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Abstract

The surface code scheme for quantum error correction holds great promise with relatively
high error rate thresholds predicted - some three orders of magnitude higher than conventional
quantum error-correcting codes (such as the Steane code). The central problem is the question
of how to physically implement the surface code in viable physical qubit systems. This
report details the calculation of the error threshold for the surface code in 2D using graphical
techniques for a physically motivated breakdown of the time scales and error rates of the
underlying physical system, including measurement, gate and memory components. The
characteristic behaviour of the error threshold with respect to these components will influence
the physical design of the qubit array upon which surface codes could be implemented.

2



Statement of Contribution

Section 1 and 2 are original reviews of the theoretical foundations of the surface code.

Section 3 contains a description of a simulator implemented by others but modified by the
author as explicitly stated.

Section 4 contains original results.

The author wishes to thank Dr. Lloyd Hollenberg, Dr. Andrew Greentree, and David Wang
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1 Introduction

The power of quantum informational algorithms and protocols is derived from entangling the
states of increasingly large numbers of qubits. However, maintaining a coherent state to perform a
computation with, and manipulating qubits as desired, has proven an extremely difficult process.
Decoherence due to interaction with the environment causes a lack of precision and control at the
design level and can quickly compromise a quantum computation. This has lead to the rich theory
of quantum error correction and fault-tolerant computation. An extremely important result is
the threshold theorem; the fact that, for error rates below a certain implementation dependent
critical value, reliable quantum computation can always be achieved. The best known schemes for
quantum computation include the Steane code on a two-dimensional lattice of nearest-neighbour
coupled qubits, which has been shown to have an error threshold of ∼ 10−5. This limit is still a
long way away from being practically achievable.

In this report, we will explore a newly proposed scheme for quantum computation, the surface
code. We will confirm the claimed first-order error threshold of ∼ 1%, and explore what happens
to this threshold value when we apply the surface code to actual physical implementations.

1.1 Formalism

The fundamental unit of quantum computation is the qubit, which is taken to be the state vector
of any quantum system described by a two-dimensional Hilbert space. Examples of these systems
are pervasive throughout quantum mechanics, from solid-state physics to optics to superconduc-
tors. Like a classical bit, measurement of a qubit will always give one of two possible outcomes,
corresponding to the two possible eigenvalues. However, unlike the classical analog, a qubit can
be in a superposition of both states at once, represented as |ψ〉 = α |0〉 + β |1〉. Here, we have
implicitly chosen a computational basis with which to define the eigenstates |0〉 and |1〉 of our
statespace. Qubits can be used to store and process information through the application of oper-
ators. Multi-qubit states are formed from tensor products of individual qubits. These states can
be separable or entangled, and it is here wherein the power of quantum computation lies.

Qubits are acted on by unitary operators which transform single or multiple qubits as desired.
The most fundamental single qubit operators are the Pauli operators (denoted here as X,Y,Z),
defined by the commutation relation [σi, σj ] = 2iσk. These operators generate the Lie group
SU(2), and (together with the identity operator I) form a basis for the space of single qubit
operators. We will follow convention and define our qubit basis states to be the eigenvectors of
the Pauli Z operator, i.e. Z |0〉 = |0〉 and Z |1〉 = − |1〉. The Pauli X eigenstates will be denoted
as |+〉 and |−〉, but we will focus on the computational basis for the majority of this report. The
X operator acts on these states as X |0〉 = |1〉 and X |1〉 = |0〉, which leads us to define X as the
bit-flip operator. This is directly analogous to the classical NOT operation. Similarly, the relation
Z(α |0〉 + β |1〉) = (α |0〉 − β |1〉 allows us to identify Z as the phase-flip operator. This however
has no classical computational analog.

Before we can proceed further, we must clarify the notation employed in the report. Multiple
(n−)qubit states will be denoted as |q1q2...qn〉, which is short form for |q1〉 ⊗ ...⊗ |qn〉. Similarly,
tensor products of operators will be written in conventional shorthand notation as OaOb...Ok,
where each subscript indicates which qubit(s) an operator is acting on, and the Identity operators
in the product acting on the remaining qubits are not written explicitly.

Information is stored in the state of a multi-qubit system, and computation is performed
through the application of various operators. An equivalent means of representation is the quantum
circuit model, again directly analogous to classical circuit diagrams. Qubit states are listed as
inputs (lefthand side) of the circuit, and propagation through time is represented via wires (left
to right). The application of operators on one or more qubits is shown as gates which output
transformed intermediate states. Each column of gates typically represents a single timestep of
the quantum computation; wires which pass through a column without explicitly showing a gate
are treated as ideal (i.e. an application of the identity operator). Note that the wires do not
necessary represent any sort of physical displacement of qubits. The controlled-NOT (CNOT)
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quantum gate is shown in figure 1.

Figure 1: (a) The controlled-NOT gate quantum circuit diagram. The filled circle is the control
qubit and the XOR symbol (addition modulo 2) represents the target qubit. In the Z computational
basis, this is equivalently a controlled-X gate. (b) An equivalent circuit to perform the CNOT
operation. The H gate represents the Haddamard transformation, which transforms between the
X and Z bases. In the X basis, the Z gate acts as a bit-flip.

1.2 Quantum Computation

We are now equipped with the basic elements required to describe a quantum computation. How
we actually implement a quantum computation is a much more intricate matter. The requirements
of a physical system to actually implement a quantum computer are explicitly known [14]. We
shall briefly describe them. In general, a quantum computational algorithm will involve arbitrary
single and multi-qubit gates. However, in practical physical implementations, a limited set of gates
(operators) will be practically available. We define a given set of gates to be universal for quantum
computation if any unitary operator can be approximated to within arbitrary accuracy (defined
by the appropriate norm) by a quantum circuit using only these gates, and thus require this of any
physical quantum computer. We must also have the ability to prepare (initialize) states as desired,
and perform measurements in the computational basis. Furthermore, to implement computations
with any actual advantage over their classical counterparts we must be able to extend our design
to large numbers of qubits; this requires what is known as a scalable architecture.

1.2.1 Error Model

So far we have assumed we can perform ideal quantum computations; in practice errors, which
are defined as an unintended evolution of qubits, will occur. We will employ several common
assumptions to greatly simplify our model of errors. Detailed analysis can be found in [9, 10, 14].

There are two main types of errors occurring during a quantum computation process. The first
type are errors due to the interaction of qubits with the external environment which causes deco-
herence errors. These errors are represented as a unitary evolution of the joint qubit-environment
system, after which the environment is traced out of the picture. Suppose we have a quantum sys-
tem in a state |ψ〉 interacting with the environment, initially described by |E〉. The system could
be all or part of our quantum computer, and the environment refers to everything external to this
system. Assume this error process can be described by some unitary operator Uerror acting on the
joint system |ψ〉 |E〉. Then the density operator of the specific system after this interaction is ob-
tained by tracing out the environmental variables: TrE(ρ) = TrE(Uerror |ψ〉 |E〉 〈E| 〈ψ|U†error) =∑
i εi |ψ〉 〈ψ| ε

†
i (operator-sum representation of Uerror). The action εi : ρ→

∑
i εiρε

†
i is in fact a

superoperator[15] defined in terms of the Krauss operators εi, which represents the most general
environment interaction [16] and transforms a pure state of qubits into a statistical mixture.

Let us look at a single term in this summation. Suppose we have a multiple qubit system
encoding a single logical qubit state, which is in general represented as |ψ〉 = α |0L〉 + β |1L〉. If
we consider εi as on operator on the first qubit only, it can be expanded in terms of the bit flip X,
the phase flip Z, the combination XZ, and the identity I as εi = aiI + biX + ciZ + diXZ. The
state εi |ψ〉 can thus be expanded as a superposition of |ψ〉 , X |ψ〉 , Z |ψ〉 , XZ |ψ〉. (It is worth
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noting that the trace preservation theorem does not hold for subsystems, implying εi |ψ〉 will
not necessarily be unitary and εi |ψ〉 must be re-normalized). Measuring the error syndrome will
cause the collapse into one of these four states, from which |ψ〉 may be recovered by applying the
appropriate inversion operator (X2 = I = Z2). This in general extends to all εi, and |ψ〉 can
thus be recovered through appropriate error correction and detection [14]. The fact that general
noise can be tolerated by error correcting using only the discrete set of (Pauli) operations is a
fundamental and deep result, and is crucial to the development of surface codes.

We will make several assumptions regarding errors which are common throughout the literature
[9, 10, 14]. Let us assume that an environmental error occurs over a given timestep with probability
p. We will also assume that all noise acts independently on single qubits, which is reasonable for
most situations. [14]. Furthermore, we will assume there is no error or speed constraint on any
auxiliary classical computations required to interpret measurements and control subsequent gate
operations. A description of our method of error correction will be delayed until a later section.

The ability to detect and correct errors is vital to quantum computation, but this does not
equate with reliability; error correction and detection techniques can themselves induce further
errors which may compound to failure. Error handling must be done in a fault-tolerant manner,
and this leads us to the fundamental concept of error rate thresholds. Computation performed on
an error susceptible (i.e. physical) implementation is not inherently reliable. Errors can quickly
compound and cause computational failure. To circumvent this problem, a rich body of data
encoding and error correction techniques have been developed [14].

1.2.2 Error Rate Thresholds

Quantum error correction algorithms allow for the identification (detection) and correction of
errors through redundant encoding. Typically, a small number of logical qubits (i.e. qubits
used to compute) are encoded over a larger number of actual qubits, known as codewords. To
ensure that errors do not propagate through a quantum circuit and compound as to compromise a
computation, algorithms and encodings must be designed in a fault-tolerant fashion. This means
that if errors do occur (to within a certain limit), quantum information will not be lost. To
implement a circuit fault-tolerantly, we choose an encoding suitable for the error model at hand,
and design an appropriate set of fault-tolerant gates.

Consider a circuit containingM gates which each introduce errors to the circuit with probability
p. Then the probability of there being at least one error at the circuit output is at most Mp (for
incoherent errors) ([15]) i.e. the probability of output error is bounded. If we instead apply our
fault-tolerant implementation, it can be shown that this bound will always decrease if the error
probability p is below a certain constant, know as the error threshold. Suppose we have chosen an
encoding which maps our i logical qubits onto j > i actual qubits. We could then re-encode these
j qubits onto k > j qubits, further reducing our probability of error. In principle, we can continue
this process ad infinitum (called concatenation), yielding an arbitrarily low probability of output
error. It can be shown that the circuit size (number of gates) required to reduce the output error
probability to at most ε� 1 grows polynomially with ε. This is known as the threshold theorem,
and is presented quantitatively in [14, 15].

1.3 Physical Computation

In practice, gates must be built from simpler constituent operations (depending on the archi-
tecture), and an exponential increase in complexity and resources is required to achieve high
precision computation. The error threshold required is typically determined by the geometry of
the qubit arrangement; typical schemes have required extremely low error probabilities to achieve
fault-tolerant computation. Topological based schemes introduced by Kitaev et. al. [10] have
been estimated to have a threshold error rate at best ∼ 10−4. Thresholds for fault-tolerance are
thought to be even more difficult to achieve for two-dimensional qubit arrays with only nearest
neighbour interactions; the best estimate for a Steane code on such a lattice is found to be ∼ 10−5
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[19]. This report will introduce the surface code, a novel scheme for getting topological level pro-
tection for this same physical arrangement, and with a threshold which has been estimated to be
an improvement of several orders of magnitude.

The aim of this report is to extend the current model of the surface code to realistic physical
scenarios. We will determine the realistic error thresholds that can be expected, and analyse the
range of physical parameters for which this scheme presents an improvement over other proposed
architectures.

2 The Surface Code

The surface code was first described by Kitaev [21] and has been expanded upon in [2, 19]. It is
based on the reduction of a general topological quantum computation scheme to a two-dimensional
lattice. Large numbers of qubits are used to encode a much smaller number of logical qubits in a
robust, fault-tolerant fashion. We will show how this leads to error thresholds much higher than
most other current schemes for quantum computation.

2.1 Stabilizer Representation

The surface code is based on the stabilizer formalism of quantum mechanics, a powerful represen-
tation of states rooted in abstract group theory. Stabilizer based codes, also commonly referred to
as additive codes, are the quantum analog of classical linear codes and provide a robust approach
to error detection and correction. We will present a brief introduction to theory of stabilizers as is
relevent for our later construction of the surface code. A comprehensive treatise on the stabilizer
formalism can be found in [14, 6].

There exists numerous mathematically equivalent ways to describe a quantum state. The
typical way in quantum information theory is to express the state as a vector (codeword) in

the computational basis, for example, the Bell state |00〉−|11〉√
2

. Alternatively, this state could be

expressed as the unique (up to a global phase factor) simultaneous +1 eigenstate of the operators
forming the set {−X1X2,+Z1Z2}, known as the stabilizer of our state. Trivially, I⊗n is always an
element of any stabilizer (though typically not included in an enumeration of stabilizer elements)
and this set is in fact a group under operator composition. Moreover, given n mutually commuting
independent operators over n qubits, there always exits a unique simultaneous +1 eigenstate, and
hence a unique stabilizer representation [2]. Furthermore, only the generators of this group (a
minimal set of independent elements in the sense that each cannot be composed of products of
the others) are required to completely specify a state.

It is worthwhile at this stage to point out an ambiguity in the literature; both this group and
its elements (stabilizer operators) are commonly referred to as the stabilizer(s) of a state. For
the majority of this report, we shall adopt the latter nomenclature. Stabilizer operators which
are solely products of X operators are referred to as X stabilizers, and likewise for Z operators.
Furthermore, for many qubit systems, stabilizers often act non-trivially on a subset of qubits, and
are of the form U1⊗ ...⊗Um⊗I⊗(n−m). We will follow convention and neglect writing any identity
operators or tensor product symbols when explicitly stating our stabilizers.

The stabilizer formalism also provides an elegant description of quantum dynamics. Assume
we have a unitary operator U acting on a state |ψ〉. Then each stabilizer O will transform as
U |ψ〉 = U(O |ψ〉) = UO(U†U) |ψ〉 = (UOU†)U |ψ〉, i.e. U |ψ〉 is now stabilized by UOU†. This
encompasses any unitary evolution of our state, including the action of errors, which we will take
to be Pauli operators. To continue with the above example, suppose an X error occurs on the
second qubit of our Bell state. Our two independent stabilizer operators will therefore transform as
X2(−X1X2)X†2 = −X1X2, and X2(Z1Z2)X†2 = −Z1Z2. This follows trivially from the hermicity
and commutation relations of the Pauli operators. We observe here a key feature of the stabilizer
formalism which is fundamental to the construction of the surface code. Namely, that under a
X error (bit flip), a Z stabilizer will flip sign, while the X stabilizer will remain invariant. It is
trivial to show the converse relation also holds; that under a Z error (phase flip), X stabilizers will
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flip sign while Z stabilizers will remain invariant. We therefore conclude that X stabilizers detect
phase flips and Z stabilizers detect bit flips. (Of course, both the stabilizer and the error must act
non-trivially on the same qubit for any change of eigenvalue to occur). This is a crucial point, and
is fundamental to quantum error correction. For our example above, if we measure the original
Z stabilizer before the X2 error occurs, we will by definition obtain the +1 eigenvalue. After the
X2 error has occurred, measuring the same stabilizer again will now yield the −1 eigenvalue; i.e.
we have obtained information that an error has occurred. However, we don’t know exactly where
this error has occurred, nor what type of error. It is easy to see that an X1 error will have an
identical effect on the given stabilizers. Also, it must be emphasized that measuring the stabilizer
does not affect our quantum state, and therefore will not compromise any quantum computation.
In our example, both before and after states are eigenstates of our original stabilizer operators;
what changes after an error is the measured eigenvalue. In this example, we could equivalently

conclude that a bit flip on the second qubit will yield the state |01〉−|10〉√
2

. However, in practice (as

with the surface code), the explicit state of our qubits is not necessarily known a priori; rather, the
stabilizer value is measured regularly, and a sign change is taken to indicate the occurrence of an
error. So now we can in principle obtain information about the occurrence of errors by measuring
the eigenvalues of our stabilizers, without actually having revealed any information regarding the
actual state of our qubits. In analogy with classical coding theory, these eigenvalues are referred
to as the error syndromes of our code.

A final result worth mentioning is the Gottesman-Knill theorem [6]. It states that a stabilizer
circuit restricted to state preparation and measurement in the computational basis, utilizing gates
restricted to the Clifford group (a superset of the group of Pauli operators), can always be efficiently
simulated on a classical computer. This provides the motivation for our simulation of the surface
code.

2.2 Construction of the Surface Code

The construction of the surface code begins with the toric code introduced by Kitaev [Kitaev Ref3];
but instead of a torus, the lattice is planar, with data qubits mapped to the lattice edges. As any
physical implementation must be finite, a new feature which arises is the boundary. Generally,
there are two types, depending on whether a lattice boundary is open or closed: a rough or X -
boundary, and a smooth or Z -boundary (see figure 2a below). For an n×m plaquette (face) lattice
(i.e. all smooth boundaries), there will be (n+ 1)m vertical edges and n(m+ 1) horizontal edges,
totalling 2mn+ n+m qubits.

Surface code states are represented in the stabilizer formalism. Without loss of generality, we
will restrict our set of stabilizers to tensor products of the real Pauli matrices, G̃n = {I,X, Y, Z}⊗n,
with real matrix Y ≡ XZ. Although the stabilizers generated from this set cannot represent an
arbitrary quantum state, a sufficiently broad range can be realized for our purposes. However, a
simple extension of the stabilizer formalism does allow representation of truly arbitrary states [2].

As with the toric code, the X and Z check operators (stabilizers) act non-trivially on their 4
adjacent qubits. The X stabilizer at vertex j is given by Xj = ⊗l3jXl, and similarly the Z stabilizer
for each plaquette k is given by Zk = ⊗i∈kXi (see figure 2b). It is important to note that these
definitions are still valid at boundaries of the surface or defects (to be defined shortly), where the
tensor product will now be over less than 4 non-trivial operators. From simple counting, it can be
seen that our n×m lattice will have nm faces and (n+ 1)(m+ 1) vertices giving 2mn+n+m+ 1
stabilizer operators, of which it can be shown[21] that 2mn + n + m are actually independent1

and thus form a valid representation of our data qubits. This argument is easily extended to the
cases of rough or mixed boundaries, again resulting in a one-to-one correspondence between data
qubits and surface stabilizers.

1by geometric arguments one of the stabilizers is always expressible as a product of the others
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Figure 2: (left) Surface code layout of data qubits as the edges of a 2-dimensional lattice. The
lattice shown here has a smooth (Z) boundary on the top and left (bounded by edges), and a
rough (X) boundary on the bottom and right (open boundary). (right) For this lattice fragment,
the stabilizers indicated would be X = XaXbXdXe and Z = ZbZcZeZf .

2.3 Error Detection and Correction

Initialization of the surface substrate is a non-trivial operation. Every qubit is prepared in the
|0〉 state, forcing the surface into the +1 eigenstate of every Z stabilizer. Measuring X stabilizers
will thus yield random negative eigenvalues, which for simplicity we treat as errors and correct
([2]). Assuming no initialization errors, the surface will be in the simultaneous eigenstate of every
stabilizer. If no gates or measurements are applied, the surface will ideally remain in this state.
However, any physical implementation will not have an unbounded coherence time. Realistically
there is a finite (implementation dependent) probability in time that a memory error will occur,
and thus must be corrected. As explained earlier, general errors can be tolerated with just the
ability to detect and correct for single bit flips (X errors) and phase flips (Z errors). Suppose an
X error occurs on a specific qubit as shown in figure 3a. This will cause the adjacent plaquette
(Z) stabilizers to flip sign. analogous ly, a Z error on a single qubit will cause the adjacent
vertex (X) stabilizers to flip sign. Y errors are treated as combined X and Z errors and will
cause both stabilizers to flip sign. Furthermore, suppose a chain of X errors occur. This will
cause the Z stabilizers at the ends of the chain to flip sign, but the intermediate Z stabilizers
will flip twice and thus be unaffected. A chain of Z errors will have the analogous effect, but for
the adjacent X stabilizers. As both X and Z errors are treated independently, without a loss
of generality we will focus only on Z stabilizers (which detect bit flips) for the remainder of this
report. Unless otherwise specified, interchanging X ↔ Z operators will give the analogous result
for the appropriate X stabilizer case.

2.3.1 Syndrome Extraction

We have not yet discussed how the error syndromes (surface stabilizer eigenvalues) are actually
measured. The lattice of logical qubits (edges) is augmented with additional ancilla qubits on
the lattice faces and vertices which are used to detect whether the surface state |ψsurface〉 is a
±1 eigenstate of a particular (X or Z) stabilizer. If the surface is in neither eigenstate, the
syndrome detection circuit will project the surface into a new state |ψ′surface〉 which is one of the
±1 eigenstates. The circuits used to extract the syndrome values for single stabilizers are shown
in figure 4. As each stabilizer is a parity measurement of the local qubits invloved, this value
is extracted with a CNOT operation between qubit and an ancilla qubit. For every stabilizer
to be measured, an ancilla qubit (initialized to |0〉 is required in the lattice to store this value
for readout. The requirement of local CNOT gates to facilitate syndrome extraction implies our
surface must be a 2-D nearest neighbour coupled qubit lattice.

It is worth reemphasizing that syndrome measurement does not entail the explicit measurement
of any of our data qubits, and does not perform a measurement operation on |ψsurface〉. The state
of our surface is defined independently of the state(s) of any ancilla qubits added to our lattice.
The joint system is thus a tensor product state |ψsurface〉 ⊗ |ψancillas〉, and we only quantum
compute on the state of logical qubits described by |ψsurface〉. The syndrome extaction circuit
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Figure 3: (left) Single X error flips the sign of both adjacent Z stabilizers because of anti-
commutation relation, i.e. for a state |ψ〉 stabilized by ZaZbZcZd, error Xc yields Xc |ψ〉 =
Xc(ZaZbZcZd |ψ〉) = −ZaZbZcZd(Xc |ψ〉). Similarly, a Z error flips the sign of the adjacent X
stabilizers (only affected X stabilizers indicated). (right) Two chain of X errors, only affected
stabilizers shown. Note one chain connects to the smooth boundary and only changes the sign of
a single stabilizer. Intermediate Z stabilizers remain in +1 eigenstates. Z stabilizers at end of the
error chains become negative.

yields information about the type of errors that have occurred locally; it does not tell us exactly
what errors have occurred on exactly what qubits. There is no actual measurement performed on
our logical qubits, and thus no collapse of the (potentially entangled) surface state. Measurement
is however performed on the ancilla qubits, and their states must collapse to an eigenstate of the
measurement operator.

2.3.2 Minimum Weight Matching Algorithm

Equipped with syndrome measurement, our code now requires error correction. Errors appear
as −1 stabilizer values detected at various locations on our surface. We seek to reconstruct the
highest probability set of error locations which could have caused these syndromes, and then
to correct by re-applying this exact error pattern (ZiZi = Ii, XjXj = Ij , so the same pattern
will undo all errors). The algorithm used is based on the minimum weight matching algorithm
presented in [22]. Despite only requiring polynomial runtime to execute, this algorithm is quite
computationally expensive for large lattice sizes and thus has previously been avoided. Alternative
error correction algorithms for the surface code are described in [2, 17].

Error correction via the minimum weight matching algorithm is executed as follows: Suppose
we detect several Z stabilizers with negative eigenvalues (X stabilizer case proceeds similarly):
1) Map each of the negative Z stabilizers to a node of a weighted graph
2) Connect an edge between each possible pair of nodes, and assign to each edge a weight equal to
the minimum number of errors required to create an error chain between the associated plaquettes
3) Separate into pairwise connected sub-graphs such that the total sum of weights is minimal
4) Apply appropriate error operations to ’undo’ the error chains corresponding to the remaining
sub-graphs

An simple example of this algorithm is given in figure 5. It is important to note that X errors
can be matched to smooth boundaries of the surface (or a defect), and Z errors can be matched
to rough boundaries. The algorithm also considers the possibility of each negative eigenvalue
being matched to the nearest appropriate boundary. This, in particular, handles the case of an
odd number of negative stabilizers. Another important consideration is the case of multiple error
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Figure 4: (upper left) Actual surface code layout of surface qubits, now showing both data qubits
(black) for computation and ancilla qubits (grey) for syndrome extraction. (upper right) Physical
measurement of a single Z stabilizer executed by applying CNOT gates between the plaquette
ancilla and the adjacent data qubits. (bottom left) Plaquette (Z) syndrome extraction circuit.
(bottom right) Vertex (X) syndrome extraction circuit (cf. figure 1)

paths of equal weight connecting two negative stabilizers. Fortunately, our algorithm is robust
against this dilemma. It can be shown simply from stabilizer commutation relations that correcting
either path will have an equivalent effect on our surface.

Negative stabilizer eigenvalues on our surface can be caused in principle by any possible chain of
errors. This algorithm is based on the principle that smaller error chains are much more probable
than longer ones. This is a reasonable assumption, but the occurrence of longer chains will lead
to incorrect error corrections and subsequent circuit failure. Furthermore, it is possible for the
measured eigenvalue of a particular stabilizer to be reported incorrectly (i.e. a memory error on
an ancilla qubit). To account for this, the reported syndromes are monitored in time. Rapid
changes of a syndrome value in time is indicative of a readout error, as this is a much higher
probability event than that of consecutive memory errors occuring. Hence, error correction should
be postponed as long as possible[2], and error pairs matched in both space and time. This is
implemented by a simple extension of the above algorithm, and shown in figure 6.

Our surface code simulation only implements quantum memory and thus does not in fact imple-
ment error correction until the end of a computation length. The justification for this is as follows:
for a fixed quantum circuit it can be calculated exactly how any errors will propagate through the
circuit, and the time/space matching algorithm tells us exactly when and where any errors have
occurred (to lowest order probability), so at the end of the computation we can determine and ap-
ply the appropriate cumulative error corrections. In principle, for an actual quantum computation
on the surface code, error correction would be applied at frequent intermediate intervals.

2.4 Logical Qubits

The surface code as thus presented exhibits promise for error detection and correction; however we
still have not introduced any degree of freedom with which to perform a quantum computation. To
do so, we must introduce a logical qubit. The simplest way to do this is to designate a single face
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Figure 5: (top left) Error syndromes detected. (top right) Syndromes mapped to weighted graph.
(bottom left) Possible subgraphs determined. Clearly (ii) is minimal weight. (bottom right) Error
corrections applied, restoring all syndromes to +1. Observe lower pair of −1s can be corrected in
one of two ways, both having identical effect on the surface syndromes

where we don’t measure the associated (Z) stabilizer. This is known as a smooth defect. As seen
in figure 7, we would now have n− 1 stabilizers describing n logical qubits and hence one degree
of freedom on our surface. Alternatively, we could pick a single vertex where we stop measuring
the X stabilizer, known as a rough defect.

The Z stabilizer of a plaquette with an even number of X operators, either as errors or as inten-
tional gates, applied to its edges will not change sign (because both Xi operators anti-commute
with Zi, so the stabilizer will flip sign twice). Thus any chain of X operators connecting the
smooth defect to the boundary will serve to flip the sign of the defect without affecting any of the
other stabilizers on the surface. This effectively applies an X gate (bit flip) to the logical qubit, as
desired. Similarly, a ring of Z operators forming a closed loop encircling the smooth defect will act
as a logical Z (phase-flip) operator. By definition, this implies that our logical qubit is initialized
to |0L〉 because our surface is initially in the +1 eigenstate of every Z stabilizer. In fact any such
loop will perform this operation the Z operators mutually commute.

So the surface now has a logical qubit with which to compute; to actually do this, we must
define logical operators XL and ZL with which we can manipulate its state. Clearly XL and ZL
anti-commute (as seen trivially from the stabilizer commutation relations) and are indeed Pauli
operators satisfying:

ZL |0L〉 = |0L〉 , ZL |1L〉 = − |1L〉 , XL |0L〉 = |1L〉 , XL |1L〉 = |0L〉 (1)

It is important to consider that these X and Z operators may be applied unintentionally in
the case of noise. As we have seen, a single X or Z error on our lattice will not cause a logical
error, but an erroneous XL or ZL will. So to minimize the possibility of a logical X error, the
defect should be placed as far away from the boundary of the surface as possible. Similarly, the
possibility of a logical Z error can be decreased by increasing the size of the defect. Note that
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Figure 6: (This figure taken from [2] a) Locations (red dot) in space and time where reported
plaquette syndrome value changes between time steps. b) Error matching (red edges) applied over
space and time.

Figure 7: Surface code with 2x1 qubit smooth defect where the internal stabilizers are not mea-
sured. This degree of freedom can be bit-flipped with chain of a X operators connecting the
defect to a smooth boundary, or an phase-flipped by an encircling ring of Z operators (possibly
connecting to a rough boundary).

defects of arbitrary size will still only introduce a single degree of freedom as the defect formation
will always remove l qubits2 and l + 1 stabilizers. The qubits contained within the defect are
projected into a product state ([2]) and will not be used for the remainder of the computation
(unless of course the defect moves).

In the case of a distant boundary, it is often undesirable to have to use a long chain of operations
to perform a single logical gate. One possible solution is to use a pair of closely placed defects
to represent a single logical qubit. The XL gate now becomes any chain of X operations linking
the two defects, and the ZL gate becomes any ring of Z operators encircling either defect. This
effectively is concatenation of our code as our logical state is now represented as α |0〉 |0〉+β |1〉 |1〉.
Evidently there exists a trade-off here between the time (number of operations) to implement a
logical gate, and the likelihood of a logical error.

The preceding discussion applies analogous ly to logical qubits based on rough defects. In this
case, the XL gate is any encircling ring of X operators and the ZL gate is any chain of Z operators.
A detailed discussion of this case can be found in [2]

2The single plaquette defect is the l = 0 case
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2.5 Error Rate Threshold

The threshold theorem implies the existence of a critical error rate for our surface code, below
which an arbitrarily long computation can be performed. In terms of our surface code as a quantum
memory, we define a logical failure to be when sufficient net errors have occurred (irrespective of
any error corrections applied) to apply an undesired logical gate. The code distance d is thus
defined to be the minimum number of errors necessary for a logical error to occur. Equivalently,
d is the length of the shortest path connecting a defect boundary to any piece of boundary of
the same type, i.e. the minimal number of errors which cannot be detected through syndrome
detection but affects the codeword subspace ([21]).

A distance d code can always correct bd−1
2 c ∈ O(d) errors [?]. However, since larger distances

use more resources, there are more locations for error, and the overall error rate increases ∼
O(d2p). Therefore, there exists a critical error rate where the extra errors a code can correct is
counterbalanced by this penalty. In our simulation of a quantum memory on the surface code, we
will plot the mean time-to-failure versus error rate for various code distances. We thus anticipate,
for our critical rate pthresh, that increasing the code distance will assymptotically fix the time-to-
failure. For error rates p > pthresh, we expect time-to-failure to asymptotically approach ’zero’
(i.e. always fails on initial timestep). For error rates p < pthresh, we expect time-to-failure to
asymptotically increase without bound.

An alternative approach used by Fowler et.al. [2] is to determine the threshold value by analysis
of error correction patterns. For p < pthresh, long error chains should be exponentially supressed,
so pthresh is defined to be the critical point such that simulations with higher error probability
exhibit error chains at all length scales. As we have implemented a quantum memory and only
error correct at the end of a computation time, this method is not appropriate for our application.

2.6 Quantum Computation on the Surface Code

So far we have introduced a quantum memory on which we can perform error correction and de-
tection. However, much remains to extend this model to being able to perform an actual quantum
computation. A simple protocol to perform a logical CNOT operation is based on the ability to
translate the locations of lattice defects, but is beyond the area of interest of this review. State
distillation protocols exist allowing the construction of arbitrary XL and ZL rotation operators
with high fidelity, leading to Haddamard and non-Clifford logical gates, and thus (an at least
approximate) universal set of logical gates. Logical basis changes can also be performed (i.e.
transformation between smooth and rough qubits).

A comprehensive review of these and further aspects of the surface code is found in [2, 19, 21].

3 Simulation of the Surface Code

The simulations performed by David Wang were successful in reproducing an error rate threshold
of pthresh ∼= 0.0075 [7], consistent with other surface code simulations [2, 17, 19]. This verified
the promise of the surface code to deliver a much better error threshold than other currently
proposed architectures [19]. The aim of this work is to modify the existing code to better reflect
the parameters involved in actual physical implementations. The uniform error rate will be broken
down into component error rates, measurement length will be extended to arbitrary time intervals,
and the effects of these parameters on the error rate threshold for the surface code will be examined.

3.1 Uniform Error Rate Model

The existing simulator was based on the surface code as described thus far. It was implemented
in the C programming language by Zac Evans and David Wang. The surface code simulation
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implements quantum memory on a single logical qubit. Further functionality for logical operations
and other advanced aspects is yet to be fully implemented.

The simulation consists of a single logical qubit (defect) on a rectangular lattice with smooth
boundaries on the top and left (which facilitate X error chains), and rough boundaries on the bot-
tom and right (which can connect to Z error rings). Note that either rough or smooth boundaries
can alternatively be thought of as an interface with a distinct rough or smooth defect. In this
implementation, a single error rate p is externally input and used for both gate error and memory
error. At each timestep, a qubit is subject to an single qubit error E1 with total probability p
(one of {X,Y,Z}) each with probability p/3). The only 2-qubit gate used currently is the CNOT
gate which is applied ideally and then followed by a single timestep where a 2-qubit gate error
E2 ∈ {IX, IY, IZ,XX, ..., Y Z, ZZ} (precisely the 16-1 non-trivial 2-qubit tensor products of Pauli
operators) occurs with probability p/15.

Figure 8: (top) Single qubit timestep with possible memory error implemented as Ip ≡ (1− p)I +
p
3 (X + Y + Z). (bottom) CNOT implemented as ideal gate followed by timestep with possible
2-qubit errror Ip ≡ (1− p)I ⊗ I + p

15 ({I,X, Y, Z}⊗2 − I ⊗ I)

The lattice is initialized to the +1 eigenstate of every stabilizer. Initialization errors are
ignored (pinit ≈ 0) because we can assume to have error corrected our lattice before begining
any computation3. Each qubit in the lattice is modeled with an integer value representing its
time position (circuit depth), and with classical bit values for both X and Z. Each value is not
necessarily an X or Z eigenvalue for logical qubits; it is used to indicate ’parity’ during syndrome
extraction in the sense that an error causes the syndrome eigenvalue to flip signs irrespective
of the actual quantum state of the qubits involved. Ancilla qubits are however initialized into
the |0〉 state, and this bitfield is used to store the resulting stabilizer eigenvalue from syndrome
extraction. Syndrome extraction is implemented in parallel, a reasonable assumption for many
physical architectures [14], over four timesteps. The first timestep applies a CNOT gate between
each ancilla qubit in the lattice and the logical qubit immediately to its left (of course only for
qubits in the lattice and not inside a defect). This is then repeated for the adjacent logical qubits
immediately to the right, above, and below. No measurement delay time is implemented, (i.e.
each syndrome value is immediately available), but an additional timestep is applied to simulate
the possibility of readout error.

The simulation is designed to determine the number of steps a quantum circuit on the surface
code can undergo before a logical failure occurs. Suppose we have a quantum algorithm we wish
to execute, which we know a priori takes m steps4 to complete. At each timestep, the time co-
ordinate of every qubit is iterated, and a single qubit error is applied with probability pmem. The
simulation algorithm then runs through m steps on the surface code. Syndrome extraction (error
detection) and error correction are performed, and the surface code is checked independently for
logical X and logical Z failures.

To facilitate calculation of the time to a logical failure for general algorithms of various sizes,
the parameter m is allowed to vary until a failure is detected. At first, the simulator considers
algorithms which take m timesteps. The above procedure is applied, and if either a X or Z logical

3alternatively, the initial timestep can be thought of as potential initialization error
4i.e. m levels in the corresponding quantum circuit
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failure is found to have occurred, the number m is output as the time to failure. However, if no
logical failure is found, the lattice is restored to its state immediately after the mth timestep5

(before error detection / correction was applied), the assumed algorithm length is iterated to
m → m + 1, another timestep is applied, logical failure checked, and so on. This process begins
for a single timestep m = 1 circuit, and m is iterated until both X and Z failures have occurred6.
The number of steps taken for each respective logical failure is output, and the time to failure is
generally taken to be the minimum value.

The program inputs three parameters: the uniform error probability p, the code distance d,
and the number of simulations to run N . The resulting X and Z fail times from each of the
N simulations run are output as a list of ordered pairs and recorded for further analysis. The
parameter d allows simulations to be run for arbitrary code size and error correction capability.
The dimensions of the surface code lattice and the defect, and hence the tiem for a simulation to
run, thus scale directly with the code size.

3.1.1 Threshold Calculation

The threshold theorem tells us that, for error rates below a critical value pthresh, an arbitrarily long
computation can be performed with arbitrarily high reliability [10]. Equivalently, pthresh is defined
to be the rate at which increasing the resources devoted to error correction neither increases nor
decreases the reliability of the quantum computer [2]. Either of these definitions are common to
the literature; we will employ both consistently. Simulations were run for several code distances
d over a range of p values, each over a large number of simulations N . The mean time to fail was
then plotted as a function of the error rate p, and these curves compared for each code distance.
Also included is the expected mean time to failure without any error correction, which is taken to
be 1/p. This is plotted qualitatively in figure 9, and detailed in the Results section.

The curves on the plot intersect at (nearly) the same point, which is clearly a (nearly) fixed
point with respect to the code distance d. Thus increasing the code distance has no effect on the
time to failure for this critical value of p, which is consistent with the second definiton above.
For p less than this value, the time to failure increases rapidly with the code distance d. It is
reasonable to extrapolate that with arbitrarily large code distance, an arbitrarily large time to
failure is achievable, and this is consistent with the first definition above. Thus we identify the
critical value pthresh to be exactly the intersection of our (idealized) time to failure curves.

It is important to note that the geometry of our lattice dictates that we should only compare
even to even or odd to odd code distances in calculating the error threshold. This is because the
minimum number of Z errors required (dZ) to encircle a smooth defect will always be even, and
thus cannot be equal to the minimum number of X errors required (dX) to failure for odd code
distance cases. For odd code distances, our simulator typically specifies d ≡ dX and dZ = dX + 1.
Hence, I will look at even code distances only for the remainder of this paper.

Unfortunately, our simulations are not ideal which leads to uncertainty in our threshold calcu-
lations. For fixed p and d, the expected time to failure is taken to be the mean of N trials. The
uncertainty of each calculated mean value is taken to be the mean standard error σ/

√
N , where σ

is the standard deviation of the sample set. Moreover, the resolution in p is finite, and continuous
curves must be fit to each data set to extrapolate an intersection point. This is done with a linear
approximation as described in the Results section. Finally, the curves for various distances do
not intersect at the exact same point due to the above error considerations, and the fact that the
threshold theorem truly applies for d → ∞. Hence, we take the threshold to be the intersection
of the two largest even distance codes simulated.

3.2 Generalized Surface Code Model

Now we wish to generalize the surface code simulator to more closely resemble actual physical
architectures, and thus give an even better idea of real world error rate thresholds. As there is

5we can ’clone’ states classically!
6the surface code can be considered to have failed once either logical failure has occurred
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Figure 9: Illustrative Plot of Time to Failure versus Uniform Error Rate. Observe that for suffi-
ciently small p, all code distances achieve longer time to failure than for the No Error Correction
(NEC) case.

no consensus in the scientific community as to which physical path to quantum computation will
prove fruitful, it was desirable to parameterize the code in such a way that the results could be
extrapolated to a wide variety of potential architectures.

Previously, both gate error and memory error rates were related to a single input p and imple-
mented over an identical length timestep in order to produce consistency with the approaches of
[2, 17, 18]. However, suggested physical implementations for surface codes and quantum compu-
tation in general exhibit relative extremities with respect to gate error rates, memory error rates,
gate times, measurement times, and coherence times, often over several orders of magnitude [14].
It was thus desirable to generalize the surface code simulator to account for the effect of these
parameters.

The first step in generalizing the simulator was to break the total error rate down into its
components; initialization error pinit, readout error pmeas, memory error pmem, and gate error
pgate. For simplicity, initialization error was again ignored and readout error was left as an extra
timestep after syndrome extraction. Gate error rate and memory error rate were implemented as
distinct input parameters. Gate time was left as the fundamental unit of time in the simulation.
This meant that memory error was specified as the probability of error per gate time unit. Finally,
measurement time was specified in gate time units as an input parameter m. This was achieved
by altering the syndrome extraction functionality as shown in figure 10. The ancilla qubits are
held for m timesteps to simulate a measurement process, while the remaining logical qubits are
idled (with the possibility of memory error). For simplicity, independent measurement error (on
the ancilla qubits) is ignored.
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Figure 10: Modified Z syndrome extraction circuit (gate error not shown here)

4 Results

The error rate threshold for the surface code was calculated for the case of uniform error rate.
This result was then extended to the case of distinct gate and memory error rates, and non-
instantaneous measurement. Finally, these results were extrapolated to calculate the error rate
thresholds for three distinct potential physical implementations.

The existing C language code was modified to implement the previously described functionality.
Parts of this code are included as an appendix. All simulations were run on the QCV SGI Altix
32-core supercomputer, and the Baker Lab dual core pentium computers at the University of
Melbourne. In most cases, N=5000 or N=10000 simulations were run. While far from ideal, this
value provided a balance between sufficient convergence to the mean failure time and the large
number of desired simulations to be run. Furthermore, even code distances were primarily looked
at to further reduce the necessary amount of simulations.

The first step was to verify the modified simulator by reproducing the established threshold
result for the case of uniform error rates by using identical parameters. Next, error rates were
separated into gate error and memory error. Finally, measurement time was increased arbitrarily,
and the combined effect of these parameters on the error threshold was examined.

For consistency across all simulations run, the threshold value was taken to be the crossing of
the d = 6 and d = 8 time to failure data sets with respect to the error rate p. This was estimated
by taking the closet possible data points to the threshold value for each code distance, and then
using a linear fit between each pair to calculate the intersection point. The error on each data
point was taken to be the mean standard error, and this gave a range of possible intersection points
pthresh,left ≤ pthresh ≤ pthresh,right via the same linear approximation. The error on each threshold
value was then taken to be ±Maximum{|pthresh − pthresh,left|, |pthresh,right − pthresh|}. Typically,
this calculation yielded error of . 10% on pthresh. However, due to resource constraints, certain
atypical cases were limited by a less then desired amount N of trials completed, or low resolution
in p data collected, both of which resulted in a higher uncertainty on pthresh.

An important note is that all calculations were performed consistently using the mean time
for logical X failure to occur, instead of the mean time for either logical failure. The reasoning
for this was that smooth defects are inherently much more robust against logical Z failures, so
logical Z failures typically takes much longer occur. This is evident from the geometry of our
simulation because, in general, for a fixed size (number of component operators) there exists
many more possible logical X operators than logical Z operators. The simulator was further
modifed to ignore logical Z failures altogether, which greatly increased the speed and throughput
of simulations. This was necessary to achieve the large amount of data output desired with the
time and resources available for this project. Qualitatively, the mean time to logical Z failure was
found to be typically an order of magnitude greater than the mean time to either logical failure,
while the mean time to X failure was typically . 10% (due to the rare event of a relatively quick
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logical Z failure). The quantitative effect of this approximation has not yet been determined (as
the data does not exist). However, it is worthwhile to note that the significance of error threshold
calculations lies in the predicted order of magnitude of acceptable error rates; thus reasonably sized
deviations should not have a great effect on our conclusions regarding physical implementations
of the surface code.

Finally, it worth briefly mentioning the anticipated behaviour of error rate thresholds under our
generalized simulator, as consistency between predictions and results is an important means of code
verification. Note that, for pgate 6= pmem, the error rate threshold can be specified in terms of either
pgate or pmem (as pthresh

gate or pthresh
mem ). Obviously, for pgate = pmem and tmeas = 0 (instantaneous),

we expect to exactly reproduce the earlier derived threshold error rate of pthresh
uniform ' 0.0075.

As pgate is increased, we would expect more overall errors and thus the threshold memory error
rate pthresh

mem to decrease proportionately. Furthermore, in the limit
pgate
pmem

� 1, gate errors should

dominate over memory errors as the cause of logical failure, and we expect pthresh
mem

∼= const× pgate.
Alternatively, as measurement time m is increased, we expect the extra memory errors induced
to become the dominant cause of failure, and pthresh ∝ m as m → ∞ (of course, it should be
inversely proportional!). Hence, in both the large pgate and large m limits, we expect the error
rate threshold to exhibit scale invariant behaviour (i.e. if we increase pgate or m by a factor 10a,
the threshold will decrease by a factor 10a).

4.1 Uniform Error Rate Threshold

The first test of the code was the reproduction of earlier results. Gate error rate was set equal
to memory error rate, and measurement time was set to 0 (instantaneous). For consistency
with later results, our value was determined using N = 5000 and ∆p = 0.00025 ( ∆p

p|pthresh
'

2.5%). A plot of the results is given in figure 11. The error threshold was calculated to be
pthresh
uniform = 0.00822 ± 0.00046, which agrees well with the expected value of pthresh

uniform ' 0.0075
[7]. Our value is found to be slightly larger than anticipated, with a deviation of ∼ 10%. This
can be explained because the previous threshold calculation undoubtedly employed a much higher
number of simulations N and a finer resolution ∆p in determining the threshold value than we
have employed here.

4.2 Gate Error and Measurement Time

Gate error rate and measurement time parameters were implemented into the surface code simu-
lator as described earlier. In order to keep the required running time and amount of output data
tractable, gate error and memory error were not treated as independent parameters; rather the
ratio of the two quantities

pgate
pmem

was varied. Note that, in this parameterization, the threshold val-

ues pthresh
gate and pthresh

mem are not independent as they are trivially related by pthresh
gate = (

pgate
pmem

)pthresh
mem .

The error rate ratio
pgate
pmem

and measurement time m = tmeas

tgate
(units of gate time) were varied at ex-

ponential scales and compared with expected behaviour. First, the separate effect of each of these
parameters on the error threshold was determined, and then the combined effect explored. As pre-
viously described, even code distances (d = 6, 8) were exclusively used for threshold calculations,
and only logical X failure times considered.

4.2.1 Gate Error

The behaviour of the error rate threshold with respect to the ratio of gate to memory error (for
instant measurement) is plotted in figure 12, and the error threshold is shown as a function of
both pmem and pgate.

Our error threshold results are consistent with expected behaviour. The memory error thresh-
old pthresh

mem is observed to rapidly converge to a ∼ 1 decade/decade constant negative slope (−20
dB/decade) with increasing pgate (and hence increasing

pgate
pmem

). This is exactly the scale invari-
ant behaviour expected for pgate � pmem. This is consistent with gate errors dominating over
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Figure 11: Log-Log plot of Time to Failure versus Error Rate and enhanced linear plot. Error
rate threshold calulated to be 0.00822± 0.00046

memory errors in this limit, and thus solely determining the error threshold. In other words,
for a large gate error rate, the required memory error rate to achieve fault-tolerant computa-
tion is exponentially small. Alternatively, the gate error threshold pthresh

gate is seen to converge to
0.01017± 0.00169 (found from simulating pmem = 0 case), slightly greater than the uniform error
threshold rate. This implies that for increased

pgate
pmem

, the memory error threshold pthresh
mem decreases

such that pthresh
gate = (

pgate
pmem

)pthresh
mem ≈ pthresh

uniform (constant). This is indicative of the uniform thresh-
old error rate acting as an upper bound for all error rates in the sense that all error rates must
be below this value to achieve reliable computation on the surface code. However, we observe
pthresh

gate > pthresh
uniform! This can be explained because

pgate
pmem

� 1 is also achieved as pmem → 0; but
this limit is essentially just the uniform error rate simulation, but with memory errors turned ’off’.
Hence we would expect less overall errors than in the usual uniform error rate case, and a slightly
higher threshold.

For the case pgate < pmem, the memory error threshold is seen to increase asymptotically
pthresh

mem →∼ 0.04 as
pgate
pmem

→ 0 (i.e. as pgate → 0). Again, with pgate � 1, there will be less
overall errors than in the uniform error rate case, and we thus expect an increased but bounded
memory error rate threshold. The limiting case pgate = 0 was also simulated, resulting in pthresh

mem =
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Figure 12: Error Rate Thresholds versus Gate Error / Memory Error Ratio for Instant Measure-
ment

0.03951± 0.006567. This is a substantial improvement on most known error rate thresholds, and
indicates promise for physical implementations with high fidelity gates. The limit

pgate
pmem

→ 0 is
also approached when pgate � pmem. Here, we expect memory errors to dominate over gate errors,
and again we observe a scale invariant, exponential decrease in the gate error rate threshold.

Also shown in figure 12 is the effect of gate error rate on the actual time to failure curves for
the d = 6 case (the other code distance curves behave similarly). We observe that as gate error
ratio is increased by factors of 10, each curve is effectively translated by a factor of 10 to the left
with respect to memory error. Also, as the gate error ratio is decreased, the curves appear to
asymptotically approach the

pgate
pmem

= 0 curve. This result is again consistent with our expected
behaviour.

4.2.2 Measurement Time

Next we considered the effect of measurement time on the error rate threshold for fixed
pgate
pmem

. For

simplicity, we first look at the case
pgate
pmem

= 1, and subsequently increase this ratio by factors of
10. A comparison of these cases is plotted in figure 13.

The effect of measurement time on the error rate threshold is similar to the gate error case
but subtly different. As anticipated, the slope of the

pgate
pmem

= 1 threshold plot does converge
fairly rapidly to a one decade per decade decrease. However, it takes m ' 100 before this is
approximately achieved, as error threshold is observed to only decrease by a single decade over
the first two decades of measurement time increase. In contrast, the plot against gate error
converged much faster; this indicates that gate error rate has a stronger effect on the threshold
than measurement time (as would be expected from the four CNOT aplications per syndrome
extraction cycle).

The
pgate
pmem

= 10, 100, 1000 plots also appear to converge to the one decade per decade slope
with increasing measurement time, with each taking roughly an additionally order of magnitude to
achieve this. The

pgate
pmem

= 1 plot serves as an upper bound, which the other
pgate
pmem

plots asymptote to
with increasing m. This is consistent with the earlier discussion. For relatively small measurement

7not shown on plot (log-log)
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Figure 13: (i) Log-Log plot of Error Threshold vs. Measurement Time for pgate = pmem (ii) Error
Threshold vs. Measurement Time for various ratios G =

pgate
pmem

times (again in units of gate time), the extra memory errors induced during syndrome readout have
a small but noticeable effect. As measurement time increases, these errors become the dominant
cause of failure, and cause the threshold to decrease, eventually linearly. For each tenfold increase
in

pgate
pmem

, we anticipate a 10-fold increase in the amount of measurement time required before these
errors will dominate the threshold. Finally, for extremely large measurement times, errors from
measurement should solely be the determining factor of the error threshold. Of course, we always
expect a slightly better threshold result for lower gate errors in all cases; hence the asymptotic
behaviour.

The behaviour of the error threshold with respect to both gate error ratio and measurement
is exhibited in figure 14. A smooth surface is attached to the data points to clearly exhibit the
aforementioned behaviour. Given arbitrary values for gate error, memory error, and measurement
time of a particular physical implementation, this graph can be used to immediately extrapolate
a very good estimate of the expected error threshold value.

4.3 Physical Implementations of the Surface Code

Many physical architectures show great promise for quantum computation. Several very distinct
approaches which are particularly suited for the surface code are looked at here. These architec-
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Figure 14: 3-dimensional Plot of Memory Error Threshold versus
pgate
pmem

and Measurement Time
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tures are very briefly introduced, parameters estimated, and error rate thresholds derived. Where
aplicable, near worst-case estimations will be used. It is important to consider that as none of
these architectures have yet been built, the various parameters and resulting thresholds are truly
valid only as order of magnitude approximations. While this may seem crude, a resulting thresh-
old which is thought to be achievable gives a very good indication of the potential of a particular
architecture.

No hard data exists describing realistic timing and error rate parameters for an actual (rea-
sonably sized) implementation of a quantum computer. To compensate for this, various authors
typically extrapolate from small scale data (i.e. the known time to apply a gate to a single qubit)
to the corresponding parameters for a large scale quantum computer (i.e. the time to apply gates
in parallel on numerous qubits in a many qubit implementation). This technique often employs
crude approximations, but does achieve reasonable order of magnitude estimates. Another prob-
lem is that within a certain physical system, there can be multiple ways to define qubits and
gates, leading to further variation in approximate parameters. Evidently, some physical imple-
mentations will be much better suited for surface codes then others. Ideally, we require as physical
system which naturally supports a two-dimensional nearest neighbour, locally coupled lattice of
qubits. Efficient scalability is also advantageous to easily implement surface codes of sufficient
code distance and number of logical qubits. Any system must also be sufficiently isolated form the
environment to actually achieve threshold memory error rates or better. Furthermore, transport
times and fidelity are an important consideration for actually performing a quantum computation
on the surface code.

A review of available literature was conducted to extract reasonable estimates of timing and
error parameter. Estimates of gate times, gate error rates, memory time, memory error rate, and
measurement times were extracted as available. A commonly found parameter is the T2 time of a
particular physical implementation. This specifies the time for an entangled qubit state to effec-
tively decay (for off-diagonal density matrix elements to effectively vanish), and thus compromise
any quantum computation being performed. This parameter can therefore be justifiably identified
as the memory time of our system, as is common practice throughout the literature. Hence, as
gate time tgate is the fundamental unit of time in our simulation, we approximate the memory

error rate as pmem
∼= tgate

T2
. This is a valid approximation as we are considering the occurrence of

memory errors to be approximately a Poisson process.
Several well-suited physical architectures are looked at, and error rate thresholds estimated.

Using the results presented in this report, the error rate threshold can easily be estimated for
physical architectures not discussed here, and further refined as new timing and error data becomes
available. Through discussions of physical quantum computer design and implementation can be
found in [14, 4].

4.3.1 Ion Traps

The first realization of an actual quantum computer is likely to take place with an Ion Trap based
architecture. Recent experiments have entangled up to eight ions [11, 13], shown coherence times
of seconds, and demonstrated both entangling gates and state readout with operational fidelity
& 97% [8, 20]. Strategies also exist for shuttling ions in an array of traps, providing scalability
to large scale computations. Moreover, basic ion traps have successfully been implemented on
semiconductor chips [5].

Typical architectures store qubits as internal hyperfine states and/or external motion states of
trapped ions. Lasers pulses are used to induce coupling between internal states for single qubit
operations, or between internal states and external motion states for entangling gates. A particular
implementation employs Calcium ions and has been shown to have coherence times T2 ' 1.2s for
internal hyperfine states and T2 ' 0.2s for external motion states of a single trapped ion [8].

Unfortunately, ion trap architectures are not perfect. Timescales for logical gates are slow
(1-100us), and this worsens to 50-100us if ion shuttling is accounted for [20]. Measurement is not
much better, estimated to be on the order of 1 to 10 gate times [1].

We thus estimate memory error as pmem
∼= tgate

T2
∼= 100µs

1s = 10−4. Measurement time is taken
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to be 10 gate times as a reasonable worst case, and the error threshold is calculated as a function
of pgate. This result is shown in figure 15, with the gate error rate threshold determined to be
pthresh

mem = 0.00968± 0.00069.

Figure 15: Log-Log plot of Time to Failure versus Gate Error Rate for Ion Trap QC

4.3.2 Phosphorus-Doped Silicon

Modern classical computers would not be possible without Silicon semiconductor technology. It is
therefore highly desirable to find a scheme for implementing quantum computation in some form
of Silicon as integration of classical and quantum processing is a vital component of a large scale
reliable quantum computer. Most Silicon-based schemes are two-dimensional by design and are
believed to highly scalable (although several issues have been identified, see [12]), and thus a good
candidate for Surface Codes. We will consider an architecture based on Silicon doped with ionized
Phosphorus, for which a comprehensive description can be found in [12, 3]. The spin states of the
donor electrons in a silicon substrate are used as qubits, yielding a relatively large coherence time
of ' 60ms (which we will take as order ∼ 100ms). Efficient gate times on the order of ∼ 100ns
are achieved through Coherent Transport by Adiabatic Passage (CTAP) schemes, yielding an
approximate memory error rate of pmem ' 100ns

100ms = 10−6. Finally, measurement time is estimated
to be on the order of µs, and will use m = 100 gate times as a worst case scenario. Using these
parameters, the times to failure were simulated as a function of pgate, as shown in figure 15. The
error threshold was calculated to be 0.00968± 0.00021.

It is interesting to observe the both Ion Traps and Silicon based architectures have yielded
nearly identical threshold values for pthresh

gate ! This is because, as consistent with our earlier discus-
sion, the parameters used in both cases lies in the pgate � pmem, so both cases give a threshold
value very close to the

pgate
pmem

= 0 limit. Furthermore, in both cases memory time was not large

enough to have a dominant effect on the threshold (as we saw earlier). For large scale architec-
tures, the parameters used are likely to significantly worsen (at least at first!), and thresholds can
thus be re-estimated from the general data collected.

4.3.3 Electrons on Helium

An advantage of the electrons on Helium implementation is the extremely large coherence times
speculated. We therefore take T2 to be effectively infinite, and thus set our memory error to zero
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Figure 16: Log-Log plot of Time to Failure versus Gate Error Rate for SiP

(this will give a bound on the threshold for a real system with very small but finite memory error).
Gates however are dipole based and relatively slow, taking 10ms. Hence, we also assume that
tgate >> tmeas, and set measurement time m = 0. Both these approximations will serve to give an
upper bound on the threshold for a real physical system with very small but finite memory error
and measurement time.

Using these approximations, this case becomes equivalent to the pmem = 0(
pgate
pmem

→ ∞) case

described earlier. The threshold for this case was found to be pthresh
gate = 0.0102 ± 0.0017. It

is worth reemphasizing that this value is slightly higher than the uniform error threshold rate
because memory errors have been turned off. With the introduction of non-zero measurement
time and memory error rate, we expect this threshold to decrease, effectively moving along the
surface shown in figure 14. We can therefore use the information obtained from our general
threshold calculations to obtain a better estimate on the actual threshold value as more precise
data becomes available.

4.4 Conclusion

We were successful in estimating the error rate threshold values for three distinct potential phys-
ical implementations of the surface code. In each case, error thresholds on the order of 1% were
successfully demonstrated. Moreover, in each case we have effectively employed worst-case pa-
rameters, so the error rate threshold for an actual built system may even be better than expected.
Each architecture was shown to possess very reasonable error rate thresholds. However, perform-
ing actual quantum computation with these architectures is another matter altogether. Scalability,
transport times and fidelity, actual measurement fidelity all determine whether the surface code is
most effectively implemented on a particular architecture. This is the subject of further research.

We have confirmed the surface code to exhibit error thresholds several order of magnitude better
than the previous best estimate on a two-dimensional lattice using the Stean code. Morover, we
verified this for both the idealized case, and several physical implementations.

The methodology employed is obtaining these results can easily be extended to any physical
architecture suitable for the surface code. Moreover, the generalized results presented in this
report allows for constant refinement of expected error rate thresholds as physical data of increased
precision becomes available.
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A Partial C code

The simulator C code was implemented over ∼ 20 files. For brevity, only the main.c file is provided
here. Further code can be provided on request of the author.

29



/* main.c

 * $Id: main.c 128 2008-10-01 00:56:35Z stuartah $

        main.c 128 2008-06-21 00:56:35Z dswang $

 *

 * Find the time to failure using blossom4 to find matching in surface

 * code error correction routine.

 */

#include <assert.h>

#include <limits.h>

#include <math.h>

#include <stdbool.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <unistd.h>

#include "checkpoint.h"

#include "component.h"

#include "detect_fail.h"

#include "error_corrector.h"

#include "error_detector.h"

#include "keep.h"

#include "lattice.h"

#include "simulator.h"

#include "timer.h"

#include "util.h"

typedef void

(*make_lattice_func)(QUANTUM_COMPUTER *qc, int lx, int ly, bool **lattice);

/*--------------------------------------------------------------*/

static void

print_errors(QUANTUM_COMPUTER *qc, int lx, int ly, defect_t *d, FILE *stream)

{

    int i, x, y;

    for (y = 0; y < ly; y++) {

        for (x = 0; x < lx; x++) {

            i = lx*y + x;

            if ((d->l < x && x < d->r) &&

                (d->u < y && y < d->d)) {

                fprintf(stream, ". ");

            }

            else {

                fprintf(stream, "%c ",

                        qc->qubit[i].x ? (qc->qubit[i].z ? 'y' : 'x')

                                       : (qc->qubit[i].z ? 'z' : 'I'));

            }

        }

        fprintf(stream, "\n");

    }

}



/*--------------------------------------------------------------*/

static void

make_lattice_x(QUANTUM_COMPUTER *qc, int lx, int ly, bool **lattice)

{

    int x, y;

    for (y = 1; y < ly; y += 2) {

        for (x = 1; x < lx; x += 2)

            lattice[y][x] = (qc->qubit[lx*y + x].x) ? true : false;

    }

}

static void

make_lattice_z(QUANTUM_COMPUTER *qc, int lx, int ly, bool **lattice)

{

    int x, y;

    for (y = 0; y < ly; y += 2) {

        for (x = 0; x < lx; x += 2)

            lattice[y][x] = (qc->qubit[lx*y + x].z) ? true : false;

    }

}

/*--------------------------------------------------------------*/

static void QC_Idle(QUANTUM_COMPUTER *qc)

{

    int i;

    for (i = 0; i < qc->size; i++)

        QC_Timestep(qc, i);

}

static void

duplicate_quantum_computer(QUANTUM_COMPUTER *src, QUANTUM_COMPUTER *dest)

{

    int i;

    for (i = 0; i < src->size; i++)

        dest->qubit[i] = src->qubit[i];

}

static void

magic_intermediate(QUANTUM_COMPUTER *qc, int lx, int ly, int lt,

                   defect_t *d, keep_t *keep, make_lattice_func make_lattice)

{

#define SWAP(a,b)   do { bool **swap = a; a = b; b = swap; } while (0)

    make_lattice(qc, lx, ly, keep->lattice);

    find_match_intermediate(lx, ly, lt, d, keep);

    SWAP(keep->lattice, keep->lattice_ref);

#undef SWAP

}



static bool

magic_final(QUANTUM_COMPUTER *qc, int lx, int ly, int lt, defect_t *d,

            keep_t *orig, keep_t *keep, make_lattice_func make_lattice,

            correction_func corrector, detection_func detector)

{

    bool logical_op;

    duplicate_keep(lx, ly, orig, keep);

    make_lattice(qc, lx, ly, keep->lattice);

    find_match_final(lx, ly, lt, d, keep);

    apply_corrections(qc, keep->correction, corrector);

    logical_op = detector(qc, lx, ly, d);

    free_keep(ly, keep);

    return logical_op;

}

static void

simulate_instance(QUANTUM_COMPUTER *qc, QUANTUM_COMPUTER *dup,

                  int lx, int ly, defect_t *d,

                  keep_t *keep_x, keep_t *keep_z,

                  int *x_fail_time, int *z_fail_time)

{

    bool x_fail = false;

    bool z_fail = false;

    int t;

    keep_t work;

    clear_keep(lx, ly, keep_x);

    clear_keep(lx, ly, keep_z);

    t = 1;

    while (!x_fail || !z_fail) {

        QC_Idle(qc);

        /* Pretend we are on the last step.  Do special error free

         * syndrome detection.

         */

        {

            duplicate_quantum_computer(qc, dup);

            /* Idle time step to simulate measurement error. */

            dup->error_rate = qc->error_rate;

            QC_Idle(dup);

            dup->error_rate = 0.0;

            error_detect(dup, lx, ly, d);

            /* Check for X/Z failures. */

            if (!x_fail) {

                if (magic_final(dup, lx, ly, t, d,

                                keep_x, &work, make_lattice_x,

                                QC_X, smooth_detect_logicalx)) {

                    x_fail = true;

                    *x_fail_time = t;



                }

            }

            if (!z_fail) {

                if (magic_final(dup, lx, ly, t, d,

                                keep_z, &work, make_lattice_z,

                                QC_Z, smooth_detect_logicalz)) {

                    z_fail = true;

                    *z_fail_time = t;

                }

            }

        }

        /* If we are still alive, then we do regular error detection

         * using the ancillas.  Do not error correct or check for

         * logical failure.

         */

        {

            /* Idle time step to simulate measurement error. */

            error_detect(qc, lx, ly, d);

            QC_Idle(qc);

            /* Check for X/Z failures. */

            if (!x_fail) {

                magic_intermediate(qc, lx, ly, t, d,

                                   keep_x, make_lattice_x);

            }

            if (!z_fail) {

                magic_intermediate(qc, lx, ly, t, d,

                                   keep_z, make_lattice_z);

            }

        }

        t++;

    }

}

static void

simulate_instances(int lx, int ly, defect_t *d, double error_rate,

                   int instance, int total_instances)

{

    QUANTUM_COMPUTER qc;

    QUANTUM_COMPUTER dup;

    keep_t keep_x;

    keep_t keep_z;

    int x_fail_time = INT_MAX;

    int z_fail_time = INT_MAX;

    components_init();

    make_keep(lx, ly, &keep_x);

    make_keep(lx, ly, &keep_z);

    for (; instance < total_instances; instance++) {

        checkpoint(instance);



        QC_Startup(&qc,  lx*ly, error_rate);

        QC_Startup(&dup, lx*ly, error_rate);

        simulate_instance(&qc, &dup, lx, ly, d, &keep_x, &keep_z,

                          &x_fail_time, &z_fail_time);

        fprintf(stdout, "(%d, %d)\n", x_fail_time, z_fail_time);

        fflush(stdout);

        QC_Shutdown(&dup);

        QC_Shutdown(&qc);

    }

    free_keep(ly, &keep_x);

    free_keep(ly, &keep_z);

    components_shutdown();

}

/*--------------------------------------------------------------*/

static void usage(char *progname)

{

    fprintf(stderr,

            "usage: %s [-h] [options]\n\n"

            "Options:\n"

            "  -d <int>\tset the code-word distance\n"

            "  -n <int>\tset the number of instances to run\n"

            "  -p <float>\tset the error probability\n"

            "  -s <int>\tset the random number seed\n"

            "  -S <file>\trestore the state of a terminated computation\n",

            progname);

}

static void prefab(int dist, int *lx, int *ly, defect_t *d)

{

    int du, dd, dl, dr;

    int xdist, zdist;

    if (dist <= 4)

        dist = 4;

    xdist = dist;

    zdist = (int)(dist/2) * 2;              

    

    du = 2 * (xdist-1);

    dd = du + 2 * floor((double)zdist/4);

    dl = 2 * (xdist-1);

    dr = dl + 2 * ceil((double)zdist/4);

    *lx = dl+dr;

    *ly = du+dd;

    make_defect(du, dd, dl, dr, d);

}

int main(int argc, char *argv[])

{



    double error_rate = 0.05;

    int seed = time(0);

    defect_t d;

    int lx, ly;

    int instance = 0;

    int total_instances = 1000;

    int c;

    char *state = NULL;

    prefab(4, &lx, &ly, &d);

    while ((c = getopt(argc, argv, "d:hn:p:s:S:")) != -1) {

        switch (c) {

            case 'd':

                prefab(atoi(optarg), &lx, &ly, &d);//atoi converts string to int

                break;

            case 'n':

                total_instances = max(1, atoi(optarg));

                break;

            case 'p':

                error_rate = atof(optarg);

                break;

            case 's':

                seed = atoi(optarg);

                break;

            case 'S':

                state = optarg;

                break;

            case 'h':

            default:

                usage(argv[0]);

                return -1;

        }

    }

    start_timer();

    if (state) {

        instance = checkpoint_restore(state, lx, ly, &d, error_rate);

    }

    else {

        fprintf(stdout,

                "seed: %d\n"

                "lattice size: %d %d\n"

                "defect corners: (%d, %d) (%d, %d)\n"

                "error rate: %g\n",

                seed, lx, ly, d.l, d.u, d.r, d.d, error_rate);

        fflush(stdout);

        init_gen_rand(seed);

        checkpoint_init(seed, lx, ly, &d, error_rate);

    }

    simulate_instances(lx, ly, &d, error_rate, instance, total_instances);

    stop_timer(stdout);

    return 0;

}


