a21 a22

])

and bl is a translation vector([
m3

m6

])
:

We can eliminate the e1ect of vector bl by computing the
image coordinates with respect to the centroid of the shape.
Discarding the Fourier DC coe5cient corresponding to k=0
also has the same e1ect. In the rest of this discussion, we
write this transformation as xl[i] = Alx0[i] in the spatial
domain and PXl[k] =Al PX0[k] in the Fourier domain without
any loss in generality. The scale factors of the homogeneous
representation of the points are assumed to be unity and
ignored in the representation of xl. From here on both xl

and PXl are 2× 1 matrices of complex numbers.
If pixel-to-pixel correspondences are not known

PXl[k] = Al PX
0[k]ej2��lk=N ; (10)

where �l is the unknown shift in view l.
A measure similar to the crosspower spectrum can be de-

7ned to compute the shift values �l in this case also. The
cross-conjugate product (CCP) of the Fourier representa-
tions of two views is de7ned as

 (0; l) = ( PX0[k])∗T PXl[k] = ( PX0[k])∗TAl PX
0[k]ej2��lk=N :

(11)

The measure  (·) provides a mechanism for estimation of
correspondence and thereby possible recognition. In the next
two subsections we study the characteristics of  (·) under
a5ne transformations.

4.1. A1ne and symmetric

The measure  (·) is quadratic in Fourier coe5cients PX0.
For a set of real vectors, a quadratic formXTAX is equivalent

to XTBX, where B is a symmetric matrix, without any loss
in generality. This result is, however, not true for complex
vectors PX.

For a complex vector PX = [(p1 + jq1) (p2 + jq2)]T,

PX∗TA PX = [ p1 p2 ]A

[
p1

p2

]
+ [ q1 q2 ]A

[
q1

q2

]

+j(a21 − a12)(p1q2 − p2q1):

If A is symmetric, i.e., when a12 = a21, the imaginary
component in the previous expression vanishes and the ex-
pression becomes real = c.

If correspondence information is not available,  (·) be-
comes a complex sinusoid.  (·)= ce(j2��l=N ). The frequency
of this sinusoid is directly related to the shift �l in the se-
quence, which can be determined by looking for a peak in
the Inverse Fourier Transform of  (·)

If we have multiple views, Eq. (11) states that the phase of
 (0; l) di1ers from the phase of the auto-correlation  (0; 0)
by 2��lk=N . The phases of the auto-correlation terms is zero.
Hence the phases of the terms in  (0; l) is 2��lk=N .
If we have M views, then we can form a M × (N − 1)

matrix � with row l, corresponding to view l consisting of
the phase angles of  (0; l).

�=




�1 2�1 3�1 : : : (N − 1)�1

�2 2�2 3�2 : : : (N − 1)�2

�3 2�3 3�3 : : : (N − 1)�3

: : : : : : : : : : : : : : :

�M 2�M 3�M : : : (N − 1)�M



; (12)

where �l is 2��l=N . It is evident that the rows of the matrix
di1er only by a scale factor. Therefore, � is a rank-de7cient
matrix with a 7xed rank of 1, irrespective of the number
of views. Therefore a necessary condition for recognition in
multiple views related by symmetric a5ne homographies is

rank(�) = 1: (13)

Experimental results: To numerically validate the above
results, two views of a planar object (an image of an
aircraft) were generated with a random symmetric a5ne
image-to-image homography. The IDFT of  was com-
puted. This is depicted in Fig. 2. The graph shows a distinct
and unique peak at the optimal � (150 in this case) to align
and recognise the sequences. The rank of matrices was de-
termined using singular value decomposition (SVD). The
number of non-zero singular values of a matrix gives the
rank of the matrix. In a four-view situation with random
symmetric a5ne transformations and random cyclic shifts
in the order of points (to simulate lack of correspondence),
the two largest singular values of � were 320749 and
0.0575142. The rank of the matrix was essentially 1. This
experiment was repeated for various planar shapes with the
same result.
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Fig. 2. The IDFT of PX0[k]∗T PXl[k] when A is symmetric and the shift is 150.

Fig. 3. The IDFT of PX0[k]∗T PXl[k] when A is asymmetric and the shift is 100.

If A is not symmetric, PX∗TA PX will not be real and  
will no longer be a pure complex sinusoid. For a random
non-symmetric a5ne homography, the above experiment
was repeated. The magnitude spectrum of the IDFT of
 (0; l) is shown in Fig. 3. Interestingly, the magnitude
spectrum has a peak at the right shift value, though the
graph is noisy.

A series of experiments were carried out to study the
performance of this technique when the a5ne homography
is not symmetric. A plot of the ratio of the second highest
singular value of � to the highest singular value against the
ratio of the o1 diagonal elements is shown in Fig. 4.

4.2. General a1ne

It is well known that any square matrix can be expressed
as a sum of a symmetric and a skew symmetric matrix. We
can decompose the matrix A as

A = As + Ask ;

where

As = 1
2 (A + AT) is symmetric and

Ask = 1
2 (A − AT) is skew symmetric:
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Fig. 4. Plot of the ratio of the second highest singular value of � to the highest singular value vs the ratio of the o1-diagonal elements of
an a5ne homography (� is computed using the technique for symmetric a5ne homographies).

In the case of an a5ne homography relating images of a
planar shape, the skew symmetric matrix will reduce to

=1
2

[
0 a12 − a21

a21 − a12 0

]
;

=c

[
0 1

−1 0

]
;

where c = 1
2 a12 − a21. We can now write Eq. (11) as

 (0; l) = PX∗TA PXe−j2��lk=N

= PX∗T
(
As + c

[
0 1

−1 0

])
PXe−j2��lk=N

=  1 +  2: (14)

The term PX∗TAs PX of the above equation is purely real and
the term

PX∗Tc

[
0 1

−1 0

]
PX

—which corresponds to a rotation by 90◦ followed by scal-
ing by c—is purely imaginary. The phases of  1 and  2 de-
pend only on the shift �l. Thus, �l can be recovered from
the inverse Fourier transform of  1 or  2, if known. How-
ever, we can only compute  (0; l), a combination of  1 and
 2, which is not useful to recover the shift.

We observe that the e1ect of the transformation matrix
A in  2 is restricted to a scaling factor c. We ignore c,

and de7ne a new measure ' for the sequence PXl as

'(l)[k] = PXl[k]∗T
[
0 1

−1 0

]
PXl[k]: (15)

We can see that

'(l)[k] = ( PXl[k])∗T
[
0 1

−1 0

]
PXl[k]

=
(
Al PX

0[k]ej2��lk=N
)∗T [ 0 1

−1 0

]
Al PX

0[k]ej2��lk=N

= ( PX0[k])∗TAT
l

[
0 1

−1 0

]
Al PX

0[k]e−j2��lk=N ej2��lk=N

= |Al|'(0): (16)

Eq. (16) gives a necessary condition for the sequences PXl

and PX0 to be two a5ne-transformed views of the same planar
shape, namely, that the coe5cients of the measure ' should
be scaled versions of each other. This extends to multiple
views also. Consider the M × (N −1) matrix formed by the
coe5cients of the ' measures for M di1erent views.

�=




'(0)[1] · · · '(0)[N − 1]

'(1)[1] · · · '(1)[N − 1]

· · · · · · · · ·
'(M − 1)[1] · · · '(M − 1)[N − 1]


 : (17)

The necessary condition for matching of the planar shape
in M views then reduces to

rank(�) = 1: (18)
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It should be noted that the recognition condition does not
require correspondence between views and is valid for any
number of views.

Eq. (16) eliminates the shift �l from the recognition con-
dition. How can we also recover the shift corresponding to
each view if the boundaries match? We can modify the def-
inition of ' as below.

'′(l; p)[k] = ( PXl[k])∗T
[
0 1

−1 0

]
PXl[p]: (19)

The measure '′(·) correlates each vector Fourier coe5cient
with a 7xed one within each view (p). Following reasoning
similar to Eq. (16), we can show that

'′(l; p)[k] = ( PXl[k])∗T
[
0 1

−1 0

]
PXl[p]

= |Al|'′(0; p)[k]e−j2��l(k−p)=N : (20)

Eq. (20) states that the phases of '′(l; p) and '′(0; p) di1er
by an amount proportional to the shift �l and the di1erential
frequency k − p. Therefore, the ratio '′(l; p)='′(0; p) will
be a complex sinusoid ce−j2��l(k−p)=N . The value of �l can be
computed from the inverse Fourier transform of the quotient
series.

We can also form an M × (N − 1) matrix �′, similar
to the one above, that stacks the phases of '′(l; 1) (taking
p= 1). It will have the form

�′ =




	1 	2 	3

	1 	2 + �1 	3 + 2�1

: : : : : : : : :

	1 	2 + �M−1 	3 + 2�M−1

: : : 	N−1

: : : 	N−1 + (N − 2)�1

: : : : : :

: : : 	N−1 + (N − 2)�M−1


 ; (21)

where 	i are the phases of '′(0; 1) and �l =−2��l=N . This
matrix will have a rank of 2 irrespective of M . The rank
constraint on the above matrix, which is a necessary con-
dition for recognition of shapes in views related by a5ne
image-to-image homographies is

rank(�′) = 2: (22)

We have de7ned two necessary conditions ' and '′ for
a5ne invariant recognition. Recognition using ' involves
7nding the rank of a matrix, while '′ can also be used
to compute point-to-point correspondence between corre-
sponding shapes.

In the next section we present the results of a number of
experiments that we had conducted to verify our claims.

5. Experimental results and discussion

Experiments were 7rst conducted on synthetic views and
then on real images. Fig. 1 shows a synthetic hexagon un-
der various image-to-image homographies. For experiments
on synthetic images, two kinds of boundary representations
were considered—when the points on the boundary are de-
scribed using real coordinates (Ooating point numbers) and
when the locations of the boundary points are in terms of
integer coordinates. Boundary representation using real co-
ordinates preserves the mathematical basis of the formula-
tions discussed above and the rank constraints are strictly
enforced. When the boundary representation is in the form
of integer coordinates, discretization noise introduces errors
that make the rank constraint an approximation, but nonethe-
less enforceable. The real images were taken using a Sony
digital camera and had dimensions of 1024 × 768. From
these images, the objects of interest were segmented out
and their boundaries sampled to have 1024 boundary points.
Ease in using Fourier transform routines was the motivation
for sampling the boundaries to have 1024 boundary points.

5.1. Isometry and similarity homographies

The views (a) and (b) of Fig. 1 are related by isometries,
while (c) and (d) are related by similarity homographies.
The performance of the ' measure is analysed for these.
The ratio of the highest singular value to the next highest
singular value of the � matrix of ' values (Eq. (17)) of
two views was found to be very high, and hence the rank
can be considered to be 1. Both cases were considered—
when the points on the boundary are real values and when
the points are discretised. Table 1 shows the performance
for both cases.

5.2. A1ne homographies

In this subsection we demonstrate the application of the '
measure on views related by a5ne image-to-image homo-
graphies. Views (e) and (f) of Fig. 1 are related by a5ne
homographies. The two greatest singular values of the �
matrix of the ' measures for these two views for both real
and discrete representations of the boundary are given in
Table 2.

Table 1
Singular values of the � matrix computed from the ' measures of
views of the hexagon in Fig. 1a–d which are related by isometry
and similarity homographies

Isometry Similarity

Boundary points Highest Next Highest Next

Real 256 420 0.00386031 256 310 0.00486031
Discrete 256 423 1.96133 256 398 4.10475
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Table 2
Singular values of the � matrix of ' measures of views (e) and
(f) of Fig. 1

Singular values

Boundary points Highest Next

Real 231 124 0.00817599
Discrete 231 123 2.91271

Fig. 5. Four a5ne-transformed views of an aircraft.

The next set of experiments were performed on the bound-
ary of an aircraft. Four views of an aircraft related by a5ne
homographies are shown in Fig. 5. The shape boundaries
in the various views were sampled so that each shape was
represented by 1024 points. The � matrix for all the four
views was formed using the ' measures for each view as de-
scribed earlier. The rank of this matrix � was found to be 1
using SVD, as the largest two singular values were 247476
and 0.00186574.

Experiments were then conducted on the boundary of
the logo of the International Institute of Information Tech-
nology. Four views were generated using random a5ne
image-to-image homographies. Tables 3 and 4 present the
ratio of the highest singular value to the second highest sin-
gular value for various combinations of views shown in Fig 6
for real and discretised boundary descriptions, respectively.

When all the four views were stacked to form the �
matrix, the ratio of the highest singular value to the second
highest singular value was 5.53749e+06 and 738.366 for the
real and discrete boundary representations, respectively.

Determining point correspondence: We tested the e1ec-
tiveness of our technique for estimating correspondences
through the shift �l. Figs. 7(a) and (b) show the inverse
Fourier spectrum of the ratio '′(l; 1)='′(0; 1), when the
shifts aligning corresponding points in the two a5ne views
are 100 and 300, respectively.

Table 3
Ratio of the highest singular value to the second highest singular
value of the matrix of ' measures for di1erent combinations of
views shown in Fig. 6 for real point boundary descriptions

Views a b c d

a — 2.94429e+07 1.91431e+07 5.09852e+06
b 2.94429e+07 — 9.19418e+07 4.63504e+0
c 1.91431e+07 9.19418e+07 — 4.14435e+06
d 5.09852e+06 4.63504e+06 4.14435e+06 —

Table 4
Ratio of the highest singular value to the second highest singular
value of the matrix of ' measures for di1erent combinations of
views shown in Fig. 6 for discretised boundary descriptions

Views a b c d

a — 6913.86 880.174 1615.47
b 6913.86 — 1698.57 1424.83
c 880.174 1698.57 — 598.581
d 1615.47 1424.83 598.581 —

Fig. 6. Four views of IIIT’s logo related by random a5ne
image-to-image homographies.

We have achieved recognition between two planar shapes
under the assumption that the homography between them
has a speci7c form, without knowing the correspondence
between points. We were also able to estimate the corre-
spondence.

5.3. Projective homographies

We tested the ' measure (Eq. (15)) on views related by
general plane-to-plane homographies on both synthetic and
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Fig. 7. Graph showing the amplitude of the IDFT of '′(l; 1)='′(0; 1) against the shift for an a5ne homography when the synthetic shift is
(a) 100 and (b) 300.

Table 5
Singular values of the � matrix of ' measures of views (g) and
(h) of Fig. 1

Singular values

Boundary points Highest Next

Real 216 817 110.982
Discrete 216 803 113.986

real images. The experimental results presented below, show
that we are able to recognise shapes even under such situa-
tions. The image-to-image homography is projective in gen-
eral, but in practice a random projective homography would
cause such a distortion in the shape that it would be near
impossible for the human eye to recognise the two shapes
to be the same! Approximation of a perspective camera by
a weak perspective camera (which is a5ne) is popular [20].
We conducted experiments to examine the validity of this
approximation, the results of which are presented next. We
7rst present the results of experiments on synthetic data.

Experiments on synthetic images: The views (g) and (h)
of Fig. 1 are related by projective homographies. The two

Fig. 8. Three views of the logo of IIIT.

Table 6
Ratio of the highest singular value to the second highest singular
value of the matrix of ' measures for di1erent combinations of
views shown in Fig. 8

Views a b c

a — 431.048 505.847
b 431.048 — 292.71
c 505.847 292.71 —

highest singular values of the � matrix of ' measures for
these two views are given in Table 5 for both cases when
the boundary description is in terms of real points and when
the boundary representations are discretised.

Next we present the results of experiments on real images.
Experiments on real images: Fig. 8 shows three views

of our Institute’s logo. The boundaries of the logo in the
various views were extracted and sampled to have 1024
points. Tests were then carried out to determine the e5cacy
of the ' measure in determining whether all the views were
of the same object. Table 6 shows the ratio of the highest
singular value to the second highest singular value of the
� matrix of ' measures for various combinations of views.
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Fig. 9. A view each of drawings of a dinosaur and a lizard and a Ooppy diskette that has been segmented out.

Table 7
Ratio of the highest singular value to the second highest singular
value of the matrix of ' measures for di1erent combinations of
four views (a–d) of the shape shown in Fig. 9a

Views a b c d

a — 503.341 149.383 256.191
b 503.341 — 123.839 239.291
c 149.383 123.839 — 157.725
d 256.191 239.291 157.725 —

Table 8
Ratio of the highest singular value to the second highest singular
value of the matrix of ' measures for di1erent combinations of
four views (a–d) of the shape shown in Fig. 9b

Views a b c d

a — 265.959 208.302 100.214
b 265.959 — 379.928 107.613
c 208.302 379.928 — 136.592
d 100.214 107.613 136.592 —

As can be seen from the table, the highest singular value is
greater than the second highest by more than an order of 2
and so the rank of the � matrix is essentially 1.

Similar experiments were carried out on a number of
shapes. Here we show results of experiments conducted on
four views each of three planar shapes—a dinosaur, a lizard,
and a Ooppy (one view of each is shown in Fig. 9a–c). The
performance of the ' measure—the ratio of the highest sin-
gular values for di1erent combinations of views for each
shape are shown in Tables 7–9, respectively. These results
indicate that the rank of the � matrix is essentially 1.
The rank of the � matrix obtained on stacking the '

measures for all the views of the same shape was also found
to be 1 as can be observed from the results shown in Table
10, which gives the two highest singular values and the ratio
of the highest singular value to the second highest singular
value of the � matrix for all views of the same shape, for
the shapes shown in Fig. 9a–c. The highest singular value is

Table 9
Ratio of the highest singular value to the second highest singular
value of the matrix of ' measures for di1erent combinations of
four views (a–d) shown in Fig. 9c

Views a b c d

a — 829.15 1103.81 878.434
b 829.15 — 1399.44 564.725
c 1103.81 1399.44 — 847.364
d 878.434 564.725 847.364 —

Table 10
The two highest singular values and their ratio of the � matrix
obtained by stacking the values of the ' measure of all views of
the same shape (shown in Figs. 8, 9a–c)

Singular values

Shape Highest Next highest Ratio

IIIT Logo 1.026e+06 2878.12 356.482
Dinosaur 641940 3907.43 164.287
Lizard 786130 7065.8 111.258
Floppy 1.203e+06 1196.99 1005.021

greater than the second highest singular value by more than
order of 2 in all cases.

5.4. Discriminatory power

To examine the capability of this technique to distin-
guish between shapes, tests were carried out to evaluate the
' measure for views of di1erent shapes. A view each of
four objects were chosen—IIITs logo (Fig. 8b), a dinosaur
(Fig. 9a), a lizard(Fig. 9b), and a Ooppy (Fig. 9c). The ra-
tio of the highest singular value to the next highest singular
value of the � matrix for various combinations of views
(shapes) is shown in Table 11.
It is interesting to observe that the dinosaur and lizard

shapes exhibit greater similarity to each other than other
shapes.
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Table 11
Discriminatory power: ratio of highest singular value to the second
highest singular value of the matrix of ' measures for di1erent
combinations of shapes

Views IIIT Logo Dinosaur Lizard Floppy

IIIT logo — 9.95088 12.1399 18.1149
Dinosaur 9.95088 — 35.7616 14.9745
Lizard 12.1399 35.7616 — 20.1782
Floppy 18.1149 14.9745 20.1782 —

Table 12
Impact of noise on singular values of the matrix of ' measures
for Ooating point (real) and integer (discrete) representations of
boundary points in views related by a5ne image-to-image homo-
graphies

Real Discrete

Noise level Singular values Singular values

Highest Next Highest Next

0 247 476 0.00186574 213 036 73.0211
0.5% 232 918 63.6448 229 286 124.335
3% 211 296 356.347 228 500 483.168
5% 208 896 839.34 209 417 1233.88
10% 193 925 1424.26 197 214 2069.28
15% 190 745 2324.85 176 999 3251.64
20% 180 199 3887.51 166 523 4931.72

5.5. Robustness of recognition

A1ne image-to-image homographies: We now study the
recognition accuracy when a zero mean random noise is

Fig. 10. Graph showing the variation in the performance of the ' measure as the projective component v2 (Eq. (1)) is increased.

Table 13
Impact of noise on singular values of the matrix of ' measures in
real images of the same planar object imaged from multiple view
points

Noise level Singular values

Highest Next Ratio

0 1.02679e+06 2878.12 356.757
0.5% 1.0268e+06 2996.6 342.655
3% 1.02323e+06 3601.61 284.103
5% 1.01308e+06 3689.42 274.590
10% 982443 3920.95 250.562
15% 923793 6235.78 148.143
20% 854356 14580.3 58.597

added to the position of the synthetically transformed bound-
ary to be recognised for an a5ne homography. The highest
two singular values for di1erent maximum noise levels are
shown in Table 12. The ratio of the highest to the next
highest singular values does su1er, but there was still more
than an order of magnitude separation between the top two
even with a noise of 20% in the positions of the boundary
points.

Projective image-to-image homographies: When a zero
mean random noise is added to the positions of the points on
the boundaries of the shape in the various views, the perfor-
mance of the ' measure deteriorates, but even with a noise
of 20% in the positions of boundary points, there is more
than an order of separation between the two highest singu-
lar values of the matrix of ' measures, as is demonstrated
by Table 13.
Clearly, the recognition is excellent in all cases with the

degradation in performance along expected lines.
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Experiments were also conducted to obtain an idea of how
the performance of the ' measure falls with an increase in
the projective component. A plot showing how the perfor-
mance of the ' measure falls with an increase in the pro-
jective component v2 (Eq. (1)), keeping v1 7xed, is shown
in Fig. 10.

6. Conclusions

We formulated Fourier domain constraints combining
shape properties and multiview relations for planar shape
recognition in this paper. These serve as algebraic con-
straints for recognition of a planar shape in multiple views.
Our method does not need correspondence of points on the
shape boundary. The Fourier domain measurement matrices
used for recognition are based on simple measures that can
be computed easily. The recognition constraints are rank
constraints on these measurement matrices. We derive the
recognition constraints for the cases of the image-to-image
transformations between the multiple views being similar-
ity or a5ne. The method works well experimentally when
the image-to-image transformation is projective. We are
currently extending this philosophy to general projective
image-to-image transformations.

7. Summary

Recognition of planar shapes is an important problem in
computer vision and pattern recognition and has received
widespread attention in literature for many years. The same
planar object when imaged from multiple view points and/or
under di1erent camera parameters looks di1erent and its
recognition is non-trivial. Many planar object recognition
e1orts have been reported for the simple case of similarity
transformations—translation, rotation, and scaling between
views. However, the transformation between views of a pla-
nar object are more complex in typical problems of interest
and hence recognition approaches designed to handle trans-
lations, rotations, and/or scaling would prove to be insu5-
cient.

Many algebraic relations between matching primitives in
multiple views have been identi7ed recently. In this paper,
we explore how shape properties and multiview relations
can be combined to recognise planar shapes across multi-
ple views. We propose novel recognition constraints that a
planar shape boundary must satisfy in multiple views. The
constraints are on the rank of Fourier-domain measurement
matrices computed from the points on the shape boundary. It
is signi7cant that our techniques do not need point-to-point
correspondence which is needed by many recognition algo-
rithms and rarely available in real-life situations. Our method
can additionally compute the correspondence between the
curve points after a match is established. We demonstrate

the applications of these constraints experimentally on a
number of synthetic and real images.
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