
Spectral Methods for Natural Language Processing

Jang Sun Lee (Karl Stratos)

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2016

c©2016

Jang Sun Lee (Karl Stratos)

All Rights Reserved

ABSTRACT

Spectral Methods for Natural Language Processing

Jang Sun Lee (Karl Stratos)

Many state-of-the-art results in natural language processing (NLP) are achieved with sta-

tistical models involving latent variables. Unfortunately, computational problems associ-

ated with such models (for instance, finding the optimal parameter values) are typically

intractable, forcing practitioners to rely on heuristic methods without strong guarantees.

While heuristics are often sufficient for empirical purposes, their de-emphasis on theoretical

aspects has certain negative ramifications. First, it can impede the development of rigorous

theoretical understanding which can generate new ideas and algorithms. Second, it can lead

to black art solutions that are unreliable and difficult to reproduce.

In this thesis, we argue that spectral methods—that is, methods that use singular value

decomposition or other similar matrix or tensor factorization—can effectively remedy these

negative ramifications. To this end, we develop spectral methods for two unsupervised

language processing tasks. The first task is learning lexical representations from unanno-

tated text (e.g., hierarchical clustering of a vocabulary). The second task is estimating

parameters of latent-variable models used in NLP applications (e.g., for unsupervised part-

of-speech tagging). We show that our spectral algorithms have the following advantages

over previous methods:

1. The algorithms provide a new theoretical framework that is amenable to rigorous

analysis. In particular, they are shown to be statistically consistent.

2. The algorithms are simple to implement, efficient, and scalable to large amounts of

data. They also yield results that are competitive with the state-of-the-art.

Table of Contents

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Learning Lexical Representations . 4

1.2.1 Hierarchical Word Clusters . 4

1.2.2 Word Embeddings . 5

1.3 Estimating Parameters of Latent-Variable Models 6

1.3.1 Unsupervised POS Tagging . 6

1.3.2 Phoneme Recognition . 7

1.4 Thesis Overview . 8

1.5 Notation . 8

2 Related Work 10

2.1 Latent-Variable Models in NLP . 10

2.2 Representation Learning in NLP . 11

2.3 Spectral Techniques . 12

I The Spectral Framework 15

3 A Review of Linear Algebra 16

3.1 Basic Concepts . 16

i

3.1.1 Vector Spaces and Euclidean Space 16

3.1.2 Subspaces and Dimensions . 17

3.1.3 Matrices . 18

3.1.4 Orthogonal Matrices . 21

3.1.5 Orthogonal Projection onto a Subspace 21

3.1.6 Gram-Schmidt Process and QR Decomposition 22

3.2 Eigendecomposition . 24

3.2.1 Square Matrices . 24

3.2.2 Symmetric Matrices . 27

3.2.3 Variational Characterization . 28

3.2.4 Semidefinite Matrices . 30

3.2.5 Numerical Computation . 33

3.3 Singular Value Decomposition (SVD) . 39

3.3.1 Derivation from Eigendecomposition 39

3.3.2 Variational Characterization . 42

3.3.3 Numerical Computation . 43

3.4 Perturbation Theory . 44

3.4.1 Perturbation Bounds on Singular Values 44

3.4.2 Canonical Angles Between Subspaces 44

3.4.3 Perturbation Bounds on Singular Vectors 46

4 Examples of Spectral Techniques 52

4.1 The Moore–Penrose Pseudoinverse . 52

4.2 Low-Rank Matrix Approximation . 53

4.3 Finding the Best-Fit Subspace . 55

4.4 Principal Component Analysis (PCA) . 55

4.4.1 Best-Fit Subspace Interpretation . 56

4.5 Canonical Correlation Analysis (CCA) . 57

4.5.1 Least Squares Interpretation . 59

4.5.2 New Coordinate Interpretation . 60

4.5.3 Dimensionality Reduction with CCA 60

ii

4.6 Spectral Clustering . 66

4.7 Subspace Identification . 68

4.8 Alternating Minimization Using SVD . 71

4.9 Non-Negative Matrix Factorization . 73

4.10 Tensor Decomposition . 75

II Inducing Lexical Representations 79

5 Word Clusters Under Class-Based Language Models 80

5.1 Introduction . 81

5.2 Background . 82

5.2.1 The Brown Clustering Algorithm . 82

5.2.2 CCA and Agglomerative Clustering 84

5.3 Brown Model Definition . 85

5.4 Clustering Under the Brown Model . 86

5.4.1 An Overview of the Approach . 86

5.4.2 Spectral Estimation of Observation Parameters 86

5.4.3 Estimation from Samples . 89

5.4.4 Agglomerative Clustering . 91

5.5 Experiments . 93

5.5.1 Experimental Settings . 93

5.5.2 Comparison to the Brown Algorithm: Quality 94

5.5.3 Comparison to the Brown Algorithm: Speed 95

5.5.4 Effect of the Choice of κ and Context 98

5.6 Conclusion . 98

6 Word Embeddings from Decompositions of Count Matrices 102

6.1 Introduction . 103

6.2 Background in CCA . 104

6.2.1 CCA Objective . 104

6.2.2 Exact Solution via SVD . 105

iii

6.2.3 Using CCA for Word Representations 105

6.3 Using CCA for Parameter Estimation . 106

6.3.1 Clustering under a Brown Model . 107

6.3.2 Spectral Estimation . 108

6.3.3 Choice of Data Transformation . 109

6.4 A Template for Spectral Methods . 110

6.5 Related Work . 113

6.6 Experiments . 113

6.6.1 Word Similarity and Analogy . 113

6.6.2 As Features in a Supervised Task . 117

6.7 Conclusion . 117

III Estimating Latent-Variable Models 119

7 Spectral Learning of Anchor Hidden Markov Models 120

7.1 Introduction . 121

7.2 The Anchor Hidden Markov Model . 122

7.3 Parameter Estimation for A-HMMs . 123

7.3.1 NMF . 123

7.3.2 Random Variables . 125

7.3.3 Derivation of a Learning Algorithm 125

7.3.4 Construction of the Convex Hull Ω 128

7.4 Experiments . 132

7.4.1 Background on Unsupervised POS Tagging 133

7.4.2 Experimental Setting . 134

7.4.3 Practical Issues with the Anchor Algorithm 135

7.4.4 Tagging Accuracy . 137

7.4.5 Qualitative Analysis . 138

7.5 Related Work . 139

7.5.1 Latent-Variable Models . 139

iv

7.5.2 Unsupervised POS Tagging . 139

7.6 Conclusion . 141

8 Spectral Learning of Refinement Hidden Markov Models 144

8.1 Introduction . 144

8.2 Related Work . 146

8.3 The R-HMM Model . 147

8.3.1 Definition of an R-HMM . 147

8.4 The Forward-Backward Algorithm . 148

8.5 Spectral Estimation of R-HMMs . 151

8.5.1 Random Variables . 151

8.5.2 Estimation of the Operators . 154

8.6 The Spectral Estimation Algorithm . 156

8.7 Experiments . 157

8.8 Conclusion . 161

9 Conclusions 163

9.1 Limitations of the Existing Spectral Framework 165

9.2 Future Work . 166

9.2.1 Flexible Framework for Spectral Optimization 166

9.2.2 Online/Randomized Spectral Methods 167

9.2.3 Spectral Methods for Other NLP Tasks 167

IV Bibliography 169

Bibliography 170

V Appendices 187

A Appendix for Chapter 5 188

A.1 Clustering Algorithm of Brown et al. [1992] 188

A.2 Incorporating Richer Context . 190

v

A.3 Consistency of Clusters: Proof of Theorem 5.4.4 191

A.4 Sample Complexity: Proof of Theorem 5.4.6 193

B Appendix for Chapter 6 197

B.1 Proof of Theorem 6.3.1 . 197

vi

List of Figures

1.1 Two forms of lexical representations for the vocabulary: coffee, tea, dog,

cat, walk, run, walked, ran. (a) Hierarchical word clusters. (b) Word

embeddings. 5

3.1 The Gram-Schmidt process. 23

3.2 QR decomposition. 24

3.3 A basic version of the power iteration method. 35

3.4 A basic version of the subspace iteration method. 36

3.5 A basic version of the Lanczos method. 38

5.1 A standard implementation of the Brown clustering algorithm. See Fig-

ure A.1 for more details. 83

5.2 An example of a Brown word-cluster hierarchy. Each node in the tree is

labeled with a bit string indicating the path from the root node to that

node, where 0 indicates a left branch and 1 indicates a right branch. 83

5.3 Illustration of our clustering scheme. (a) Original rows of
√
O. (b) After

row-normalization. 87

5.4 Estimation of M from samples. 89

5.5 Effect of the choice of κ and context on (a) MI and (b) NER dev F1 score. We

used 1,000 clusters on RCV1 with vocabulary size 50k. In (a), the horizontal line is

the MI achieved by Brown clusters. In (b), the top horizontal line is the F1 score

achieved with Brown clusters and the bottom horizontal line is the baseline F1 score

achieved without using clusters. 96

vii

5.6 A O(1) function that is called O(nm2) times in Liang’s implementation of

the Brown algorithm, accounting for over 40% of the runtime. Similar func-

tions account for the vast majority of the runtime. The values in the arrays

L2, q2, p2, p1 are precomputed. p2[v][w] = p(v, w), i.e, the probability of clus-

ter v being followed by cluster w; p1[v] = p(v) is the probability of cluster v;

q2[v][w] = p(v, w) log((p(v)p(w))−1p(v, w)) is the contribution of the mutual

information between clusters v and w. The function recomputes L2[v][w],

which is the loss in log-likelihood if clusters v and w are merged. The func-

tion updates L2 after clusters s and t have been merged to form a new cluster

u. There are many operations involved in this calculation: 6 divisions, 12

multiplications, 36 additions (26 additions and 10 subtractions), and 6 log

operations. 97

5.7 Variant of Ward’s algorithm from Section 5.4.4. 100

6.1 Visualization of the representational scheme under a Brown model with 2

hidden states. (a) Normalizing the original rows of O. (b) Normalizing the

scaled and rotated rows of O. 107

6.2 A template for spectral word embedding methods. 112

7.1 Non-negative matrix factorization algorithm of Arora et al. (2012). 124

7.2 NMF-based learning algorithm for A-HMMs. The algorithm Anchor-NMF

is given in Figure 7.1. 127

7.3 Algorithm for constructing a valid Ω with different construction methods.

For simplicity, we only show the bigram construction (context size L = 1),

but an extension for larger context (L > 1) is straightforward. 131

8.1 (a) An R-HMM chain. (b) An equivalent representation where labels and

hidden states are intertwined. 145

8.2 The forward-backward algorithm (in matrix form) for an R-HMM. 149

8.3 Given an R-HMM sequence, we define random variables over observed quanti-

ties so that conditioning on the current node, (a) the future F1 is independent

of the past P and (b) the present R is independent of the density D. 153

viii

8.4 Accuracy of the spectral algorithm and EM on TIMIT development data for

varying numbers of hidden states m. For EM, the highest scoring iteration

is shown. 158

8.5 The feature templates for phoneme recognition. The simplest features look

only at the current label and observation. Other features indicate the previ-

ous phoneme type used before ai (pp), the next phoneme type used after ai

(np), and the relative position (beginning, middle, or end) of ai within the

current phoneme (pos). The figure gives a typical segment of the phoneme

sequence a1 . . . aN . 159

8.6 Feature ablation experiments on TIMIT development data for the best spec-

tral model (m = 24) with comparisons to the best EM model (m = 4) and

EM with m = 24. 160

8.7 Performance of baselines and spectral R-HMM on TIMIT test data. Number

of hidden states m optimized on development data (see Figure 8.4). The

improvement of the spectral method over the EM baseline is significant at

the p ≤ 0.05 level (and very close to significant at p ≤ 0.01, with a precise

value of p ≤ 0.0104). 161

8.8 The spectral estimation algorithm for an R-HMM. 162

A.1 The O(N + nm2) clustering algorithm of Brown et al. [1992]. The variables

are explained in the main text. 191

ix

List of Tables

5.1 Performance gains in NER. 94

5.2 Mutual information computed as in Eq. (5.3) on the RCV1 corpus. 94

5.3 Speed and performance comparison with the Brown algorithm for different

numbers of clusters and vocabulary sizes. In all the reported runtimes, we

exclude the time to read and write data. We report the F1 scores on the

NER dev set; for the spectral algorithm, we report the best scores. 101

6.1 Performance of CCA (1000 dimensions) on the development portion of data

with different data transformation methods (α = 0.75, β = 0). 114

6.2 Performance of various spectral methods on the development portion of data. 115

6.3 Performance of different word embedding methods on the test portion of

data. See the main text for the configuration details of spectral methods. . 116

6.4 NER F1 scores when word embeddings are added as real-valued features

to the baseline (—). For comparison, we also derive 1000 Brown clusters

(BROWN) on the same vocabulary and use the resulting bit strings as fea-

tures Brown et al. [1992]. 118

7.1 Numbers of word tokens and types across 10 languages in the universal tree-

bank dataset (version 2.0). 134

7.2 Many-to-one accuracy on the English data with different choices of the convex

hull Ω (Figure 7.3). These results do not use spelling features. 136

x

7.3 Many-to-one accuracy on each language using 12 universal tags. The first

four models are HMMs estimated with the Baum-Welch algorithm (bw), the

clustering algorithm of Brown et al. [1992], the anchor algorithm without

(anchor) and with (anchor-feat) feature augmentation. log-linear is

the model of Berg-Kirkpatrick et al. [2010] trained with the direct-gradient

method using L-BFGS. For bw and log-linear, we report the mean and

the standard deviation (in parentheses) of 10 random restarts run for 1,000

iterations. 137

7.4 Verifying model assumptions on the universal treebank. The anchor assump-

tion is satisfied in every language. The Brown assumption (each word has

exactly one possible tag) is violated but not by a large margin. The lower

table shows the most frequent anchor word and its count under each tag on

the English portion. 140

7.5 Log likelihood normalized by the number of words on English (along with

accuracy). For bw, we report the mean of 10 random restarts run for 1,000

iterations. 140

7.6 Many-to-one accuracy on the English data with 45 original tags. We use the

same setting as in Table 7.3. For bw and log-linear, we report the mean

and the standard deviation (in parentheses) of 10 random restarts run for

1,000 iterations. 141

7.7 Anchor words found in each language (model anchor-feat). 142

7.8 Most likely words under each anchor word (English model anchor-feat).

Emission probabilities o(x|h) are given in parentheses. 143

xi

Acknowledgments

I am indebted to my advisor Michael Collins on so many levels. Most importantly, he

shaped my identity as a researcher. I learned tremendously from his penetrating insight,

bullet-proof rigor, and astonishing clarity in research. At the same time, I was able to

pursue ideas on my own thanks to the right level of intellectual freedom he provided. If I

achieved anything in the PhD program, it is due to his sage advising: all my shortcomings

are due to my own limitation. I am also indebted to Daniel Hsu who was a good friend and

an unofficial advisor to me during the program. The unfathomable depth of his knowledge

consistently shocked me into new levels of research and is still what I strive for. The

spectral methods developed in this thesis would not have been here if not for his kind and

patient guidance. I also thank David Blei, Owen Rambow, and Slav Petrov for being on

my dissertation committee.

I would like to thank my coauthors and collaborators all of who taught me so much. Spe-

cial thanks go to Sham Kakade, Dean Foster, Lyle Ungar, and Shay Cohen for enlightening

discussions on spectral methods. I would also like to thank Young-Bum Kim: I admire his

passion and look forward to future collobaration. I was privileged to have summer intern-

ship opportunities with brilliant researchers. Sham Kakade and T. J. Hazen were the most

gracious hosts at Microsoft Research New England in 2013. Slav Petrov and Emily Pitler

were the most gracious hosts at Google New York in 2014. These internships expanded

my horizon in research. I was also fortunate to participate in the summer workshop at

the Johns Hopkins Center for Language and Speech Processing in 2011: I thank Alexander

Berg, Tamara Berg, Hal Daumé III, Yejin Choi, Jesse Dodge, Amit Goyal, Xufeng Han,

Alyssa Mensch, Margaret Mitchell, and Kota Yamaguchi for the productive work and great

times together.

The NLP, speech, and machine learning groups at Columbia University were a wonderful

xii

community and I would like to thank them collectively. I thank my lab members Avner

May, Yin-Wen Chang, Mohammad Rasooli, Andrei Simion, and Sasha Rush for their friend-

ship and many spontaneous discussions on NLP, machine learning, and life. I am especially

grateful to Avner for learning together (chevruta): I deeply respect his down-to-earth atti-

tude and incredible attention to details. My time at Columbia was also made pleasant by

the friendship of Victor Soto (with whom I had many enjoyable discussions on movies and

games), Or Biran, Chris Kedzie, Apoorv Agarwal, Kapil Thadani, Jessica Ouyang, Wei-Yun

Ma, Cem Subakan, Chris Riederer, and many others sharing the workspace on the seventh

floor of CEPSR.

Finally, I would like to thank my family in Korea. My parents provided critical support

for my journey in the states in the last decade: they should take all credit for anything I

achieved. And above all, I thank my brother Eung Sun Lee (이응선), who had been there

for me from the very beginning.

xiii

Dedicated to my dad

xiv

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Motivation

Many state-of-the-art results in natural language processing (NLP) are achieved with sta-

tistical models involving latent variables. This is a setting that arises in unsupervised and

semi-supervised language processing tasks. For instance,

• Brown et al. [1992] use a variant of a hidden Markov model (HMM) to induce word

clusters from unannotated text. These clusters are shown to be useful in a wide range

of semi-supervised NLP tasks [Miller et al., 2004; Koo et al., 2008; Uszkoreit and

Brants, 2008; Owoputi et al., 2013].

• Matsuzaki et al. [2005] and Petrov et al. [2006] use a probablistic context-free grammar

(PCFG) augmented with unobserved annotations. The resulting syntactic parser is

much more accurate than a simple PCFG.

• Haghighi and Klein [2006] and Berg-Kirkpatrick et al. [2010] use feature-rich models

with hidden variables and achieve excellent performance in a variety of label induction

tasks in NLP.

• Brown et al. [1993] use latent-variable models to induce word alignments between

translations. The so-called IBM models have been extremely influential in statistical

machine translation.

CHAPTER 1. INTRODUCTION 2

Unfortunately, computational problems associated with such models (for instance, find-

ing the optimal parameter values) are typically intractable. The difficulty is usually in the

form of non-convex training objectives for which standard iterative optimization techniques,

such as the expectation-maximization (EM) algorithm [Dempster et al., 1977] or gradient-

based search techniques, are not guaranteed to produce globally optimal solutions. In some

cases, the difficulty is formalized by hardness results. For example, Terwijn [2002] shows

that the maximum-likelihood estimation problem for HMMs is generally hard under cryp-

tographic assumptions. Faced with this computational difficulty, practitioners are forced to

rely on heuristic methods without strong guarantees; for instance, EM is only guaranteed

to converge to a local optimum.

Nonetheless, heuristics are often sufficient for empirical purposes and it is tempting to

overlook their lack of theoretical guarantees. But the de-emphasis on theoretical aspects has

other negative ramifications. First, it can impede the development of rigorous theoretical

understanding which can generate new ideas and algorithms. Second, it can lead to black

art solutions that are unreliable and difficult to reproduce. This motivates a central question

in this thesis:

Can we develop algorithms with provable guarantees for the challenging

computational problems associated with latent-variable models in NLP?

In this thesis, we give a positive answer to this question by turning to spectral methods.

We broadly define a spectral method to be any algorithmic procedure that use singular

value decomposition (SVD) or other similar matrix or tensor factorization. There has

recently been a resurgence of interest in spectral methods as a principled framework for

learning latent-variable models. The seminal work of Hsu et al. [2008] derives a spectral

algorithm for learning HMMs with polynomial time and sample complexity, dodging the

hardness result of Terwijn [2002] by exploiting a mild assumption with SVD. A number of

other spectral algorithms have been proposed, including the tensor extension of Foster et

al. [2012], the non-negative matrix factorization (NMF) method of Arora et al. [2012a], and

the tensor decomposition method of Anandkumar et al. [2014]. This thesis aims to leverage

and build on this recent progress in the context of NLP.

A high-level description of a spectral method is as follows:

CHAPTER 1. INTRODUCTION 3

Formulation We formulate a task into a suitable low-rank decomposition problem. The

quantity to be decomposed is expected values of observed random variables (e.g., corre-

sponding to words in unannotated text). Then we can trivially derive an empirical algo-

rithm by equating theoretical moments with sample moments, that is, through the method

of moments. The values for the rank is usually given by task-specific assumptions.

Decomposition We leverage powerful linear algebraic techniques (such as the SVD) to

solve the low-rank decomposition problem.

Reconstruction We use the solution of the low-rank decomposition problem to recon-

struct a solution to the original task.

An example makes this description concrete. Consider the task of finding a pair of

vectors (a, b) that maximally correlate the scalar projections of (vector-valued) random

variables (X,Y) with zero mean. This task is a special case of canonical correlation analysis

(CCA) introduced by Hotelling [1936] and is useful for analyzing the linear relationship

between X and Y . Using the Pearson correlation coefficient, we can formulate this as the

following optimization problem:

(a, b) = arg max
u,v

E
[(
u>X

) (
v>Y

)]√
E
[
(u>X)

2
]
E
[
(v>Y)

2
]

where > denotes the transpose operation and E[Z] denotes the expected value of Z.1

There are two unknowns u and v with nonlinear interactions, and it is unclear how to

use a standard optimization technique to solve the problem. However, there is a spectral

algorithm that gives a closed-form solution [Hotelling, 1936]:

1. Formulation: Define a matrix Ω = E
[
XX>

]−1/2
E
[
XY >

]
E
[
Y Y >

]−1/2
.

2. Decomposition: (Rank-1 SVD) Compute the left and right singular vectors (c, d) of

Ω corresponding to the largest singular value.

1The solution is not unique. If (a, b) is a solution, so is (αa+ γ, βb+ λ) for any constants α, β, γ, λ ∈ R

where α and β are nonzero.

CHAPTER 1. INTRODUCTION 4

3. Reconstruction: Return a = E
[
XX>

]−1/2
c and b = E

[
Y Y >

]−1/2
d.

Note that the algorithm requires the covariance matrices E
[
XX>

]
and E

[
Y Y >

]
to be

invertible. This non-degeneracy requirement is common in spectral methods.

This thesis develops spectral methods for NLP with a focus on two tasks: learning

lexical representations from unannotated text and estimating parameters of latent-variable

models used in NLP applications.

1.2 Learning Lexical Representations

The first task considered in the thesis is inducing word representations that reflect distri-

butional properties of words from an unlabeled corpus. These so-called distributional word

representations are useful features in many downstream tasks in NLP such as part-of-speech

(POS) tagging [Owoputi et al., 2013; Schnabel and Schütze, 2014], named-entity recognition

[Miller et al., 2004; Dhillon et al., 2011b], and syntactic parsing [Koo et al., 2008; Chen and

Manning, 2014]. They are also useful for certain lexical tasks such as measuring the simi-

larity between words [Miller and Charles, 1991] and answering analogy questions [Mikolov

et al., 2013c].

More specifically, we consider two forms of lexical representations: hierarchical word

clusters and word embeddings.

1.2.1 Hierarchical Word Clusters

Hierarchical word clusters are a form of lexical representations popularized by the clustering

algorithm of Brown et al. [1992] which is now commonly called “Brown clustering”. The

Brown clustering algorithm performs greedy merging on a vocabulary to produce a binary

tree over words such as the one shown in Figure 1.1(a). Each word is then represented as

a bit string indicating the path from the root. We obtain clusters of different granularities

by taking prefixes of the bit strings of different lengths. For the example in Figure 1.1(a),

taking prefixes of length two yields four clusters: {coffee, tea}, {dog, cat}, {walk, run},
and {walked, ran}.

Brown clustering is a greedy heuristic to handle the associated computational difficulties

CHAPTER 1. INTRODUCTION 5

1

11

111

ran

110

walked

10

101

run

100

walk

0

01

011

cat

010

dog

00

001

tea

000

coffee

coffee

tea

dog

cat

walk
run

walked
ran

(a) (b)

Figure 1.1: Two forms of lexical representations for the vocabulary: coffee, tea, dog, cat,

walk, run, walked, ran. (a) Hierarchical word clusters. (b) Word embeddings.

underlying the clustering problem and hence has no theoretical guarantees. In Chapter 5, we

develop a spectral algorithm which is the first provably correct algorithm for the clustering

problem of Brown et al. [1992]. In practice, our algorithm is much more efficient than the

Brown clustering algorithm and produces hierarchical word clusters of competitive quality.

1.2.2 Word Embeddings

Word embeddings refer to low-dimensional vector representations of words. Figure 1.1(b)

shows a two-dimensional example visualized on a plane. The topology of words characterizes

their relationship: for instance, the nearest neighbor of dog is cat.2 There has been a

surge of interest in word embeddings due to their ability to capture subtle syntactic and

semantic patterns that are useful in NLP applications. Some successful existing methods

for deriving word embeddings are the “word2vec” algorithm of Mikolov et al. [2013b], the

“GloVe” algorithm of Pennington et al. [2014], and the “Eigenwords” algorithm of Dhillon

et al. [2011a; 2012; 2015].

Many of these existing word embedding methods lack strong guarantees or involve steps

2Note that the two forms of lexical representations are closely related. We can represent clusters as

vectors (e.g., indicator vectors) and convert word embeddings as hierarchical clusters using a distance-based

clustering algorithm. We use this observation later in the thesis.

CHAPTER 1. INTRODUCTION 6

that are left unjustified. In Chapter 6, we develop a spectral algorithm using a novel model-

based interpretation of CCA (which also underlies the method of Dhillon et al. [2015]). This

algorithm gives a unified view of many spectral methods in the word embedding literature

and yields state-of-the-art results on various lexical and semi-supervised tasks.

1.3 Estimating Parameters of Latent-Variable Models

The second task considered in the thesis is estimating parameters of latent-variable models

used in NLP applications. When the unobserved variables themselves are the target labels,

the task becomes unsupervised label induction. When the unobserved variables are not

the target labels, these auxiliary variables are introduced to capture hidden correlation

between observed variables and improve generalizability (e.g., see Matsuzaki et al. [2005]).

We consider both settings in this thesis.

More specifically, we develop spectral algorithms for learning latent-variable models

to tackle two NLP applications: unsupervised POS tagging and (supervised) phoneme

recognition.

1.3.1 Unsupervised POS Tagging

In unsupervised POS tagging, we are given a set of unlabeled sentences and wish to tag

each word with a label that faithfully reflects the word’s POS tag. For instance, in the

following two sentences,

John has a light bag The light was blue

a desirable tagging may look like

John/1 has/2 a/3 light/4 bag/1 The/3 light/1 was/2 blue/4

where the labels 1, 2, 3, and 4 respectively group words into nouns, verbs, determiners, and

adjectives. Note that for the word light, we must disambiguate the adjective use from the

noun use based on the context.

One approach is to learn an HMM with hidden states corresponding to (missing) POS

tags. Learning HMMs is generally intractable [Terwijn, 2002]; furthermore, vanilla HMMs

CHAPTER 1. INTRODUCTION 7

are known to perform poorly in unsupervised POS tagging because of model misspecifica-

tion. In Chapter 6, we design a certain family of restricted HMMs effective for POS tagging

and develop a statistically consistent spectral learning algorithm. With the universal tagset,

our method is competitive with the state-of-the-art.

1.3.2 Phoneme Recognition

In supervised phoneme recognition, we are given a training set of discretized speech signal

sequences annotated with corresponding phoneme sequences and wish to learn a model to

predict phonemes for unseen signals. A naive approach is to fit an HMM on the training set,

but an HMM makes a strong assumption that each phoneme is independent of phonemes

before the previous phoneme. To relax this assumption, we introduce auxilliary variables

that further refine hidden states (in a similar manner Matsuzaki et al. [2005] introduce

latent variables in probabilistic context-free grammars for syntactic parsing). We call this

augmented HMM a refinement HMM (R-HMM). For instance, given a training instance

(x, y) where x = (15 9 7 900 835) is a sequence of signal classes and y = (ao ao ao ao ow)

is the corresponding phoneme sequence, an R-HMM assumes an unobserved sequence of

integers z = (1 2 4 1 3) that refines y and defines the joint probability p(x, y, z):

ao1 ao2 ao4 ao1 ow3

15 9 7 900 835

Estimating optimal parameters of an R-HMM is challenging due to the unobserved

auxiliary variables. In Chapter 8, we develop a spectral algorithm which is guaranteed to

find the true parameters under mild conditions on the singular values of the model. In

experiments, R-HMMs perform significantly better than HMMs and the spectral algorithm

is competitive with EM.

We argue that the spectral algorithms presented in this thesis have the following advan-

tages over previous methods:

CHAPTER 1. INTRODUCTION 8

1. The algorithms provide a new theoretical framework that is amenable to rigorous

analysis. In particular, they are shown to be statistically consistent: their outputs

converge to the true underlying values given enough samples.

2. The algorithms are simple to implement, efficient, and scalable to large amounts of

data. They also yield results that are competitive with the state-of-the-art.

1.4 Thesis Overview

The thesis is structured as follows. In Chapter 2, we give a broad overview of related works.

In Part I, we provide a review of linear algebra (Chapter 3) and existing spectral techniques

(Chapter 4). In Part II, we give spectral algorithms for learning lexical representations:

hierarchical word clusters (Chapter 5) and word embeddings (Chapter 6). In Part III,

we give spectral algorithms for estimating latent-variable models: for unsupervised POS

tagging (Chapter 7) and for supervised phoneme recognition (Chapter 8). In Chapter 9, we

provide concluding remarks and a discussion of future work.

1.5 Notation

We use the following notation throughout the thesis.

• [n] denotes the set of positive integers {1, . . . , n}.

• [[Γ]] denotes the indicator of a predicate Γ, taking value 1 if Γ is true and 0 otherwise.

• E[X] denotes the expected value of a random variable X.

• > as a superscript denotes the transpose operation of a vector or a matrix.

• diag(v) denotes the diagonal matrix of a vector v = (v1 . . . vn). That is,

diag(v) =


v1 · · · 0

v2
...

...
. . .

0 · · · vn

 .

CHAPTER 1. INTRODUCTION 9

• [v1 . . . vm] denotes a matrix whose i-th column is the column vector vi.

• Ma denotes the matrix power of (square matrix) M by a scalar a. For the purposes

of this thesis, it is sufficient to define Ma = V diag(λa1 . . . λ
a
n)V > where we always

assume M = V diag(λ1 . . . λn)V > is diagonalizable (see Section 3.2.2). Under this

definition, Ma =
∏a
i=1M if a is a positive integer, M−1 is the inverse of M , and

M1/2M1/2 = M .

•
√
M denotes the element-wise square-root of a matrix M , that is, [

√
M]i,j =

√
Mi,j .

• M+ denotes the Moore-Penrose pseudoinverse of a matrix M . See Section 4.1 for a

description of the pseudoinverse.

• Im×m denotes the m×m identity matrix.

CHAPTER 2. RELATED WORK 10

Chapter 2

Related Work

This chapter gives a broad overview of the literature in natural language processing (NLP)

and machine learning relavant to this thesis, covering the following topics:

1. The use of latent-variable models in NLP (Section 2.1)

2. Representation learning in NLP (Section 2.2)

3. Spectral techniques and their applications to learning latent-variable models (Sec-

tion 2.3)

A more technical review of spectral techniques is provided in Chapter 4. Additionally, a

chapter-specific discussion of related work is provided in each of Chapter 5, 6, 7, and 8.

2.1 Latent-Variable Models in NLP

Models with hidden variables are of enormous importance in NLP. Language processing

tasks that involve learning these models range from part-of-speech (POS) tagging [Meri-

aldo, 1994] to word clustering [Brown et al., 1992], text classification [Nigam et al., 1998],

topic modeling [Blei et al., 2003], syntactic parsing [Matsuzaki et al., 2005], and machine

translation [Brown et al., 1993].

A highly influential algorithm for learning latent-variable models is the expectation-

maximization (EM) algorithm. A general theory of EM is developed in the landmark work

by Dempster et al. [1977] which shows that EM optimizes the likelihood objective from

CHAPTER 2. RELATED WORK 11

incomplete data.1 Two examples of EM for structured models particularly relavant to NLP

are the forward-backward (or Baum-Welch) algorithm [Rabiner, 1989] for hidden Markov

models (HMMs) [Baum et al., 1967; Church, 1988] and the inside-outside algorithm [Lari

and Young, 1990] for probabilistic context-free grammars (PCFGs) [Chomsky, 1956; Eddy

and Durbin, 1994].

A common use of latent-variable models in NLP is inducing linguistic structure from

unannotated text. For example, there is a large body of work on learning an HMM or its

variant for unsupervised tagging [Merialdo, 1994; Johnson, 2007; Berg-Kirkpatrick et al.,

2010], tree models for unsupervised parsing [Carroll and Charniak, 1992; Pereira and Sch-

abes, 1992; Brill, 1993; Klein and Manning, 2004], and word alignment models for machine

translation [Brown et al., 1993; Vogel et al., 1996].

More recently, latent-variable models have been also used to improve performance in

supervised tasks in NLP. An important work in this direction is the work by Matsuzaki et

al. [2005] who propose introducing unobserved variables in a PCFG to relax the model’s

strong independence assumptions. The resulting model, called a latent-variable PCFG (L-

PCFG), is trained with EM and has been shown to perform significantly better than a vanilla

PCFG. A follow-up work by Petrov et al. [2006] introduces a split-and-merge enhancement

in EM and achieves state-of-the-art parsing accuracy [Petrov and Klein, 2007; Petrov, 2010].

2.2 Representation Learning in NLP

There has been great interest in the NLP community in methods that derive linguistic

representations from large quantities of unlabeled data [Brown et al., 1992; Pereira et al.,

1993; Ando and Zhang, 2005; Turian et al., 2010; Dhillon et al., 2011b; Collobert et al.,

2011; Mikolov et al., 2013b,c]. These representations can be used to improve accuracy on

various NLP problems, or to give significant reductions in the number of training examples

required for learning.

A classical example is the word clusters (so-called “Brown clusters”) resulting from the

1The original proof of Dempster et al. [1977] contains an error and is corrected and strengthened by Wu

[1983].

CHAPTER 2. RELATED WORK 12

clustering algorithm of Brown et al. [1992] and its variants [Martin et al., 1998]. These word

clusters have been very useful in semi-supervised tasks in NLP, for instance, semi-supervised

named-entity recognition (NER) [Miller et al., 2004], dependency parsing [Koo et al., 2008],

translation [Uszkoreit and Brants, 2008], and POS tagging [Owoputi et al., 2013].

Another form of lexical representation called word embeddings (meaning low-dimensional

vector representations of words) has recently been a subject of intense focus in NLP research.

Mikolov et al. [2013a] and Mikolov et al. [2013b] propose a series of language models in-

spired by neural networks whose parameters can be used as word embeddings. Their work

is known as “word2vec” and has been very influential in many areas of representation learn-

ing [Zou et al., 2013; Levy and Goldberg, 2014b; Arora et al., 2015]. The “Eigenwords”

algorithms by Dhillon et al. [2011a] and Dhillon et al. [2012] use various modifications of

canonical correlation analysis (LR-MVL and two-step CCA) for deriving word embeddings.

The “GloVe” algorithm by Pennington et al. [2014] performs a weighted low-rank factor-

ization of log-transformed co-occurrence counts.

Efforts have been made in deriving representations for linguistic objects beyond indi-

vidual words, primarily in the neural network community. Socher et al. [2010] use recursive

neural networks to model sentences; the resulting vector representations have been useful in

a number of tasks such as parsing [Socher et al., 2013a, 2011] and sentiment analysis [Socher

et al., 2013b]. Other types of neural networks have been considered, such as convolutional

neural networks [Kalchbrenner et al., 2014] and models based on recurrent neural networks

[Cho et al., 2014].

2.3 Spectral Techniques

Algorithms that make use of spectral decomposition date far back. Perhaps the most

prominent early examples are principal component analysis (PCA) [Pearson, 1901] and

canonical correlation analysis (CCA) [Hotelling, 1936]. PCA computes orthogonal directions

of maximal variance, and the solution is obtained from the eigenvectors of the covariance

matrix. CCA computes projection operators that maximize the correlation between two

random variables (with certain orthogonality constraints), and the solution is obtained

CHAPTER 2. RELATED WORK 13

from the singular vectors of a linearly transformed covariance matrix.

Another important example of a spectral technique is spectral clustering: partition-

ing vertices in an undirected graph by matrix decomposition [Donath and Hoffman, 1973;

Fiedler, 1973]. A spectral clustering algorithm typically proceeds by constructing a graph

Laplacian matrix from the data and performing a standard clustering algorithm (e.g., k-

means) on reduced-dimensional points that correspond to the top eigenvalues of the Lapla-

cian. It can be seen as optimizing a nontrivial clustering objective [Von Luxburg, 2007].

A recent advance in spectral techniques is their use in learning latent-variable models.

EM is a common approach for learning latent-variable models, but it generally has no

guarantees of consistency or of sample complexity (e.g., within the PAC framework [Valiant,

1984]). This has led a number of researchers to consider alternatives to the EM algorithm,

which do have PAC-style guarantees. For example, Dasgupta [1999] derive the first provably

correct polynomial-time algorithm for learning Gaussian mixture models (GMMs). Vempala

and Wang [2004] derive a spectral algorithm for learning GMMs.

One focus has been on spectral learning algorithms for HMMs and related models. This

line of work started with the work of Hsu et al. [2008], who developed a spectral learning

algorithm for HMMs which recovers an HMM’s parameters, up to a linear transformation,

using singular value decomposition and other simple matrix operations. The algorithm

builds on the idea of observable operator models for HMMs due to Jaeger [2000]. Following

the work of Hsu et al. [2008], spectral learning algorithms have been derived for a number

of other models, including finite state transducers [Balle et al., 2011]; split-head automaton

grammars [Luque et al., 2012]; reduced rank HMMs in linear dynamical systems [Siddiqi et

al., 2009]; kernel-based methods for HMMs [Song et al., 2010]; tree graphical models [Song et

al., 2011b,a]; latent-variable probabilistic context-free grammars (L-PCFGs) [Cohen et al.,

2012]. There are also spectral learning algorithms for learning PCFGs in the unsupervised

setting [Bailly et al., 2013].

Anandkumar et al. [2012c] propose a general method of moments approach to estimating

mixture models. This direction of research is further pursued in the tensor decomposition

framework of Anandkumar et al. [2014], which has been used to recover the parameters of

a variety of models such as latent Dirichlet allocation (LDA) [Anandkumar et al., 2012b],

CHAPTER 2. RELATED WORK 14

mixtures of linear regressions [Chaganty and Liang, 2013], and a more general class of

latent-variable graphical models [Chaganty and Liang, 2014].

Other types of matrix factorization techniques (other than SVD) have also been used

for recovering model parameters. Arora et al. [2012a] develop an exact NMF algorithm for

recovering the parameters of topic models satisfying an “anchor” assumption: each topic has

at least one word that can only appear under that topic. This NMF approach to learning

is quite general and has been applied to learning other models, such as L-PCFGs [Cohen

and Collins, 2014] and anchor HMMs described in Chapter 7 of the thesis.

15

Part I

The Spectral Framework

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 16

Chapter 3

A Review of Linear Algebra

3.1 Basic Concepts

In this section, we review basic concepts in linear algebra frequently invoked in spectral

techniques.

3.1.1 Vector Spaces and Euclidean Space

A vector space V over a field F of scalars is a set of “vectors”, entities with direction, closed

under addition and scalar multiplication satisfying certain axioms. It can be endowed with

an inner product 〈·, ·〉 : V × V → F , which is a quantatative measure of the relationship

between a pair of vectors (such as the angle). An inner product also induces a norm

||u|| =
√
〈u, u〉 which computes the magnitude of u. See Chapter 1.2 of Friedberg et al.

[2003] for a formal definition of a vector space and Chapter 2 of Prugovečki [1971] for a

formal definition of an inner product.

In subsequent sections, we focus on Euclidean space to illustrate key ideas associated

with a vector space. The n-dimensional (real-valued) Euclidean space Rn is a vector

space over R. The Euclidean inner product 〈·, ·〉 : Rn × Rn → R is defined as

〈u, v〉 := [u]1[v]1 + · · ·+ [u]n[v]n (3.1)

It is also called the dot product and written as u · v. The standard vector multiplication

notation u>v is sometimes used to denote the inner product.

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 17

One use of the inner product is calculating the length (or norm) of a vector. By the

Pythagorean theorem, the length of u ∈ Rn is given by ||u||2 :=
√

[u]21 + . . .+ [u]2n and

called the Euclidean norm of u. Note that it can be calculated as

||u||2 =
√
〈u, u〉 (3.2)

Another use of the inner product is calculating the angle θ between two nonzero vectors.

This use is based on the following result.

Theorem 3.1.1. For nonzero u, v ∈ Rn with angle θ, 〈u, v〉 = ||u||2 ||v||2 cos θ.

Proof. Let w = u− v be the opposing side of θ. The law of cosines states that

||w||22 = ||u||22 + ||v||22 − 2 ||u||2 ||v||2 cos θ

But since ||w||22 = ||u||22 + ||v||22 − 2〈u, v〉, we conclude that 〈u, v〉 = ||u||2 ||v||2 cos θ.

The following corollaries are immediate from Theorem 3.1.1.

Corollary 3.1.2 (Orthogonality). Nonzero u, v ∈ Rn are orthogonal (i.e., their angle is

θ = π/2) iff 〈u, v〉 = 0.

Corollary 3.1.3 (Cauchy–Schwarz inequality). |〈u, v〉| ≤ ||u||2 ||v||2 for all u, v ∈ Rn.

3.1.2 Subspaces and Dimensions

A subspace S of Rn is a subset of Rn which is a vector space over R itself. A necessary and

sufficient condition for S ⊆ Rn to be a subspace is the following (Theorem 1.3, Friedberg et

al. [2003]):

1. 0 ∈ S

2. u+ v ∈ S whenever u, v ∈ S

3. au ∈ S whenever a ∈ R and u ∈ S

The condition implies that a subspace is always a “flat” (or linear) space passing through

the origin, such as infinite lines and planes (or the trivial subspace {0}).

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 18

A set of vectors u1 . . . um ∈ Rn are called linearly dependent if there exist a1 . . . am ∈
R that are not all zero such that au1 +· · · aum = 0. They are linearly independent if they

are not linearly dependent. The dimension dim(S) of a subspace S ⊆ Rn is the number

of linearly independent vectors in S.

The span of u1 . . . um ∈ Rn is defined to be all their linear combinations:

span{u1 . . . um} :=

{
m∑
i=1

aiui

∣∣∣∣ ai ∈ R

}
(3.3)

which can be shown to be the smallest subspace of Rn containing u1 . . . um (Theorem 1.5,

Friedberg et al. [2003]).

The basis of a subspace S ⊆ Rn of dimension m is a set of linearly independent vectors

u1 . . . um ∈ Rn such that

S = span{u1 . . . um} (3.4)

In particular, u1 . . . um are called an orthonormal basis of S when they are orthogonal and

have length ||ui||2 = 1. We frequently parametrize an orthonormal basis as an orthonormal

matrix U = [u1 . . . um] ∈ Rn×m (U>U = Im×m).

Finally, given a subspace S ⊆ Rn of dimension m ≤ n, the corresponding orthogonal

complement S⊥ ⊆ Rn is defined as

S⊥ := {u ∈ Rn : u>v = 0 ∀v ∈ S}

It is easy to verify that the three subspace conditions hold, thus S⊥ is a subspace of Rn.

Furthermore, we always have dim(S) + dim(S⊥) = n (see Theorem 1.5, Friedberg et al.

[2003]), thus dim(S⊥) = n−m.

3.1.3 Matrices

A matrix A ∈ Rm×n defines a linear transformation from Rn to Rm. Given u ∈ Rn, the

transformation v = Au ∈ Rm can be thought of as either a linear combination of the

columns c1 . . . cn ∈ Rm of A, or dot products between the rows r1 . . . rm ∈ Rn of A and u:

v = [u]1c1 + · · ·+ [u]ncn =


r>1 u

...

r>mu

 (3.5)

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 19

The range (or the column space) of A is defined as the span of the columns of A; the

row space of A is the column space of A>. The null space of A is defined as the set of

vectors u ∈ Rn such that Au = 0; the left null space of A is the null space of A>. We

denote them respectively by the following symbols:

range(A) = col(A) := {Au : u ∈ Rn} ⊆ Rm (3.6)

row(A) := col(A>) ⊆ Rn (3.7)

null(A) := {u ∈ Rn : Au = 0} ⊆ Rn (3.8)

left-null(A) := null(A>) ⊆ Rm (3.9)

It can be shown that they are all subspaces (Theorem 2.1, Friedberg et al. [2003]). Observe

that null(A) = row(A)⊥ and left-null(A) = range(A)⊥. In Section 3.3, we show that singular

value decomposition can be used to find an orthonormal basis of each of these subspaces.

The rank of A is defined as the dimension of the range of A, which is the number of

linearly independent columns of A:

rank(A) := dim(range(A)) (3.10)

An important use of the rank is testing the invertibility of a square matrix: A ∈ Rn×n is

invertible iff rank(A) = n (see p. 152 of Friedberg et al. [2003]). The nullity of A is the

dimension of the null space of A, nullity(A) := dim(null(A)).

The following theorems are fundamental results in linear algebra:

Theorem 3.1.4 (Rank-nullity theorem). Let A ∈ Rm×n. Then

rank(A) + nullity(A) = n

Proof. See p. 70 of Friedberg et al. [2003].

Theorem 3.1.5. Let A ∈ Rm×n. Then

dim(col(A)) = dim(row(A))

Proof. See p. 158 of Friedberg et al. [2003].

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 20

Theorem 3.1.5 shows that rank(A) is also the number of linearly independent rows.

Furthermore, the rank-nullity theorem implies that if r = rank(A),

rank(A) = dim(col(A)) = dim(row(A)) = r

dim(null(A)) = n− r

dim(left-null(A)) = m− r

We define additional quantities associated with a matrix. The trace of a square matrix

A ∈ Rn×n is defined as the sum of its diagonal entries:

Tr(A) := [A]1,1 + · · ·+ [A]n,n (3.11)

The Frobenius norm ||A||F of a matrix A ∈ Rm×n is defined as:

||A||F :=

√√√√ m∑
i=1

n∑
j=1

|[A]i,j |2 =
√

Tr(A>A) =
√

Tr(AA>) (3.12)

where the trace expression can be easily verified. The relationship between the trace and

eigenvalues (3.23) implies that ||A||2F is the sum of the singular values of A. The spectral

norm or the operator norm ||A||2 of a matrix A ∈ Rm×n is defined as the maximizer of

||Ax||2 over the unit sphere,

||A||2 := max
u∈Rn: ||u||2=1

||Au||2 = max
u∈Rn: u6=0

||Au||2
||u||2

(3.13)

The variational characterization of eigenvalues (Theorem 3.2.7) implies that ||A||2 is the

largest singular value of A. Note that ||Au||2 ≤ ||A||2 ||u||2 for any u ∈ Rn: this matrix-

vector inequality is often useful.

An important property of ||·||F and ||·||2 is their orthogonal invariance:

Proposition 3.1.1. Let A ∈ Rm×n. Then

||A||F = ||QAR||F ||A||2 = ||QAR||2

where Q ∈ Rm×m and R ∈ Rn×n are any orthogonal matrices (see Section 3.1.4).

Proof. Let A = UΣV > be an SVD of A. Then QAR = (QU)Σ(R>V)> is an SVD of QAR

since QU and R>V have orthonormal columns. Thus A and QAR have the same set of

singular values. Since ||·||F is the sum of singular values and ||·||2 is the maximum singular

value, the statement follows.

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 21

3.1.4 Orthogonal Matrices

A square matrix Q ∈ Rn×n is an orthogonal matrix if Q>Q = In×n. In other words, the

columns of Q are an orthonormal basis of Rn; it follows that QQ> = In×n since QQ> is

an identity operator over Rn (see Section 3.1.5). Two important properties of Q are the

following:

1. For any u ∈ Rn, Qu has the same length as u:

||Qu||2 =
√
u>Q>Qu =

√
u>u = ||u||2

2. For any nonzero u, v ∈ Rn, the angle θ1 ∈ [0, π] between Qu and Qv and θ2 ∈ [0, π]

between u and v are the same. To see this, note that

||Qu||2 ||Qv||2 cos θ1 = 〈Qu,Qv〉 = u>Q>Qv = 〈u, v〉 = ||u||2 ||v||2 cos(θ2)

It follows that cos θ1 = cos θ2 and thus θ1 = θ2 (since θ1, θ2 are taken in [0, π]).

Hence an orthogonal matrix Q ∈ Rn×n can be seen as a rotation of the coordinates in

Rn.1 This idea is used in Chapter 5 and 6.

3.1.5 Orthogonal Projection onto a Subspace

Theorem 3.1.6. Let S ⊆ Rn be a subspace spanned by an orthonormal basis u1 . . . um ∈ Rn.

Let U := [u1 . . . um] ∈ Rn×m. Pick any x ∈ Rn and define

y∗ := arg min
y∈S

||x− y||2 (3.14)

Then the unique solution is given by y∗ = UU>x.

Proof. Any element y ∈ S is given by Uv for some v ∈ Rn, thus y∗ = Uv∗ where

v∗ = arg min
v∈Rn

||x− Uv||2 = (U>U)−1U>x = U>x

is unique, hence y∗ is unique.

1Certain orthogonal matrices also represent reflection. For instance, the orthogonal matrix

Q =

0 1

1 0


is a reflection in R2 (along the diagonal line that forms an angle of π/4 with the x-axis).

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 22

In Theorem 3.1.6, x− y∗ is orthogonal to the subspace S = span{u1 . . . um} since

〈x− y∗, ui〉 = x>ui − x>UU>ui = 0 ∀i ∈ [m] (3.15)

For this reason, the n×n matrix Π := UU> is called the orthogonal projection onto the

subspace S ⊆ Rn. A few remarks on Π:

1. Π is unique. If Π′ is another orthogonal projection onto S, then Πx = Π′x for all

x ∈ Rn (since this is uniquely given, Theorem 3.1.6). Hence Π = Π′.

2. Π is an identitiy operator for elements in S. This implies that the inherent dimension

of x ∈ S is m (not n) in the sense that the m-dimensional vector

x̃ := U>x

can be restored to x = Ux̃ ∈ Rn without any loss of accuracy. This idea is used in

subspace identification techniques (Section 4.7).

It is often of interest to compute the orthogonal projection Π ∈ Rn×n onto the range of

A ∈ Rn×m. If A already has orthonormal columns, the projection is given by Π = AA>.

Otherwise, a convenient construction is given by

Π = A(A>A)+A> (3.16)

To see this, let A = UΣV > be a rank-m SVD of A so that the columns of U ∈ Rn×m are

an orthonormal basis of range(A). Then

A(A>A)+A> = (UΣV >)(V Σ−2V >)(V ΣU>) = UU> (3.17)

3.1.6 Gram-Schmidt Process and QR Decomposition

An application of the orthogonal projection yields a very useful technique in linear algebra

called the Gram-Schmidt process (Figure 3.1).

Theorem 3.1.7. Let v1 . . . vm ∈ Rn be linearly independent vectors. The output v̄1 . . . v̄m ∈
Rn of Gram-Schmidt(v1 . . . vm) are orthonormal and satisfy

span{v̄1 . . . v̄i} = span{v1 . . . vi} ∀1 ≤ i ≤ m

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 23

Gram-Schmidt(v1 . . . vm)

Input: linearly independent m ≤ n vectors v1 . . . vm ∈ Rn

1. Normalize v̄1 = v1/ ||v1||2.

2. For i = 2 . . .m,

(a) Remove the components of vi lying in the span of v̄1 . . . v̄i−1,

w̄i = vi − [v̄1 . . . v̄i−1][v̄1 . . . v̄i−1]>vi = vi −
i−1∑
j=1

(v̄>j vi)v̄j

(b) Normalize v̄i = w̄i/ ||w̄i||2.

Output: orthonormal v̄1 . . . v̄m ∈ Rn such that span{v̄1 . . . v̄i} = span{v1 . . . vi} for all

i = 1 . . .m

Figure 3.1: The Gram-Schmidt process.

Proof. The base case i = 1 can be trivially verified. Assume span{v̄1 . . . v̄i−1} equals

span{v1 . . . vi−1} and consider the vector v̄i computed in the algorithm. It is orthogo-

nal to the subspace span{v̄1 . . . v̄i−1} by (3.15) and has length 1 by the normalization step,

so v̄1 . . . v̄i are orthonormal. Furthermore,

vi = (v̄>1 vi)v̄1 + · · ·+ (v̄>i−1vi)v̄i−1 + ||w̄i||2 v̄i

is in span{v̄1 . . . v̄i}, thus span{v̄1 . . . v̄i} = span{v1 . . . vi}.

The Gram-Schmidt process yields one of the most elementary matrix decomposition

techniques called QR decomposition. A simplified version (which assumes only matrices

with linearly independent columns) is given in Figure 3.1.

Theorem 3.1.8. Let A ∈ Rn×m be a matrix with linearly independent columns a1 . . . am ∈
Rn. The output (Q,R) of QR(A) are an orthonormal matrix Q ∈ Rn×m and an upper

triangular matrix R ∈ Rm×m such that A = QR.

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 24

QR(A)

Input: A ∈ Rn×m with linearly independent columns a1 . . . am ∈ Rn

1. Q := [ā1 . . . ām]← Gram-Schmidt(a1 . . . am)

2. Define an upper triangular matrix R ∈ Rm×m by

[R]i,j ← ā>i aj ∀i ∈ [1,m], j ∈ [i,m]

Output: orthonormal matrix Q ∈ Rn×m and an upper triangular matrix R ∈ Rm×m such

that A = QR.

Figure 3.2: QR decomposition.

Proof. The columns ā1 . . . ām of Q are orthonormal by Theorem 3.1.7 and R is upper tri-

angular by construction. The i-th column of QR is given by

(ā>1 ā1)ai + · · ·+ (ā>i āi)ai = [ā1 . . . āi][ā1 . . . āi]
>ai = ai

since ai ∈ span{ā1 . . . āi}.

The Gram-Schmidt process is also used in the non-negative matrix factorization algo-

rithm of Arora et al. [2012a] (which is given in Figure 7.1 in this thesis).

3.2 Eigendecomposition

In this section, we develop a critical concept associated with a matrix called eigenvectors and

eigenvalues. This concept leads to decomposition of a certain class of matrices called eigen-

decomposition. All statements (when not proven) can be found in standard introductory

textbooks on linear algebra such as Strang [2009].

3.2.1 Square Matrices

Let A ∈ Rn×n be a real square matrix. An eigenvector v of A is a nonzero vector that

preserves its direction in Rn under the linear transformation defined by A: that is, for some

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 25

scalar λ,

Av = λv (3.18)

The scalar λ is called the eigenvalue corresponding to v. A useful fact (used in the proof

of Theorem 3.2.3) is that eigenvectors corresponding to different eigenvalues are linearly

independent.

Lemma 3.2.1. Eigenvectors (v, v′) of A ∈ Rn×n corresponding to distinct eigenvalues

(λ, λ′) are linearly independent.

Proof. Suppose v′ = cv for some scalar c (which must be nonzero). Then the eigen condi-

tions imply that Av′ = A(cv) = cλv and also Av′ = λ′v′ = cλ′v. Hence λv = λ′v. Since

λ 6= λ′, we must have v = 0. This contradicts the definition of an eigenvector.

Theorem 3.2.2. Let A ∈ Rn×n. The following statements are equivalent:

• λ is an eigenvalue of A.

• λ is a scalar that yields det(A− λIn×n) = 0.

Proof. λ is an eigenvalue of A iff there is some nonzero vector v such that Av = λv, and

∃v 6= 0 : (A− λIn×n)v = 0 ⇐⇒ nullity(A− λIn×n) > 0

⇐⇒ rank(A− λIn×n) < n (by the rank-nullity theorem)

⇐⇒ A− λIn×n is not invertible

The last statement is equivalent to det(A− λIn×n) = 0.

Since det(A − λIn×n) is a degree n polynomial in λ, it has n roots (counted with

multiplicity2) by the fundamental theorem of algebra and can be written as

det(A− λIn×n) = (λ− λ1)(λ− λ2) · · · (λ− λn) (3.19)

2Recall that λ is a root of multiplicity k for a polynomial p(x) if p(x) = (x−λ)ks(x) for some polynomial

s(x) 6= 0.

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 26

Let λ be a distinct root of (3.19) and a(λ) its multiplicity. Theorem 3.2.2 implies that λ is

a distinct eigenvalue of A with a space of corresponding eigenvectors

EA,λ := {v : Av = λv} (3.20)

(i.e., the null space of A − λIn×n and hence a subspace) which is called the eigenspace

of A associated with λ. The dimension of this space is the number of linearly independent

eigenvectors corresponding to λ. It can be shown that

1 ≤ dim(EA,λ) ≤ a(λ)

where the first inequality follows by the definition of λ (i.e., there is a corresponding eigen-

vector). We omit the proof of the second inequality.

Theorem 3.2.3. Let A ∈ Rn×n be a matrix with eigenvalues λ1 . . . λn. The following

statements are equivalent:

• There exist eigenvectors v1 . . . vn corresponding to λ1 . . . λn such that

A = V ΛV −1 (3.21)

where V = [v1 . . . vn] and Λ = diag(λ1 . . . λn). (3.21) is called an eigendecomposi-

tion of A.

• The eigenspace of A associated with each distinct eigenvalue λ has the maximum

dimension, that is, dim(EA,λ) = a(λ).

Proof. For any eigenvectors v1 . . . vn corresponding to λ1 . . . λn, we have

AV = V Λ (3.22)

Thus it is sufficient to show that the existence of an invertible V is equivalent to the second

statement. This is achieved by observing that we can find n linearly independent eigen-

vectors iff we can find a(λ) linearly independent eigenvectors for each distinct eigenvalue λ

(since eigenvectors corresponding to different eigenvalues are already linearly independent

by Lemma 3.2.1).

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 27

Theorem 3.2.3 gives the condition on a square matrix to have an eigendecomposition (i.e.,

each eigenspace must have the maximum dimension). A simple corollary is the following:

Corollary 3.2.4. If A ∈ Rn×n has n distinct eigenvalues λ1 . . . λn, it has an eigendecom-

position.

Proof. Since 1 ≤ dim(EA,λi) ≤ a(λi) = 1 for each (distinct) eigenvalue λi, the statement

follows from Theorem 3.2.3.

Since we can write an eigendecomposition of A as

V −1AV = Λ

where Λ is a diagonal matrix, a matrix that has an eigendecomposition is called diago-

nalizable.3 Lastly, a frequently used fact about eigenvalues λ1 . . . λn of A ∈ Rn×n is the

following (proof omitted):

Tr(A) = λ1 + · · ·+ λn (3.23)

3.2.2 Symmetric Matrices

A square matrix A ∈ Rn×n always has eigenvalues but not necessarily an eigendecomposi-

tion. Fortunately, if A is additionally symmetric, A is guaranteed to have an eigendecom-

position of a convenient form.

Lemma 3.2.5. Let A ∈ Rn×n. If A is symmetric, then

1. All eigenvalues of A are real.

2. A is diagonalizable.

3. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

3While not every square matrix A ∈ Rn×n is diagonalizable, it can be transformed into an upper triangular

form T = U>AU by an orthogonal matrix U ∈ Rn×n; see Theorem 3.3 of Stewart and Sun [1990]. This

implies a decomposition A = UTU> known the Schur decomposition. A can also always be transformed

into a block diagonal form called a Jordan canonical form; see Theorem 3.7 of Stewart and Sun [1990].

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 28

Proof. For the first and second statements, we refer to Strang [2009]. For the last statement,

let (v, v′) be eigenvectors of A corresponding to distinct eigenvalues (λ, λ′). Then

λv>v′ = v>A>v′ = v>Av′ = λ′v>v′

Thus v>v′ = 0 since λ 6= λ′.

Theorem 3.2.6. Let A ∈ Rn×n be a symmetric matrix with eigenvalues λ1 . . . λn ∈ R.

Then there exist orthonormal eigenvectors v1 . . . vn ∈ Rd of A corresponding to λ1 . . . λn. In

particular,

A = V ΛV > (3.24)

for orthogonal matrix V = [v1 . . . vn] ∈ Rn×n and Λ = diag(λ1 . . . λn) ∈ Rn×n.

Proof. Since A is diagonalizable (Lemma 3.2.5), the eigenspace of λi has dimension a(λi)

(Theorem 3.2.3). Since this is the null space of a real matrix A − λiIn×n, it has a(λi)

orthonormal basis vectors in Rn. The claim follows from the fact that the eigenspaces of

distinct eigenvalues are orthogonal (Lemma 3.2.5).

Another useful fact about the eigenvalues of a symmetric matrix is the following.

Proposition 3.2.1. If A ∈ Rn×n is symmetric, the rank of A is the number of nonzero

eigenvalues.

Proof. The dimension of EA,0 is the multiplicity of the eigenvalue 0 by Lemma 3.2.5 and

Theorem 3.2.3. The rank-nullity theorem gives rank(A) = n− nullity(A) = n− a(0).

Note that (3.24) can be equivalently written as a sum of weighted outer products

A =
n∑
i=1

λiviv
>
i =

∑
λi 6=0

λiviv
>
i (3.25)

3.2.3 Variational Characterization

In Section 3.2.2, we see that any symmetric matrix has an eigendecomposition with real

eigenvalues and orthonormal eigenvectors. It is possible to frame this decomposition as a

constrained optimization problem (i.e., variational characterization).

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 29

Theorem 3.2.7. Let A ∈ Rn×n be a symmetric matrix with orthonormal eigenvectors

v1 . . . vn ∈ Rn corresponding to its eigenvalues λ1 ≥ . . . ≥ λn ∈ R. Let k ≤ n. Consider

maximizing v>Av over unit-length vectors v ∈ Rn under orthogonality constraints:

v∗i = arg max
v∈Rn:
||v||2=1

v>v∗j =0 ∀j<i

v>Av for i = 1 . . . k

Then an optimal solution is given by v∗i = vi.
4

Proof. The Lagrangian for the objective for v∗1 is:

L(v, λ̄) = v>Av − λ̄(v>v − 1)

Its stationary conditions v>v = 1 and Av = λ̄v imply that v∗1 is a unit-length eigenvector

of A with eigenvalue λ̄. Pre-multiplying the second condition by v> and using the first

condition, we have λ̄ = v>Av. Since this is the objective to maximize and has to be an

eigenvalue of A, we must have λ̄ = λ1. Thus any unit-length eigenvector in EA,λ1 is an

optimal solution for v∗1, in particular v1.

Suppose v∗i = vi for i < t ≤ k. The Lagrangian for the objective for v∗t is:

L(v, λ̄, {γi}i<t) = v>Av − λ̄(v>v − 1)−
t−1∑
i=1

γiv
>vi

Its stationary conditions are v>v = 1, v>i v = 0 for i < t, and Av = λ̄v + (1/2)
∑t−1

i=1 γivi.

Pre-multiplying the last condition by v>j and using Avj = λjvj , we have γj = 0 for each

j < t. Then Av = λ̄v, so any stationary point is a unit-length eigenvector of A orthogonal

to v1 . . . vt−1 corresponding to an eigenvalue λ̄ = v>Av. This implies that vt is an optimal

solution for v∗t .

Note that in Theorem 3.2.7,

λ1 = max
v: ||v||2=1

v>Av = max
v 6=0

(
v√
v>v

)>
A

(
v√
v>v

)
= max

v 6=0

v>Av

v>v

The quantity in the last expression is called the Rayleigh quotient,

R(A, v) :=
v>Av

v>v
(3.26)

4Note that this solution also satisfies (v∗i)>Av∗j = 0 for all i 6= j (even though this is not a constraint).

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 30

Thus the optimization problem can be seen as maximizing R(A, v) over v 6= 0 (under

orthogonality constraints):

v∗i = arg max
v∈Rn:
v 6=0

v>v∗j =0 ∀j<i

v>Av

v>v
for i = 1 . . . k

Another useful characterization in matrix form is the following:

Theorem 3.2.8. Let A ∈ Rn×n be a symmetric matrix with orthonormal eigenvectors

v1 . . . vn ∈ Rd corresponding to its eigenvalues λ1 ≥ . . . ≥ λn ∈ R. Let k ≤ n. Consider

maximizing the trace of V >AV ∈ Rk×k over orthonormal matrices V ∈ Rn×k:

V ∗ = arg max
V ∈Rn×k: V >V=Ik×k

Tr(V >AV)

Then an optimal solution is given by V ∗ = [v1 . . . vk].

Proof. Denote the columns of V by v̄1 . . . v̄k ∈ Rn. The Lagrangian for the objective is:

L({v̄1 . . . v̄k}, {λ̄i}ki=1, {γij}i 6=j) =

k∑
i=1

v̄>i Av̄i −
k∑
i=1

λ̄i(v̄
>
i v̄i − 1)−

∑
i 6=j

γij v̄
>
i v̄j

It can be verified from stationary conditions that v̄>i v̄i = 1, v̄>i v̄j = 0 (for i 6= j), and

Av̄i = λ̄iv̄i. Thus v̄1 . . . v̄k are orthonormal eigenvectors of A corresponding to eigenvalues

λ̄1 . . . λ̄k. Since the objective to maximize is

Tr(V >AV) =
k∑
i=1

v̄>i Av̄i =
k∑
i=1

λ̄i

any set of orthonormal eigenvectors corresponding to the k largest eigenvalues λ1 ≥ . . . ≥ λk
are optimal, in particular V ∗ = [v1 . . . vk].

3.2.4 Semidefinite Matrices

A symmetric matrix A ∈ Rn×n always has an eigendecomposition with real eigenvalues.

When all the eigenvalues of A are furthermore non-negative, A is called positive semidef-

inite or PSD and sometimes written as A � 0. Equivalently, a symmetric matrix A ∈ Rn×n

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 31

is PSD if v>Av ≥ 0 for all v ∈ Rn; to see this, let A =
∑n

i=1 λiviv
>
i be an eigendecomposition

and note that

v>Av =

n∑
i=1

λi(v
>vi)

2 ≥ 0 ∀v ∈ Rn ⇐⇒ λi ≥ 0 ∀1 ≤ i ≤ n

A PSD matrix whose eigenvalues are strictly positive is called positive definite and written

as A � 0. Similarly as above, A � 0 iff v>Av > 0 for all v 6= 0. Matrices that are

negative semidefinite and negative definite are symmetrically defined (for non-positive

and negative eigenvalues).

These matrices are important because they arise naturally in many settings.

Example 3.2.1 (Covariance matrix). The covariance matrix of a random variable X ∈ Rn

is defined as

CX := E
[
(X −E[X])(X −E[X])>

]
which is clearly symmetric. For any v ∈ Rn, let Z := v>(X−E[X]) and note that v>CXv =

E[Z2] ≥ 0, thus CX � 0.

Example 3.2.2 (Hessian). Let f : Rn → R be a differentiable function. The Hessian of f

at x is defined as ∇2f(x) ∈ Rn×n where

[∇2f(x)]i,j :=
∂2f(x)

∂xi∂xj
∀i, j ∈ [n]

which is clearly symmetric. If x is stationary, ∇f(x) = 0, then the spectral properties of

∇2f(x) determines the category of x.

• If ∇2f(x) � 0, then x is a local minimum. Consider any direction u ∈ Rn. By

Taylor’s theorem, for a sufficiently small η > 0

f(x+ ηu) ≈ f(x) +
η2

2
u>∇2f(x)u > f(x)

• Likewise, if ∇2f(x) ≺ 0, then x is a local maximum.

• If ∇2f(x) has both positive and negative eigenvalues, then x is a saddle point. If

v+ ∈ Rn is an eigenvector corresponding to a positive eigenvalue,

f(x+ ηv+) ≈ f(x) +
η2

2
v>+∇2f(x)v+ > f(x)

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 32

If v− ∈ Rn is an eigenvector corresponding to a negative eigenvalue,

f(x+ ηv−) ≈ f(x) +
η2

2
v>−∇2f(x)v− < f(x)

Finally, if ∇2f(x) � 0 for all x ∈ Rn, then f is convex. Given any x, y ∈ Rn, for some z

between x and y,

f(y) = f(x) +∇f(x)>(y − x) +
1

2
(y − x)>∇2f(z)(y − x)

≥ f(x) +∇f(x)>(y − x)

Example 3.2.3 (Graph Laplacian). Consider an undirected weighted graph with n vertices

[n] and a (symmetric) adjacency matrix W ∈ Rn×n. The (i, j)-th entry of W is a non-

negative weight wij ≥ 0 for edge (i, j) where wij = 0 iff there is no edge (i, j). The degree

of vertex i ∈ [n] is defined as di :=
∑n

j=1wij and assumed to be positive.

The (unnormalized) graph Laplacian is a matrix whose spectral properties reveal the

connectivity of the graph:

L := D −W (3.27)

where D := diag(d1, . . . , dn). Note that L does not depend on self-edges wii by construction.

This matrix has the following properties (proofs can be found in Von Luxburg [2007]):

• L � 0 (and symmetric), so all its eigenvalues are non-negative.

• Moreover, the multiplicity of eigenvalue 0 is the number of connected components in

the graph (so it is always at least 1).

• Suppose there are m ≤ n connected components A1 . . . Am (a partition of [n]). Repre-

sent each component c ∈ [m] by an indicator vector 1c ∈ {0, 1}n where

1
c
i = [[vertex i belongs to component c]] ∀i ∈ [n]

Then {11 . . .1m} is a basis of the zero eigenspace EL,0.

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 33

3.2.5 Numerical Computation

Numerical computation of eigenvalues and eigenvectors is a deep subject beyond the scope

of this thesis. Thorough treatments can be found in standard references such as Golub and

Van Loan [2012]. Here, we supply basic results to give insight.

Consider computing eigenvectors (and their eigenvalues) of a diagonalizable matrix A ∈
Rn×n. A direct approach is to calculate the n roots of the polynomial det(A − λIn×n) in

(3.19) and for each distinct root λ find an orthonormal basis of its eigenspace EA,λ = {v :

(A− λIn×n)v = 0} in (3.20). Unfortunately, finding roots of a high-degree polynomial is a

non-trivial problem of its own. But the following results provide more practical approaches

to this problem.

3.2.5.1 Power Iteration

Theorem 3.2.9. Let A ∈ Rn×n be a nonzero symmetric matrix with eigenvalues |λ1| >
|λ2| ≥ · · · ≥ |λn| and corresponding orthonormal eigenvectors v1 . . . vn. Let v ∈ Rn be a

vector chosen at random. Then Akv converges to some multiple of v1 as k increases.

Proof. Since v1 . . . vn form an orthonormal basis of Rn and v is randomly chosen from Rn,

v =
∑n

i=1 civi for some nonzero c1 . . . cn ∈ R. Therefore,

Akv = λk1

(
c1v1 +

n∑
i=2

ci

(
λi
λ1

)k
vi

)

Since |λi/λ1| < 1 for i = 2 . . . n, the second term vanishes as k increases.

A few remarks on Theorem 3.2.9:

• The proof suggests that the convergence rate depends on λ2/λ1 ∈ [0, 1). If this is

zero, k = 1 yields an exact estimate Av = λ1c1v1. If this is nearly one, it may take a

large value of k before Akv converges.

• The theorem assumes |λ1| > |λ2| for simplicity (this is called a spectral gap condition),

but there are more sophisticated analyses that do not depend on this assumption (e.g.,

Halko et al. [2011]).

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 34

• Once we have an estimate v̂1 = Akv of the dominant eigenvector v1, we can calculate

an estimate λ̂1 of the corresponding eigenvalue by solving

λ̂1 = arg min
λ∈R

||Av̂1 − λv̂1||2 (3.28)

whose closed-form solution is given by the Rayleigh quotient:

λ̂1 =
v̂>1 Av̂1

v̂>1 v̂1
(3.29)

• Once we have an estimate (v̂1, λ̂1) of (v1, λ1), we can perform a procedure called

deflation

A′ := A− λ̂1v̂1v̂
>
1 ≈ A− λ1v1v

>
1 =

n∑
i=2

λiviv
>
i (3.30)

If v̂1 = v1, the dominant eigenvector of A′ is exactly v2 which can be estimated in a

similar manner.

Theorem 3.2.9 suggests a scheme for finding eigenvectors of A, one by one, in the order

of decreasing eigenvalues. This scheme is called the power iteration method; a basic

version of the power method is given in Figure 3.3. Note that the eigenvector estimate is

normalized in each iteration (Step 1(b)ii); this is a typical practice for numerical stability.

3.2.5.2 Orthogonal Iteration

Since the error introduced in deflation (3.30) propagates to the next iteration, the power

method may be unstable for non-dominant eigen components. A natural generalization that

remedies this problem is to find eigenvectors of A corresponding to the largest m eigenvalues

simultaneously. That is, we start with m linearly independent vectors as columns of Ṽ =

[v̂1 . . . v̂m] and compute

AkṼ = [Akv̂1 . . . A
kv̂m]

Note that each column of AkṼ converges to the dominant eigen component (the case m = 1

degenerates to the power method). As long as the columns remain linearly independent

(which we can maintain by orthogonalizing the columns in every multiplication by A), their

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 35

Input: symmetric A ∈ Rn×n, number of desired eigen components m ≤ n
Simplifying Assumption: the m dominant eigenvalues of A are nonzero and distinct,

|λ1| > · · · > |λm| > |λm+1| > 0 (λm+1 = 0 if m = n), with corresponding orthonormal

eigenvectors v1 . . . vm ∈ Rn

1. For i = 1 . . .m,

(a) Initialize v̂i ∈ Rn randomly from a unit sphere.

(b) Loop until convergence:

i. v̂i ← Av̂i

ii. v̂i ← v̂i/ ||v̂i||

(c) Compute the corresponding eigenvalue λ̂i ← v̂>i Av̂i.

(d) Deflate A← A− λ̂iv̂iv̂>i .

Output: estimate (v̂i, λ̂i) of (vi, λi) for i = 1 . . .m

Figure 3.3: A basic version of the power iteration method.

span converges to the subspace spanned by the eigenvectors of A corresponding to the largest

m eigenvalues under certain conditions (Chapter 7, Golub and Van Loan [2012]). Thus the

desired eigenvectors can be recovered by finding an orthonormal basis of range(AkṼ). The

resulting algorithm is known as the orthogonal iteration method and a basic version of

the algorithm is given in Figure 3.4. As in the power iteration method, a typical practice

is to compute an orthonormal basis in each iteration rather than in the end to improve

numerical stability; in particular, to prevent the estimate vectors from becoming linearly

dependent (Step 2b).

3.2.5.3 Lanczos Method

We mention a final algorithm which is particularly effective when the goal is to compute only

a small number of dominant eigenvalues of a large, sparse symmetric matrix. The algorithm

is known as the Lanczos method; details of this method can be found in Chapter 9 of

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 36

Input: symmetric A ∈ Rn×n, number of desired eigen components m ≤ n
Simplifying Assumption: the m dominant eigenvalues of A are nonzero and distinct,

|λ1| > · · · > |λm| > |λm+1| > 0 (λm+1 = 0 if m = n), with corresponding orthonormal

eigenvectors v1 . . . vm ∈ Rn

1. Initialize V̂ ∈ Rn×m such that V̂ >V̂ = Im×m randomly.

2. Loop until convergence:

(a) Ṽ ← AV̂

(b) Update V̂ to be an orthonormal basis of range(Ṽ) (e.g., by computing the QR

decomposition: [V̂ , R]← QR(Ṽ)).

3. Compute the corresponding eigenvalues Λ̂← V̂ >AV̂ .

4. Reorder the columns of V̂ and Λ̂ in descending absolute magnitude of eigenvalues.

Output: estimate (V̂ , Λ̂) of (V,Λ) where V = [v1 . . . vm] and Λ = diag(λ1 . . . λm).

Figure 3.4: A basic version of the subspace iteration method.

Golub and Van Loan [2012]. We give a sketch of the algorithm to illustrate its mechanics.

This is the algorithm we use in in implementing our works presented in Chapter 5, Chapter 6,

and Chapter 7. More specifically, we use the SVDLIBC package provided by Rohde [2007]

which employs the single-vector Lanczos method.

Let A ∈ Rn×n be a symmetric matrix. The Lanczos method seeks an orthogonal matrix

Qn ∈ Rn×n such that

T = Q>nAQn =



α1 β1 0 · · · 0

β1 α2 β2
. . .

...

0 β2
. . .

...
. . . βn−1

0 · · · βn−1 αn


(3.31)

is a tridiagonal matrix (i.e., Ti,j = 0 except when i ∈ {j−1, j, j+ 1}). We know that such

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 37

matrices exist since A is diagonalizable; for instance, Qn can be orthonormal eigenvectors

of A. Note that T is symmetric (since A is). From an eigendecompsition of T = Ṽ Λ̃Ṽ >,

we can recover an eigendecomposition of the original matrix A = V Λ̃V > where V = QnṼ

since

A = QnTQ
>
n = (QnṼ)Λ̃(QnṼ)>

is an eigendecomposition. The Lanczos method is an iterative scheme to efficiently calcu-

late Qn and, in the process, simultaneously compute the tridiagonal entries α1 . . . αn and

β1 . . . βn−1.

Lemma 3.2.10. Let A ∈ Rn×n be symmetric and Qn = [q1 . . . qn] be an orthogonal matrix

such that T = Q>nAQn has the tridiagonal form in (3.31). Define q0 = qn+1 = 0, β0 = 1,

and

ri := Aqi − βi−1qi−1 − αiqi 1 ≤ i ≤ n

Then

αi = q>i Aqi 1 ≤ i ≤ n (3.32)

βi = ||ri||2 1 ≤ i ≤ n− 1 (3.33)

qi+1 = ri/βi 1 ≤ i ≤ n− 1 (3.34)

Proof. Since AQn = QnT , by the tridiagonal structure of T ,

Aqi = βi−1qi−1 + αiqi + βiqi+1 1 ≤ i ≤ n

Multiplying on the left by qi and using the orthonormality of q1 . . . qn, we verify αi = q>i Aqi.

Rearranging the expression gives

βiqi+1 = Aqi − βi−1qi−1 − αiqi = ri

Since qi+1 is a unit vector for 1 ≤ i ≤ n− 1, we have βi = ||ri|| and qi+1 = ri/βi.

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 38

Input: symmetric A ∈ Rn×n with dominant eigenvalues |λ1| ≥ · · · ≥ |λm| > 0 and cor-

responding orthonormal eigenvectors v1 . . . vm ∈ Rn, number of desired eigen components

m ≤ n

1. Initialize q̂1 ∈ Rn randomly from a unit sphere and let q̂0 = 0 and β̂0 = 1.

2. For i = 1 . . .m,

(a) Compute α̂i ← q̂>i Aq̂i. If i < m, compute:

r̂i ← Aq̂i − β̂i−1q̂i−1 − α̂iq̂i β̂i ← ||r̂i||2 q̂i+1 ← r̂i/β̂i

3. Compute the eigenvalues |λ̂1| ≥ . . . ≥ |λ̂m| and the corresponding orthonormal eigen-

vectors ŵ1 . . . ŵm ∈ Rm of the m×m tridiagonal matrix:

T̂ =



α̂1 β̂1 0 · · · 0

β̂1 α̂2 β̂2
. . .

...

0 β̂2
. . .

...
. . . β̂m−1

0 · · · β̂m−1 α̂m


(e.g., using the orthogonal iteration method).

4. Let v̂i ← Q̂mŵi where Q̂m := [q̂1 . . . q̂m] ∈ Rn×m.

Output: estimate (v̂i, λ̂i) of (vi, λi) for i = 1 . . .m

Figure 3.5: A basic version of the Lanczos method.

Lemma 3.2.10 suggests that we can seed a random unit vector q1 and iteratively compute

(αi, βi−1, qi) for all i ≤ n. Furthermore, it can be shown that if we terminate this iteration

early at i = m ≤ n, the eigenvalues and eigenvectors of the resulting m × m tridiagonal

matrix are a good approximation of the m dominant eigenvalues and eigenvectors of the

original matrix A. It can also be shown that the Lanczos method converges faster than the

power iteration method [Golub and Van Loan, 2012].

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 39

A basic version of the Lanczos method shown in Figure 3.5. The main computation in

each iteration is a matrix-vector product Aq̂i which can be made efficient if A is sparse.

3.3 Singular Value Decomposition (SVD)

Singular value decomposition (SVD) is an application of eigendecomposition to factorize

any matrix A ∈ Rm×n.

3.3.1 Derivation from Eigendecomposition

SVD can be derived from an observation that AA> ∈ Rm×m and A>A ∈ Rn×n are sym-

metric and PSD, and have the same number of nonzero (i.e., positive) eigenvalues since

rank(A>A) = rank(AA>) = rank(A).

Theorem 3.3.1. Let A ∈ Rm×n. Let λ1 ≥ . . . ≥ λm ≥ 0 denote the m eigenvalues of AA>

and λ′1 ≥ . . . ≥ λ′n ≥ 0 the n eigenvalues of A>A. Then

λi = λ′i 1 ≤ i ≤ min{m,n} (3.35)

Moreover, there exist orthonormal eigenvectors u1 . . . um ∈ Rm of AA> corresponding to

λ1 . . . λm and orthonormal eigenvectors v1 . . . vn ∈ Rn of A>A corresponding to λ′1 . . . λ
′
n

such that

A>ui =
√
λivi 1 ≤ i ≤ min{m,n} (3.36)

Avi =
√
λiui 1 ≤ i ≤ min{m,n} (3.37)

Proof. Let u1 . . . um ∈ Rm be orthonormal eigenvectors of AA> corresponding to eigenvalues

λ1 ≥ . . . ≥ λm ≥ 0. Pre-multiplying AA>ui = λiui by A> and u>i , we obtain

A>A(A>ui) = λi(A
>ui) (3.38)

λi =
∣∣∣∣∣∣A>ui∣∣∣∣∣∣2

2
(3.39)

The first equality shows that A>ui is an eigenvector of A>A corresponding to an eigenvalue

λi. Since this holds for all i and both AA> and A>A have the same number of nonzero

eigenvalues, we have (3.35).

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 40

Now, construct v1 . . . vm as follows. Let eigenvectors vi of A>A corresponding to nonzero

eigenvalues λi > 0 be:

vi =
A>ui√
λi

(3.40)

These vectors are unit-length eigenvectors of A>A by (3.38) and (3.39). Furthermore, they

are orthogonal: if i 6= j,

v>i vj =
u>i AA

>uj√
λiλj

=

√
λj
λi
u>i uj = 0

Let eigenvectors vi of A>A corresponding to zero eigenvalues λi = 0 be any orthonormal

basis of EA>A,0. Since this subspace is orthogonal to eigenvectors of A>A corresponding to

nonzero eigenvalues, we conclude that all v1 . . . vm are orthonormal.

It remains to verify (3.36) and (3.37). For λi > 0, they follow immediately from (3.40).

For λi = 0, A>ui and Avi must be zero vectors since
∣∣∣∣A>ui∣∣∣∣22 = λi by (3.39) and also

||Avi||22 = v>i A
>Avi = λi; thus (3.36) and (3.37) hold trivially.

The theorem validates the following definition.

Definition 3.3.1. Let A ∈ Rm×n. Let u1 . . . um ∈ Rm be orthonormal eigenvectors of

AA> corresponding to eigenvalues λ1 ≥ · · · ≥ λm ≥ 0, let v1 . . . vn ∈ Rn be orthonormal

eigenvectors of A>A corresponding to eigenvalues λ′1 ≥ · · · ≥ λ′n ≥ 0, such that

λi = λ′i 1 ≤ i ≤ min{m,n}

A>ui =
√
λivi 1 ≤ i ≤ min{m,n}

Avi =
√
λiui 1 ≤ i ≤ min{m,n}

The singular values σ1 . . . σmax{m,n} of A are defined as:

σi :=


√
λi 1 ≤ i ≤ min{m,n}
0 min{m,n} < i ≤ max{m,n}

(3.41)

The vector ui is called a left singular vector of A corresponding to σi. The vector vi is

called a right singular vector of A corresponding to σi. Define

• U ∈ Rm×m is an orthogonal matrix U := [u1 . . . um].

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 41

• Σ ∈ Rm×n is a rectangular diagonal matrix with Σi,i = σi for 1 ≤ i ≤ min{m,n}.

• V ∈ Rn×n is an orthogonal matrix V := [v1 . . . vn].

and note that AV = UΣ. This gives a singular value decomposition (SVD) of A:

A = UΣV > =

min{m,n}∑
i=1

σiuiv
>
i (3.42)

If A is already symmetric, there is a close relation between an eigendecomposition of A

and an SVD of A.

Proposition 3.3.1. If A ∈ Rn×n is symmetric and A = V diag(λ1 . . . λn)V > is an or-

thonormal eigendecomposition of A with λ1 ≥ · · · ≥ λn, then A = V diag(|λ1| . . . |λn|)V > is

an SVD of A.

Proof. Since V diag(λ2
1 . . . λ

2
n)V > is an eigendecomposition of AA> and A>A, the i-th sin-

gular value of A is σi =
√
λ2
i = |λi| and the left and right singular vectors corresponding to

σi are both the i-th column of V .

Corollary 3.3.2. If A ∈ Rn×n is symmetric, an eigendecomposition of A and an SVD of

A are the same iff A � 0.

As emphasized in Chapter 6.7 of Strang [2009], given a matrix A ∈ Rm×n with rank r,

an SVD yields an orthonormal basis for each of the four subspaces assocated with A:

col(A) = span{u1 . . . ur}

row(A) = span{v1 . . . vr}

null(A) = span{vr+1 . . . vn}

left-null(A) = span{ur+1 . . . um}

A typical practice, however, is to only find singular vectors corresponding to a few dominant

singular values (in particular, ignore zero singular values).

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 42

Definition 3.3.2 (Low-rank SVD). Let A ∈ Rm×n with rank r. Let u1 . . . ur ∈ Rm and

v1 . . . vr ∈ Rn be left and right singular vectors of A corresponding to the (only) positive

singular values σ1 ≥ · · · ≥ σr > 0. Let k ≤ r. A rank-k SVD of A is

Â = UkΣkV
>
k =

k∑
i=1

σiuiv
>
i (3.43)

where Uk := [u1 . . . uk] ∈ Rm×k, Σk := diag(σ1 . . . σk) ∈ Rk×k, and Vk := [v1 . . . vk] ∈ Rn×k.

Note that Â = A if k = r.

3.3.2 Variational Characterization

As in eigendecomposition, we can view SVD as solving a constrained optimization problem.

Theorem 3.3.3. Let A ∈ Rm×n with left singular vectors u1 . . . up ∈ Rm and right singular

vectors v1 . . . vp ∈ Rn corresponding to singular values σ1 ≥ . . . ≥ σp ≥ 0 where p :=

min{m,n}. Let k ≤ p. Consider maximizing u>Av over unit-length vector pairs (u, v) ∈
Rm × Rn under orthogonality constraints:

(u∗i , v
∗
i) = arg max

(u,v)∈Rm×Rn:
||u||2=||v||2=1

u>u∗j=v>v∗j =0 ∀j<i

u>Av for i = 1 . . . k

Then an optimal solution is given by (u∗i , v
∗
i) = (ui, vi).

Proof. The proof is similar to the proof of Theorem 3.2.7 and is omitted.

A trace maximization interpretation of right (or left, by considering A>) singular vectors

immediately follows from Theorem 3.2.8.

Corollary 3.3.4. Let A ∈ Rm×n with right singular vectors v1 . . . vp ∈ Rn corresponding to

singular values σ1 ≥ . . . ≥ σp ≥ 0 where p := min{m,n}. Let k ≤ p. Consider maximizing

the trace of V >A>AV ∈ Rk×k over orthonormal matrices V ∈ Rn×k:

V ∗ = arg max
V ∈Rn×k: V >V=Ik×k

Tr(V >A>AV)

= arg max
V ∈Rn×k: V >V=Ik×k

∣∣∣∣AV ∣∣∣∣2
F

(the second equality is by definition). Then an optimal solution is V ∗ = [v1 . . . vk].

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 43

Proof. This is equivalent to the optimization in Theorem 3.2.8 where the given symmetric

matrix is A>A. The result follows from the definition of right singular vectors.

Finally, a trace maximization interpretation jointly of left and right singular vectors is

given below:

Theorem 3.3.5. Let A ∈ Rm×n with left singular vectors u1 . . . up ∈ Rm and right singular

vectors v1 . . . vp ∈ Rn corresponding to singular values σ1 ≥ . . . ≥ σp ≥ 0 where p :=

min{m,n}. Let k ≤ p. Consider maximizing the trace of U>AV ∈ Rk×k over orthonormal

matrices U ∈ Rm×k and V ∈ Rn×k:

(U∗, V ∗) = arg max
U∈Rm×k, V ∈Rn×k:
U>U=V >V=Ik×k

Tr(U>AV)

Then an optimal solution is given by U∗ = [u1 . . . uk] and V ∗ = [v1 . . . vk].

Proof. The proof is similar to the proof of Theorem 3.2.8 and is omitted.

3.3.3 Numerical Computation

Numerical computation of SVD is again an involved subject beyond the scope of this thesis.

See Cline and Dhillon [2006] for references to a wide class of algorithms. Here, we give a

quick remark on the subject to illustrate main ideas.

Let A ∈ Rm×n with m ≤ n (if not, consider A>) and consider computing a rank-k

SVD UkΣkV
>
k of A. Since the columns of Uk ∈ Rm×k are eigenvectors corresponding to

the dominant k eigenvalues of A>A ∈ Rm×m (which are squared singular values of A),

we can compute an eigendecomposition of A>A to obtain Uk and Σk, and finally recover

Vk = Σ−1
k U>k A.

The core of many SVD algorithms is computing an eigendecomposition of A>A efficiently

without explicitly computing the matrix product. This can be done in various ways. For

instance, we can modify the basic Lanczos algorithm in Figure 3.5 as follows: replace the

matrix-vector product Aq̂i in Step 2a to ẑi := Aq̂i followed by A>ẑi. As another example,

Matlab’s sparse SVD (svds) computes an eigendecomposition of

B :=

 0 A

A> 0

 ∈ R(n+m)×(n+m)

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 44

and extracts the singular vectors and values of A from the eigendecomposition of B.

There is also a randomized algorithm for computing an SVD [Halko et al., 2011]. While

we do not use it in this thesis since other SVD algorithms are sufficiently scalable and

efficient for our purposes, the randomized algorithm can potentially be used for computing

an SVD of an extremely large matrix.

3.4 Perturbation Theory

Matrix perturbation theory is concerned with how properties of a matrix change when the

matrix is perturbed by some noise. For instance, how “different” are the singular vectors

of A from the singular vectors of Â = A+ E where E is some noise matrix?

In the following, we let σi(M) ≥ 0 denote the i-th largest singular value of M . We write

∠ {u, v} to denote the angle between nonzero vectors u, v taken in [0, π].

3.4.1 Perturbation Bounds on Singular Values

Basic bounds on the singular values of a perturbed matrix are given below. They can also

be used as bounds on eigenvalues for symmetric matrices.

Theorem 3.4.1 (Weyl [1912]). Let A,E ∈ Rm×n and Â = A+ E. Then∣∣∣σi(Â)− σi(A)
∣∣∣ ≤ ||E||2 ∀i = 1 . . .min{m,n}

Theorem 3.4.2 (Mirsky [1960]). Let A,E ∈ Rm×n and Â = A+ E. Then

min{m,n}∑
i=1

(
σi(Â)− σi(A)

)2
≤ ||E||2F

3.4.2 Canonical Angles Between Subspaces

To measure how “different” the singular vectors of A are from the singular vectors of

Â = A+E, we use the concept of an angle between the associated subspaces. This concept

can be understood from the one-dimensional case. Suppose X ,Y ⊂ Rn are subspaces of

Rn with dim(X) = dim(Y) = 1. An acute angle ∠ {X ,Y} between these subspaces can be

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 45

calculated as:

∠ {X ,Y} = arccos max
x∈X , y∈Y:
||x||2=||y||2=1

x>y

This is because x>y = cos∠ {x, y} for unit vectors x, y. Maximization ensures that the

angle is acute. The definition can be extended as follows:

Definition 3.4.1. Let X ,Y ⊂ Rn be subspaces of Rn with dim(X) = d and dim(Y) = d′.

Let m := min{d, d′}. The canonical angles between X and Y are defined as

∠i {X ,Y} := arccos max
x∈X , y∈Y:
||x||2=||y||2=1

x>xj=y>yj=0 ∀j<i

x>y ∀i = 1 . . .m

The canonical angle matrix between X and Y is defined as

∠ {X ,Y} := diag(∠1 {X ,Y} . . .∠m {X ,Y})

Canonical angles can be found with SVD:

Theorem 3.4.3. Let X ∈ Rn×d and Y ∈ Rn×d′ be orthonormal bases for X := range(X)

and Y := range(Y). Let X>Y = UΣV > be a rank-(min{d, d′}) SVD of X>Y . Then

∠ {X ,Y} = arccos Σ

Proof. For all 1 ≤ i ≤ min{d, d′},

cos∠i {X ,Y} = max
x∈range(X)
y∈range(Y):
||x||2=||y||2=1

x>xj=y>yj=0 ∀j<i

x>y = max
u∈Rd, v∈Rd′ :
||u||2=||v||2=1

u>uj=v>vj=0 ∀j<i

uX>Y v = σi

where we solve for u, v in x = Xu and y = Y v under the same constraints (using the

orthonormality of X and Y) to obtain the second equality. The final equality follows from

a variational characterization of SVD.

Sine of the canonical angles The sine of the canoincal angles between subspaces is

a natural measure of their difference partly because of its connection to the respective

orthogonal projections (see Section 3.1.5).

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 46

Theorem 3.4.4 (Chapter 2, Stewart and Sun [1990]). Let X ,Y ⊂ Rn be subspaces of Rn.

Let ΠX ,ΠY ∈ Rn×n be the (unique) orthogonal projections onto X ,Y. Then

||sin∠ {X ,Y}||F =
1√
2
||ΠX −ΠY ||F

A result that connects the sine of canonical angles to singular values is the following:

Theorem 3.4.5 (Corollary 5.4, p. 43, Stewart and Sun [1990]). Let X ,Y ⊂ Rn be subspaces

of Rn with the same dimension dim(X) = dim(Y) = d. Let X,Y ∈ Rn×d be orthonormal

bases of X ,Y. Let X⊥, Y⊥ ∈ Rn×(n−d) be orthonormal bases of X⊥,Y⊥. Then the nonzero

singular values of Y >⊥ X or X>⊥Y are the sines of the nonzero canonical angles between X
and Y. In particular,

||sin∠ {X ,Y}|| =
∣∣∣∣∣∣Y >⊥ X∣∣∣∣∣∣ =

∣∣∣∣∣∣X>⊥Y ∣∣∣∣∣∣ (3.44)

where the norm can be ||·||2 or ||·||F .

3.4.3 Perturbation Bounds on Singular Vectors

Given the concept of canonical angles, We are now ready to state important bounds on the

top singular vectors of a perturbed matrix attributed to Wedin [1972].

Theorem 3.4.6 (Wedin, spectral norm, p. 262, Theorem 4.4, Stewart and Sun [1990]). Let

A,E ∈ Rm×n and Â = A + E. Assume m ≥ n. Let A = UΣV > and Â = Û Σ̂V̂ > denote

SVDs of A and Â. Choose the number of the top singular components k ∈ [n] and write

A = [U1U2U3]


Σ1 0

0 Σ2

0 0

 [V1V2]> Â =
[
Û1Û2Û3

]
Σ̂1 0

0 Σ̂2

0 0

[V̂1V̂2

]>

where the matrices (U1,Σ1, V1) with Σ1 ∈ Rk×k, (U2,Σ2, V2) with Σ2 ∈ R(n−k)×(n−k), and a

leftover U3 ∈ Rm×(m−n) represent a k-partition of UΣV (analogously for Â). Let

Φ := ∠
{

range(U1), range(Û1)
}

Θ := ∠
{

range(V1), range(V̂1)
}

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 47

If there exist α, δ > 0 such that σk(Â) ≥ α+ δ and σk+1(A) ≤ α, then

||sin Φ||2 ≤
||E||2
δ

||sin Θ||2 ≤
||E||2
δ

We point out some subtle aspects of Theorem 3.4.6. First, we can choose any matrices

to bound ||sin Φ||2 as long as they have U1 and Û1 as their top k left singular vectors

(analogously for Θ). Second, we can flip the ordering of the singular value constraints (i.e.,

we can choose which matrix to treat as the original). For example, let Ã ∈ Rm×n be any

matrix whose top k left singular vectors are Û1 (e.g., Ã = Û1Σ̂1V̂
>

1). The theorem implies

that if there exist α, δ > 0 such that σk(A) ≥ α+ δ and σk+1(Ã) ≤ α, then

||sin Φ||2 ≤

∣∣∣∣∣∣Ã−A∣∣∣∣∣∣
2

δ

There is also a Frobenius norm version of Wedin, which is provided here for completeness:

Theorem 3.4.7 (Wedin, Frobenius norm, p. 260, Theorem 4.1, Stewart and Sun [1990]).

Assume the same notations in Theorem 3.4.6. If there exists δ > 0 such that σk(Â) ≥ δ

and mini=1...k, j=k+1...n

∣∣∣σi(Â)− σj(A)
∣∣∣ ≥ δ, then

||sin Φ||2F + ||sin Θ||2F ≤
2 ||E||2F
δ2

Applications of Wedin to low-rank matrices Simpler versions of Wedin’s theorem

can be derived by assuming that A has rank k (i.e., our choice of the number of the top

singular components exactly matches the number of nonzero singular values of A). This

simplifies the condition in Theorem 3.4.6 because σk+1(A) = 0.

Theorem 3.4.8 (Wedin, Corollary 22, Hsu et al. [2012]). Assume the same notations in

Theorem 3.4.6. Assume rank(A) = k and rank(Â) ≥ k. If
∣∣∣∣∣∣Â−A∣∣∣∣∣∣

2
≤ εσk(A) for some

ε < 1, then

||sin Φ||2 ≤
ε

1− ε ||sin Θ||2 ≤
ε

1− ε

Proof. For any value of α > 0, define δ := σk(Â) − α. Since σk(Â) is positive, we can

find a sufficiently small α such that δ is positive, thus the conditions σk(Â) ≥ α + δ and

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 48

σk+1(A) = 0 ≤ α in Theorem 3.4.6 are satisfied. It follows that

||sin Φ||2 ≤

∣∣∣∣∣∣Â−A∣∣∣∣∣∣
2

δ
=

∣∣∣∣∣∣Â−A∣∣∣∣∣∣
2

σk(Â)− α

Since this is true for any α > 0, we can take limit α→ 0 on both sides to obtain

||sin Φ||2 ≤

∣∣∣∣∣∣Â−A∣∣∣∣∣∣
2

σk(Â)
≤ εσk(A)

σk(Â)
≤ εσk(A)

(1− ε)σk(A)
=

ε

1− ε

where the last inequality follows from Weyl’s inequality: σk(Â) ≥ (1− ε)σk(A). The bound

on the right singular vectors can be shown similarly.

It is also possible to obtain a different bound by using an alternative argument.

Theorem 3.4.9 (Wedin). Assume the same notations in Theorem 3.4.6. Assume rank(A) =

k and rank(Â) ≥ k. If
∣∣∣∣∣∣Â−A∣∣∣∣∣∣

2
≤ εσk(A) for some ε < 1, then

||sin Φ||2 ≤ 2ε ||sin Θ||2 ≤ 2ε

Proof. Define Ã := Û1Σ̂1V̂
>

1 . Note that
∣∣∣∣∣∣Â− Ã∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣Â−A∣∣∣∣∣∣

2
since Ã is the optimal

rank-k approximation of Â in ||·||2 (Theorem 4.2.1). Then by the triangle inequality,∣∣∣∣∣∣Ã−A∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣Â− Ã∣∣∣∣∣∣

2
+
∣∣∣∣∣∣Â−A∣∣∣∣∣∣

2
≤ 2εσk(A)

We now apply Theorem 3.4.6 with Ã as the original matrix and A as a perturbed matrix

(see the remark below Theorem 3.4.6). Since σk(A) > 0 and σk+1(Ã) = 0, we can use the

same limit argument in the proof of Theorem 3.4.8 to have

||sin Φ||2 ≤

∣∣∣∣∣∣A− Ã∣∣∣∣∣∣
2

σk(A)
≤ 2εσk(A)

σk(A)
= 2ε

The bound on the right singular vectors can be shown similarly.

All together, we can state the following convenient corollary.

Corollary 3.4.10 (Wedin). Let A ∈ Rm×n with rank k. Let E ∈ Rm×n be a noise matrix

and assume that Â := A + E has rank at least k. Let A = UΣV > and Â = Û Σ̂V̂ > denote

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 49

rank-k SVDs of A and Â. If ||E||2 ≤ εσk(A) for some ε < 1, then for any orthonormal

bases U⊥, Û⊥ of range(U)⊥, range(Û)⊥ and V⊥, V̂⊥ of range(V)⊥, range(V̂)⊥, we have∣∣∣∣∣∣Û>⊥U ∣∣∣∣∣∣
2

=
∣∣∣∣∣∣U>⊥ Û ∣∣∣∣∣∣

2
≤ min

{
ε

1− ε , 2ε

}
∣∣∣∣∣∣V̂ >⊥ V ∣∣∣∣∣∣

2
=
∣∣∣∣∣∣V >⊥ V̂ ∣∣∣∣∣∣

2
≤ min

{
ε

1− ε , 2ε

}
Note that if ε < 1/2 the bound ε/(1− ε) < 2ε < 1 is tighter.

Proof. The statement follows from Theorem 3.4.8, 3.4.9, and 3.4.5.

It is also possible to derive a version of Wedin that does not involve orthogonal comple-

ments. The proof illustrates a useful technique: given any orthonormal basis U ∈ Rm×k,

Im×m = UU> + U⊥U
>
⊥

This allows for a decomposition of any vector in Rm into range(U) and range(U⊥).

Theorem 3.4.11 (Wedin). Let A ∈ Rm×n with rank k and Â ∈ Rm×n with rank at least

k. Let U, Û ∈ Rm×k denote the top k left singular vectors of A, Â. If
∣∣∣∣∣∣Â−A∣∣∣∣∣∣

2
≤ εσk(A)

for some ε < 1/2, then∣∣∣∣∣∣Û>x∣∣∣∣∣∣
2
≥
√

1− ε20 ||x||2 ∀x ∈ range(U) (3.45)

where ε0 := ε/(1− ε) < 1.

Proof. Since we have ||y||2 = ||Uy||2 =
∣∣∣∣∣∣Ûy∣∣∣∣∣∣

2
for any y ∈ Rk, we can write

||y||22 =
∣∣∣∣∣∣Û Û>Uy∣∣∣∣∣∣2

2
+
∣∣∣∣∣∣Û⊥Û>⊥Uy∣∣∣∣∣∣2

2
=
∣∣∣∣∣∣Û>Uy∣∣∣∣∣∣2

2
+
∣∣∣∣∣∣Û>⊥Uy∣∣∣∣∣∣2

2

By Corollary 3.4.10, we have
∣∣∣∣∣∣Û>⊥U ∣∣∣∣∣∣2

2
≤ ε20 < 1, thus

∣∣∣∣∣∣Û>Uy∣∣∣∣∣∣2
2
≥
(

1−
∣∣∣∣∣∣Û>⊥U ∣∣∣∣∣∣2

2

)
||y||22 ≥

(
1− ε20

)
||y||22 ∀y ∈ Rk

Then the claim follows.

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 50

3.4.3.1 Examples

We now show how Wedin’s theorem can be used in practice with some examples. In these

examples, we assume a matrix A ∈ Rm×n with rank k and an empirical estimate Â with

rank at least k. Let U, Û ∈ Rm×k denote the top k left singular vectors of A, Â.

In order to apply Wedin’s theorem, we must establish that the empirical estimate Â is

sufficiently accurate, so that∣∣∣∣∣∣Â−A∣∣∣∣∣∣
2
≤ εσk(A) ε < 1/2 (3.46)

Note that the condition depends on the smallest positive singular value of A. Let ε0 :=

ε/(1− ε) < 1.

Example 3.4.1 (Empirical invertibility, Hsu et al. [2008]). Let O ∈ Rm×k be a matrix such

that range(O) = range(U). Note that U>O ∈ Rk×k is invertible. We now show that Û>O

is also invertible if (3.46) holds. Apply (3.45) with x = Oz to obtain:∣∣∣∣∣∣Û>Oz∣∣∣∣∣∣
2
≥
√

1− ε20 ||Oz||2 ∀z ∈ Rk

Since σi(M) is the maximum of ||Mz||2 over orthonormally constrained z, this implies

σi

(
Û>O

)
≥
√

1− ε20 σi (O) ∀i ∈ [k]

In particular, σk

(
Û>O

)
> 0 and thus Û>O is invertible.

Example 3.4.2 (Empirical separability, Chapter 5). Assume that Q ∈ Rk×k is an orthog-

onal matrix with columns qi ∈ Rk. That is,

q>i qj =

 1 if i = j

0 otherwise

Let Q̂ := Û>UQ with columns q̂i ∈ Rk. We can bound the separation between the columns

q̂i assuming that (3.46) holds. By Corollary 3.4.10, we have
∣∣∣∣∣∣Û>⊥Uqi∣∣∣∣∣∣

2
≤ ε0. Then since

||qi||2 =
∣∣∣∣∣∣Û Û>Uqi∣∣∣∣∣∣2 +

∣∣∣∣∣∣Û⊥Û>⊥Uqi∣∣∣∣∣∣2 = ||q̂i||2 +
∣∣∣∣∣∣Û>⊥Uqi∣∣∣∣∣∣2 = 1

we have

q̂>i q̂i = 1−
∣∣∣∣∣∣Û>⊥Uqi∣∣∣∣∣∣2

2
≥ 1− ε20

CHAPTER 3. A REVIEW OF LINEAR ALGEBRA 51

Also, if i 6= j,

q̂>i q̂j = q>i U
>Û Û>Uqj

= q>i U
>
(
Im×m − Û⊥Û>⊥

)
Uqj

= q>i qj − qiU>Û⊥Û>⊥Uqj

= −qiU>Û⊥Û>⊥Uqj

≤
∣∣∣∣∣∣Û>⊥Uqi∣∣∣∣∣∣

2

∣∣∣∣∣∣Û>⊥Uqj∣∣∣∣∣∣
2

≤ ε20

where the first inequality is the Cauchy-Schwarz inequality.

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 52

Chapter 4

Examples of Spectral Techniques

This chapter gives examples of spectral techniques in the literature to demonstrate the

range of spectral applications.

4.1 The Moore–Penrose Pseudoinverse

The Moore–Penrose pseudoinverse (or just the pseudoinverse) of a matrix A ∈ Rm×n

is the unique matrix A+ ∈ Rn×m such that1

1. AA+ ∈ Rn×n is the orthogonal projection onto range(A), and

2. A+A ∈ Rm×m is the orthogonal projection onto row(A).

A simple construction of the pseudoinverse A+ is given by an SVD of A.

Proposition 4.1.1. Let A ∈ Rm×n with r := rank(A) ≤ min{m,n}. Let A = UΣV > de-

note a rank-r SVD of A. Then A+ := V Σ−1U> ∈ Rm×n is a matrix such that AA+ ∈ Rn×n

1This is a simplified definition sufficient for the purposes of the thesis: see Section 6.7 of Friedberg et al.

[2003] for a formal treatment. It is defined as the matrix corresponding to a (linear) function L : Rn → Rm

such that

L(v) =

 u if ∃u such that v = Au (i.e., v ∈ range(A))

0 otherwise

from which the properties in the main text follow.

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 53

is the orthogonal projection onto range(A) and A+A ∈ Rm×m is the orthogonal projection

onto row(A).

Proof. The orthogonal projections onto range(A) and row(A) are respectively given by UU>

and V V >, and since U>U = V >V = Ir×r,

AA+ = UΣV >V Σ−1U> = UU>

A+A = V Σ−1U>UΣV > = V V >

The pseudoinverse A+ is the unique minimizer of ||AX − Im×m||F over X ∈ Rn×m

(p. 257, Golub and Van Loan [2012]) and can be seen as a generalization of matrix inverse:

• If A has linearly independent columns (so A>A is invertible),

AA+ = Im×m

A+ = (A>A)−1A>

• If A has linearly independent rows (so AA> is invertible),

A+A = In×n

A+ = A>(AA>)−1

• If A is square and has full rank, then A+ = A−1.

4.2 Low-Rank Matrix Approximation

A celebrated application of SVD is the low-rank matrix approximation problem:

Theorem 4.2.1 (Eckart and Young [1936], Mirsky [1960]). Let A ∈ Rm×n. Let k ≤
min{m,n} and consider

Z∗ = arg min
Z∈Rm×n: rank(Z)≤k

||A− Z|| (4.1)

where ||·|| is an orthogonally invariant norm: ||M || = ||QMR|| for orthogonal Q and R

(e.g., the Frobenius norm ||·||F , the spectral norm ||·||2). Then an optimal solution is given

by a rank-k SVD of A, Z∗ = UkΣkV
>
k .

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 54

Proof. Let A = UΣV be an SVD of A. Then

||A− Z||2 =
∣∣∣∣Σ− Z∣∣∣∣2 =

r∑
i=1

(
σi − Zi,i

)2
+
∑
i 6=j

Z2
i,j

where Z := U>ZV ∈ Rm×n has rank k. This is minimized (uniquely if σk > σk+1)

at
∑r

i=k+1 σ
2
i by a rectangular diagonal matrix Zi,i = σi for 1 ≤ i ≤ k, which implies

Z = UkΣkVk.

It is illuminating to examine a closely related unconstrained problem:

{b∗i }mi=1, {c∗i }ni=1 = arg min
b1...bm∈Rk

c1...cn∈Rk

∑
i,j

(
Ai,j − b>i cj

)2
(4.2)

which in matrix form can be written as

(B∗, C∗) = arg min
B∈Rk×m

C∈Rk×n

∣∣∣∣∣∣A−B>C∣∣∣∣∣∣
F

(4.3)

This is equivalent to (4.1) (with the Frobenius norm) since any matrix with rank at most

k can be expressed as B>C (e.g., by SVD) and rank(B>C) ≤ k. It has infinite level sets

since
∣∣∣∣A−B>C∣∣∣∣

F
=
∣∣∣∣A−B>C∣∣∣∣

F
for B = Q>B and C = Q−1C where Q is any k × k

invertible matrix. For convenience, we can fix the form B =

√
Σ̃kŨ

>
k and C =

√
Σ̃kṼ

>
k by

a rank-k SVD of B>C = ŨkΣ̃kṼ
>
k . The stationary conditions of (4.3) are then

AṼk = ŨkΣ̃k A>Ũk = ṼkΣ̃k

which imply that each stationary point is given by some k singular components of A.

In particular, the global minima are given by components corresponding to the largest k

singular values (Theorem 4.2.1). Surprisingly, all other stationary points are saddle points;

a proof can be found on page 29 of Ho [2008]. Thus (4.2) is a (very special type of)

non-convex objective for which SVD provides a global minimum.

A slight variant of (4.2) is the following:

{b∗i }mi=1, {c∗i }ni=1 = arg min
b1...bm∈Rk

c1...cn∈Rk

∑
i,j

Wi,j

(
Ai,j − b>i cj

)2
(4.4)

where W ∈ Rn×m is a non-negative weight matrix. Unfortunately, there is no SVD-based

closed-form solution to this problem [Srebro et al., 2003]. Unlike the unweighted case, the

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 55

objective has local optima that are not saddle points and can be shown to be generally NP-

hard [Gillis and Glineur, 2011]. Despite the intractability, (4.4) is successfully optimized

by iterative methods (e.g., gradient descent) in numerous practical applications such as

recommender systems [Koren et al., 2009] and word embeddings [Pennington et al., 2014].

4.3 Finding the Best-Fit Subspace

A very practical interpretation of SVD is that of projecting data points to the “closest”

lower-dimensional subspace. Specifically, let x(1) . . . x(M) ∈ Rd be M data points in Rd.

Given k ≤ d, we wish to find an orthonormal basis V ∗ = [v∗1 . . . v
∗
k] ∈ Rd×k of a k-dimensional

subspace such that

V ∗ = arg min
V ∈Rd×k: V >V=Ik×k

M∑
i=1

∣∣∣∣∣∣x(i) − V V >x(i)
∣∣∣∣∣∣

2
(4.5)

The subspace span{v∗1 . . . v∗k} is called the best-fit subspace. Since x(i) − V V >x(i) is

orthogonal to V V >x(i), by the Pythagorean theorem∣∣∣∣∣∣x(i) − V V >x(i)
∣∣∣∣∣∣2

2
=
∣∣∣∣∣∣x(i)

∣∣∣∣∣∣2
2
−
∣∣∣∣∣∣V V >x(i)

∣∣∣∣∣∣2
2

=
∣∣∣∣∣∣x(i)

∣∣∣∣∣∣2
2
−
∣∣∣∣∣∣V >x(i)

∣∣∣∣∣∣2
2

Let X ∈ RM×d be a data matrix whose i-th row is given by x(i). Since
∑M

i=1

∣∣∣∣V >x(i)
∣∣∣∣2

2
=

Tr(V >X>XV) = ||XV ||2F , (4.5) is equivalent to

V ∗ = arg max
V ∈Rd×k: V >V=Ik×k

||XV ||F (4.6)

An optimal solution is given by V ∗ = Vk where UkΣkV
>
k is a rank-k SVD of X. The

projected data points are given by the rows of X ∈ RM×k where

X = XVk = UkΣk (4.7)

4.4 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a classical spectral technique for dimensionality

reduction [Pearson, 1901]. A standard formulation of PCA is as follows [Jolliffe, 2002].

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 56

Given a random variable X ∈ Rd, we wish to find m ≤ d vectors a1 . . . am ∈ Rd such that

for each i = 1 . . .m:

ai = arg max
a∈Rd

Var(a>X) (4.8)

subject to ||a||2 = 1, and

a>aj = 0 for all j < i

That is, a1 . . . am are orthonormal vectors such that ai is the direction of the i-th largest

variance of X. We express the objective in terms of the covariance matrix:

CX := E
[
(X −E[X])(X −E[X])>

]
as Var(a>X) = a>CXa. Since CX � 0, it has an eigendecomposition of the form CX =

UΛU> where U = [u1 . . . ud] is orthonormal and Λ = diag(λ1, . . . , λd) with λ1 ≥ . . . ≥ λd ≥
0. Then a solution

ai = arg max
a∈Rd

a>CXa (4.9)

subject to ||a||2 = 1, and

a>aj = 0 for all j < i

is given by ai = ui and the value of the maximized variance is the eigenvalue λi since

Var(a>i X) = a>i CXai = λi.

4.4.1 Best-Fit Subspace Interpretation

Let x(1) . . . x(M) be M samples of X with the sample mean µ̂ :=
∑M

i=1 x
(i)/M . The sample

covariance matrix is:

ĈX =
1

M

M∑
i=1

(x(i) − µ̂)(x(i) − µ̂)>

By pre-processing the data as x̄(i) := (x(i) − µ̂)/
√
M and organizing it into a matrix X̄ ∈

RM×d where X̄i = x̄(i), we can write:

ĈX = X̄>X̄

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 57

Let X̄ = Û Σ̂V̂ > be an SVD of X̄ where Σ̂ = diag(σ̂1 . . . σ̂d) is a diagonal matrix of ordered

singular values σ̂1 ≥ . . . ≥ σ̂d ≥ 0 and V̂ = [v̂1 . . . v̂d] is the orthonormal matrix of right

singular vectors. Since ĈX = V̂ Σ̂2V̂ and it is an eigendecomposition in the desired form,

the i-th PCA direction is given by âi = v̂i and the value of the maximized variance is σ̂2
i .

We make a few observations on this result:

• There is no need to explicitly compute the sample covariance matrix ĈX and its

eigendecomposition. We can directly apply an SVD on the data matrix X̄.

• Since â1 . . . âm are the right singular vectors of
√
MX̄ corresponding to the largest m

singular values, the orthogonal projection Π̂ := [â1 . . . âm][â1 . . . âm]> minimizes

M∑
i=1

∣∣∣∣∣∣(x(i) − µ̂)− Π̂(x(i) − µ̂)
∣∣∣∣∣∣2

Hence PCA can be interpreted as finding the best-fit subspace of mean-centered data

points.

4.5 Canonical Correlation Analysis (CCA)

Canonical correlation analysis (CCA) is a classical spectral technique for analyzing the

correlation between two variables [Hotelling, 1936]. A standard formulation of CCA is as

follows [Hardoon et al., 2004]. Given a pair of random variables X ∈ Rd and Y ∈ Rd′ , we

wish to find m ≤ min(d, d′) pairs of vectors (a1, b1) . . . (am, bm) ∈ Rd ×Rd′ recursively such

that for each i = 1 . . .m:

(ai, bi) = arg max
(a,b)∈Rd×Rd′

Cor(a>X, b>Y) (4.10)

subject to Cor(a>X, a>j X) = 0 for all j < i

Cor(b>Y, b>j Y) = 0 for all j < i

That is, (ai, bi) projects (X,Y) to 1-dimensional random variables (a>i X, b
>
i Y) that are

maximally correlated, but a>i X is uncorrelated to a>j X for all j < i (respectively for Y).

Note that the solution is not unique because the correlation coefficient Cor(Y,Z) is invariant

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 58

under separate linear transformations on Y,Z ∈ R:

Cor(αY + γ, βZ + λ) = Cor(Y,Z)

for any constants α, β, γ, λ ∈ R where α and β are nonzero.

We express the objective in terms of the cross-covariance and covariance matrices:

CXY := E
[
(X −E[X])(Y −E[Y])>

]
CX := E

[
(X −E[X])(X −E[X])>

]
CY := E

[
(Y −E[Y])(Y −E[Y])>

]
Since Cor(a>X, b>Y) = a>CXY b/

√
(a>CXa)(b>CY b), we write:

(ai, bi) = arg max
(a,b)∈Rd×Rd′

a>CXY b (4.11)

subject to a>CXa = b>CY b = 1, and

a>CXaj = b>CY bj = 0 for all j < i

We now consider a change of basis c = C
1/2
X a and d = C

1/2
Y b. Assuming that CX and CY are

non-singular, we plug in a = C
−1/2
X c and b = C

−1/2
Y d above to obtain the auxiliary problem:

(ci, di) = arg max
(c,d)∈Rd×Rd′

c>C
−1/2
X CXY C

−1/2
Y d (4.12)

subject to c>c = d>d = 1, and

c>cj = d>dj = 0 for all j < i

whereupon the original solution is given by ai = C
−1/2
X ci and bi = C

−1/2
Y di.

A solution of (4.12) is given by ci = ui and di = vi where ui and vi are the left and right

singular vectors of

Ω := C
−1/2
X CXY C

−1/2
Y ∈ Rd×d

′

corresponding to the i-th largest singular value σi. The singular value σi is the value of the

maximized correlation since Cor(a>i X, b
>
i Y) = a>i CXY bi = u>i Ωvi = σi, thus it is bounded

as 0 ≤ σi ≤ 1. Note that the output of CCA also satisfies Cor(a>i X, b
>
j Y) = 0 for all i 6= j

(even though this is not a constraint).

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 59

Matrix form We often organize the CCA vectors in matrix form. Specifically, given

(a1, b1) . . . (am, bm) ∈ Rd × Rd′ in (4.10), we let A := [a1 . . . am] ∈ Rd×m and B :=

[b1 . . . bm] ∈ Rd′×m so that the dimensions of A>X,B>Y ∈ Rm are maximally correlated

(pairwise). By (4.11), these matrices can be viewed as a solution of the following constrained

trace optimization:

(A,B) = arg max
A∈Rd×m, B∈Rd′×m

Tr
(
A>CXYB

)
(4.13)

subject to A>CXA = B>CYB = Im×m

4.5.1 Least Squares Interpretation

CCA can be viewed as minimizing the squared error between the induced representations.

Proposition 4.5.1. Let X ∈ Rd and Y ∈ Rd′ be random variables. Let A := [a1 . . . am] ∈
Rd×m and B := [b1 . . . bm] ∈ Rd′×m where (ai, bi) ∈ Rd × Rd′ is the CCA vector pair for

(X,Y) defined in (4.10). Then

(A,B) = arg min
A∈Rd×m, B∈Rd′×m

E
[∣∣∣∣∣∣A>(X −E[X])−B>(Y −E[Y])

∣∣∣∣∣∣
2

]
(4.14)

subject to A>CXA = B>CYB = Im×m

Proof. By expanding the objective, we have

E

[∣∣∣∣∣∣A>(X −E[X])−B>(Y −E[Y])
∣∣∣∣∣∣2

2

]
= Tr

(
A>CXA

)
+ Tr

(
B>CYB

)
− 2 Tr

(
A>CXYB

)
Since the first two terms are constant (m) under the constraints, the minimization in (4.14)

is equivalent to the trace maximization in (4.13).

This least squares interpretation provides a different way to understand CCA and is

also often convenient for computational reasons. For instance, Golub and Zha [1995] show

that an alternating least squares algorithm solves (4.14). Ma et al. [2015] derive a gradient

descent algorithm to find a locally optimal solution to (4.14).

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 60

4.5.2 New Coordinate Interpretation

CCA can also be framed as inducing new coordinate systems for the input variables X ∈ Rd

and Y ∈ Rd′ , called the CCA coordinate systems, in which they have special covariance

structures.

Proposition 4.5.2. Let X ∈ Rd and Y ∈ Rd′ be random variables with invertible covariance

matrices. Let UΣV > denote an SVD of Ω := C
−1/2
X CXY C

−1/2
Y and let A := C

−1/2
X U and

B := C
−1/2
Y V . If XCCA := A>(X −E[X]) and YCCA := B>(Y −E[Y]),

• The covariance matrix of XCCA is Id×d.

• The covariance matrix of YCCA is Id′×d′.

• The cross-covariance matrix of XCCA and YCCA is Σ.

Proof. For the first claim,

E[XCCAX
>
CCA] = A>E[(X −E[X])(X −E[X])>]A = U>C

−1/2
X CXC

−1/2
X U = U>U = Id×d

The second claim follows similarly. For the third claim,

E[XCCAY
>
CCA] = A>E[(X −E[X])(Y −E[Y])>]B = U>ΩV = Σ

That is, in the CCA coordinates, the dimensions i = 1 . . .min{d, d′} of each variable

are sorted (in descending order) by the strength of correlation with the corresponding

dimensions of the other variable.

4.5.3 Dimensionality Reduction with CCA

A significant part of the recent advance in spectral methods is due to the pioneering the-

oretical work by Kakade and Foster [2007] and Foster et al. [2008] that provides insights

into how CCA can be used for dimensionality reduction in certain scenarios. We give a

simplified version of these results.

The theory is based on multi-view learning for linear regression. Let X(1), X(2) ∈ Rd be

random variables with invertible covariance matrices representing two distinct “views” of

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 61

another variable (to be specified below). For simplicity, we assume that the two views have

the same dimension, but this can be easily relaxed.

CCA coordinate convention Without loss of generality, we assume that X(1), X(2) are

already put in the coordinate systems induced by CCA between X(1) and X(1) (Proposi-

tion 4.5.2). Thus they have zero means, identity covariance matrices, and a diagonal cross-

covariance matrix Σ = diag(σ1 . . . σd) where σi := Cor
(
X

(1)
i , X

(2)
i

)
is the i-th maximized

correlation. This convention significantly simplifies the notations below. In particular, note

that for each v ∈ {1, 2}, the top m ≤ d most correlated dimensions of X(v) are simply its

first m entries which we denote by

X(v) := (X
(v)
1 . . . X(v)

m)

This choice of an m-dimensional representation of the original variable leads to desirable

properties under certain assumptions about the relation between X(1) and X(2) with respect

to the variable being predicted.

4.5.3.1 Assumption 1: Shared Latent Variable

The shared latent variable assumption is that there is some latent variable H ∈ Rm

where m ≤ d such that X(1), X(2) ∈ Rd are (i) conditionally independent given H, and (ii)

linear in H in expectation as follows: there exist full-rank matrices A(1), A(2) ∈ Rd×m such

that

E
[
X(1)|H

]
= A(1)H E

[
X(2)|H

]
= A(2)H (4.15)

We assume that E
[
HH>

]
= Im×m without loss of generality, since we can always whiten

H and the linearity assumption is preserved.

Theorem 4.5.1 (Theorem 3, Foster et al. [2008]). We make the shared latent variable

assumption defined above. Let A(∗|v) ∈ Rd×m denote the best linear predictor of H ∈ Rm

with X(v) ∈ Rd:

A(∗|v) := arg min
A∈Rd×m

E
[∣∣∣∣∣∣A>X(v) −H

∣∣∣∣∣∣
2

]
= E

[
X(v)H>

]

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 62

Let A(v) ∈ Rm×m denote the best linear predictor of H ∈ Rm with X(v) ∈ Rm:

A(v) := arg min
A∈Rm×m

E
[∣∣∣∣∣∣A>X(v) −H

∣∣∣∣∣∣
2

]
= E

[
X(v)H>

]
Then the optimal predictor A(v) based on the top m most correlated dimensions is precisely

as good as the optimal predictor A(∗|v) based on all dimensions:(
A(∗|v)

)>
X(v) =

(
A(v)

)>
X(v)

Proof. With the conditional independence of X(1), X(2) and the linear relation (4.15),

Σ = E

[
X(1)

(
X(2)

)>]
= E

[
E

[
X(1)

(
X(2)

)> ∣∣∣∣H]]
= E

[
E
[
X(1)

∣∣H]E [X(2)
∣∣H]>]

= A(v) E
[
HH>

] (
A(v)

)>
= A(v)

(
A(v)

)>
Thus Σ ∈ Rd×d has rank m, implying that σm+1 = · · · = σd = 0. Let Σ ∈ Rm×m denote

the (m×m) upper left block of Σ. Next, observe that the best predictor A(∗|v) of H based

on X(v) is in fact A(v):

A(v) = arg min
A∈Rd×m

E

[∣∣∣∣∣∣AH −X(v)
∣∣∣∣∣∣2

2

]
= E

[
X(v)H>

]
= A(∗|v)

Together, we have(
A(∗|v)

)>
X(v) =

(
A(v)

)>
X(v) =

(
A(v)

)+
ΣX(v) =

(
A(v)

)+
ΣX(v) =

(
A(v)

)>
X(v)

where we used the fact that
(
A(v)

)>
=
(
A(v)

)+
Σ and that A(v) = E

[
X(v)H>

]
is the first

m rows of A(v) = E
[
X(v)H>

]
.

4.5.3.2 Assumption 2: Redundancy of the Views

Let Y ∈ R and D denote the joint distribution over (X(1), X(2), Y) (expectations are with

respect to D unless otherwise noted). The redundancy assumption is that each individ-

ual view X(v) is nearly as (linearly) predictive of the response variable Y as the union of

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 63

them X := (X(1), X(2)). More precisely, if we denote the best possible predictor β∗ ∈ R2d

of Y with both views X ∈ R2d by

β∗ := arg min
β∈R2d

E
[
(β ·X − Y)2

]
and denote the best possible predictor β(v) ∈ Rd of Y with only view X(v) ∈ Rd by

β(v) := arg min
β∈Rd

E
[
(β ·X(v) − Y)2

]
= E

[
X(v)Y

]
∀v ∈ {1, 2}

then the ε-redundancy assumption is that for some ε,

E

[(
β(v) ·X(v) − Y

)2
]
−E

[
(β∗ ·X − Y)2

]
≤ ε ∀v ∈ {1, 2} (4.16)

Lemma 4.5.2 (Lemma 2, Kakade and Foster [2007]). Under the ε-redundancy assumption,

the optimal predictor β(v) of Y with view X(v) ∈ Rd cannot have large weights corresponding

to weakly correlated dimensions,

d∑
i=1

(1− σi)
(
β

(v)
i

)2
≤ 4ε (4.17)

for each view v ∈ {1, 2}. Note that the bound is independent of d.

Proof. It follows from (4.16) that E
[(
β(1) ·X(1) − β(2) ·X(2)

)2] ≤ 4ε (Lemma 1, Kakade

and Foster [2007]). Furthermore, since X(v) is in the CCA coordinate system,

E

[(
β(1) ·X(1) − β(2) ·X(2)

)2
]

=

d∑
i=1

(
β

(1)
i

)2
+
(
β

(2)
i

)2
− 2σiβ

(1)
i β

(2)
i

=
d∑
i=1

(1− σi)
(
β

(1)
i

)2
+ (1− σi)

(
β

(2)
i

)2
+ σi

(
β

(1)
i − β

(2)
i

)2

≥
d∑
i=1

(1− σi)
(
β

(v)
i

)2
∀v ∈ {1, 2}

Together, the stated bound is implied.

Lemma 4.5.2 motivates discarding weakly correlated dimensions. Let

m =
∣∣∣{i ∈ [d] : Cor

(
X

(1)
i , X

(2)
i

)
≥ 1−√ε

}∣∣∣

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 64

be the number of (1−√ε)-strongly correlated dimensions. Define a thresholded esti-

mator β
(v)
threshold ∈ Rd by

[β
(v)
threshold]i :=

 E[X
(v)
i Y] if Cor

(
X

(1)
i , X

(2)
i

)
≥ 1−√ε

0 otherwise
(4.18)

which can be thought of as a biased estimator of β(v). Note that β
(v)
threshold ·X(v) = β(v) ·X(v),

where β(v) denotes the optimal linear predictor of Y with X(v) ∈ Rm:

β(v) := arg min
β∈Rd

E
[
(β ·X(v) − Y)2

]
= E

[
X(v)Y

]
∀v ∈ {1, 2}

Sample estimates We assume a set of n samples of (X(1), X(2), Y) drawn iid from the

distribution D,

T := {(x(1)
1 , x

(2)
1 , y1) . . . (x(1)

n , x(2)
n , yn)}

We use the superscript ∧ to denote empirical estimates. For instance, β̂(v) ∈ Rd is defined

as β̂(v) := 1
n

∑n
l=1 x

(v)
l yl, and β̂

(v) ∈ Rm is defined as β̂
(v)

:= 1
n

∑n
l=1[x

(v)
l]iyl for i ∈ [m].

Note that the sample estimates are with respect to a fixed T . We use ET [·] to denote the

expected value with respect to T .

Theorem 4.5.3 (Theorem 2, Kakade and Foster [2007]). We make the ε-redundancy as-

sumption defined above. Assuming E[Y 2|X] ≤ 1, the empirical estimate of β(v) ∈ Rm incurs

the regret (in expectation)

ET

[
regret∗T

(
β̂

(v)
)]
≤ √ε(√ε+ 4) +

m

n

where regret∗T is relative to the best possible predictor β∗ ∈ R2d using both views X ∈ R2d:

regret∗T

(
β̂

(v)
)

:= E

[(
β̂

(v) ·X(v) − Y
)2
]
−E

[
(β∗ ·X − Y)2

]

A remarkable aspect of this result is that as the number of samples n increases, the

empirical estimate of the biased estimator β
(v)
threshold converges2 to the optimal estimator β∗

2The suboptimality
√
ε(
√
ε+ 4) is due to bias and (4.16).

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 65

with no dependence on the original dimension d; it only depends on the number of (1−√ε)-
strongly correlated dimensions m. Thus if m � d, then we need much fewer samples to

estimate the biased estimator β
(v)
threshold than to estimate the unbiased estimators β(v) or β∗

(in which case the regret depends on d) to achieve (nearly) optimal regret.

Proof of Theorem 4.5.3. By (4.16), it is sufficient to show that

ET

[
regretT

(
β̂

(v)
)]
≤ 4
√
ε+

m

n

where regretT is relative to the best possible predictor β(v) ∈ Rd using view X(v) ∈ Rd:

regretT

(
β̂

(v)
)

:= E

[(
β̂

(v) ·X(v) − Y
)2
]
−E

[(
β(v) ·X(v) − Y

)2
]

The regret takes a particularly simple form because of linearity and the choice of coordinates.

Given a fixed set of samples T (so that β̂
(v)

is not random),

regretT

(
β̂

(v)
)

:= E

[(
β̂

(v) ·X(v) − Y
)2
]
−E

[(
β(v) ·X(v) − Y

)2
]

= β̂
(v) · β̂(v) − β(v) · β(v) − 2β̂

(v) ·E[X(v)Y] + 2β(v) ·E[X(v)Y]

=
∣∣∣∣∣∣β̂(v)

threshold

∣∣∣∣∣∣2
2
− 2β̂

(v)
threshold · β(v) +

∣∣∣∣∣∣β(v)
∣∣∣∣∣∣2

2

=
∣∣∣∣∣∣β̂(v)

threshold − β(v)
∣∣∣∣∣∣2

2

This allows for a bias-variance decomposition of the expected regret:

ET

[
regretT

(
β̂

(v)
)]

= ET

[∣∣∣∣∣∣β̂(v)
threshold − β(v)

∣∣∣∣∣∣2
2

]
=
∣∣∣∣∣∣β(v)

threshold − β(v)
∣∣∣∣∣∣2

2
+ ET

[∣∣∣∣∣∣β̂(v)
threshold − β(v)

∣∣∣∣∣∣2
2

]
=
∣∣∣∣∣∣β(v)

threshold − β(v)
∣∣∣∣∣∣2

2
+

m∑
i=1

Var
(
β̂

(v)

i

)
The first term corresponds to the bias of the estimator, and the second term is the amount

of variance with respect to T .

To bound the variance term, note that:

Var
(
β̂

(v)

i

)
=

1

n
Var

(
X

(v)
i Y

)
≤ 1

n
E

[(
X

(v)
i Y

)2
]

=
1

n
E

[(
X

(v)
i

)2
E
[
Y 2|X

]]
≤ 1

n
E

[(
X

(v)
i

)2
]

=
1

n

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 66

where the second variance is with respect to D. We used the assumption that E[Y 2|X] ≤ 1.

So the variance term is bounded by m/n.

To bound the bias term, it is crucial to exploit the multi-view assumption (4.16). For

all i > m we have σi < 1−√ε and thus 1 ≤ (1− σi)/
√
ε, so

∣∣∣∣∣∣β(v)
threshold − β(v)

∣∣∣∣∣∣2
2

=
∑
i>m

(
β

(v)
i

)2
≤

d∑
i=1

(
β

(v)
i

)2
≤

d∑
i=1

1− σi√
ε

(
β

(v)
i

)2
≤ 4
√
ε

where the last step is by (4.17) and makes the bias term independent of d.

Connection to semi-supervised learning The theory suggest a natural way to utilize

unlabeled data with CCA to augment supervised training. In a semi-supervised scenario,

we assume that the amount of labeled samples is limited: (x
(1)
1 , y1) . . . (x

(1)
n , yn) samples of

(X(1), Y) for some small n. But if there is a second view X(2) as predictive of Y as X(1)

(i.e., the redundancy assumption) for which it is easy to obtain a large amount of unlabeled

samples of (X(1), X(2)),

(x
(1)
1 , x

(2)
1) . . . (x

(1)
n′ , x

(2)
n′) n′ � n

then we can leverage these unlabeled samples to accurately estimate CCA projection vec-

tors. These projection vectors are used to eliminate the dimensions of the labeled samples

x
(1)
1 . . . x

(1)
n that are not strongly correlated with the other view’s. Theorem 4.5.3 implies

that the supervised model trained on these low dimensional samples (corresponding to the

thresholded estimator) converges to the optimal model at a faster rate.

4.6 Spectral Clustering

Spectral clustering refers to partitioning vertices in an undirected graph by matrix decom-

position [Donath and Hoffman, 1973; Fiedler, 1973]. Here, we give one example framed

as finding vertex representations suitable for the clustering problem [Shi and Malik, 2000];

this approach is closely relevant to our word clustering method in Chapter 5. For other

examples of spectral clustering, see Von Luxburg [2007].

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 67

Given an undirected weighted graph described in Example 3.2.3, we wish to find a

partition P = {A1 . . . Am} of vertices [n] where m ≤ n. One sensible formulation is to

minimize the “flow” W (A,A) :=
∑

i∈A, j∈Awij between each cluster A ∈ P and its com-

plement A := [n]\A to encourage cluster independence, while normalizing by the “volume”

vol(A) :=
∑

i∈A di to discourage an imbalanced partition. This gives the following objective:

P∗ = arg min
P

∑
A∈P

W (A,A)

vol(A)
(4.19)

This problem is NP-hard [Wagner and Wagner, 1993], but there is a spectral method for

solving a relaxed version of this problem.

In this method, vertex i is represented as the i-th row of a matrix XP ∈ Rn×m where:

[XP]i,c =


1√

vol(Ac)
if i ∈ Ac

0 otherwise
(4.20)

with respect to a specific partition P = {A1 . . . Am} of [n]. Note that X>PDXP = Im×m

(for all P) by design. We invoke the following fact:

∑
A∈P

W (A,A)

vol(A)
= Tr(X>PLXP)

where L denotes the unnormalized graph Laplacian L := W −D. This holds by properties

of L and the definition of XP ; see Von Luxburg [2007] for a proof. Use this fact to rewrite

the clustering objective as

X∗ = arg min
XP∈Rn×m

Tr(X>PLXP) (4.21)

XP has the form in (4.20) for some P

whereupon the optimal clusters can be recovered as: i ∈ Ac iff X∗i,c > 0. We obtain a

relaxation of (4.21) by weakening the explicit form constraint as:

X̃ = arg min
X∈Rn×m

Tr(X>LX) (4.22)

subject to X>DX = Im×m

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 68

Using a change of basis U = D1/2X and plugging in X = D−1/2U above, we can solve

Ũ = arg min
U∈Rn×m

Tr(U>D−1/2LD−1/2U) (4.23)

subject to U>U = Im×m

and let X̃ = D−1/2Ũ . It can be verified that the solution of (4.23) is given by the orthonor-

mal eigenvectors of D−1/2LD−1/2 (called the normalized graph Laplacian) corresponding to

the m smallest eigenvalues 0 ≤ λ1 ≤ . . . ≤ λm. More directly, the solution of (4.22) is given

by the eigenvectors of D−1L corresponding to the same eigenvalues Λ := diag(λ1, . . . , λm)

since

(D−1/2LD−1/2)Ũ = ΛŨ ⇐⇒ D−1LX̃ = ΛX̃

This gives the clustering algorithm of Shi and Malik [2000]:

1. Construct the normalized graph Laplacian L = D−1L.

2. (Rank-m eigendecomposition) Compute the eigenvectors of L corresponding to the

smallest m eigenvalues as columns of matrix X̃ ∈ Rn×m.

3. Cluster the rows of X̃ into m groups A1 . . . Am (e.g., with k-means).

In summary, the method approximates the idealized vertex representations X∗ in (4.21)

(which, if given, can be used to trivially recover the optimal clusters) with a surrogate rep-

resentation X̃ that is efficiently computable with an eigendecomposition of the normalized

graph Laplacian. While this approximation can be arbitrarily suboptimal in the worst case

[Guattery and Miller, 1998], it is effective in practice [Shi and Malik, 2000; Ng et al., 2002].

4.7 Subspace Identification

Spectral methods have recently garnered much interest as a promising approach to learning

latent-variable models. A pioneering work in this direction is the spectral algorithm of

Hsu et al. [2008] for estimating distributions under HMMs. The Hsu et al. method is an

amalgam of many ideas; see the paper for a detailed discussion. A crucial component of

the method is the use of SVD to identify a low-dimensional subspace associated with the

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 69

model. We give a brief, informal review of their algorithm and its extension by Foster et

al. [2012] from an angle of subspace identification.

Consider an HMM with m hidden states h ∈ [m] and n observation states x ∈ [n] where

m� n. This HMM can be parametrized as a matrix-vector tuple (T,O, π) where

T ∈ Rm×m : Th′,h = transition probability from state h to h′

O ∈ Rn×m : Ox,h = emission probability from state h to observation x

π ∈ Rm : πh = prior probability of state h

It is well-known (and easily checkable) that with the following definition of “observable

operators” (A, a∞, a1) [Ito et al., 1992; Jaeger, 2000]

A(x) := T diag(Ox,1 . . . Ox,m) ∀x ∈ [n]

a>∞ := 1>m

a1 := π

(1m is a vector of ones in Rm), the probability of any observation sequence x1 . . . xN ∈ [n]

under the HMM is given by a product of these operators:

p(x1 . . . xN) = a>∞A(xN) · · ·A(x1)a1 (4.24)

That is, (4.24) is the matrix form of the forward algorithm [Rabiner, 1989]. The approach

pursued by Hsu et al. [2008] and Foster et al. [2012] is to instead estimate certain linear

transformations of the operators:

B(x) := GA(x)G+ ∀x ∈ [n] (4.25)

b>∞ := a>∞G
+ (4.26)

b1 := Ga1 (4.27)

where G is a matrix such that G+G = Im×m. It is clear that the forward algorithm can be

computed by (B, b∞, b1), since

p(x1 . . . xN) = a>∞A(xN) · · ·A(x1)a1

= a>∞G
+GA(xN)G+G · · ·G+GA(x1)G+Ga1

= b>∞B(xN) · · ·B(x1)b1

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 70

Let X1, X2 ∈ [n] be random variables corresponding to the first two observations under the

HMM (where we assume the usual generative story). A central quantity considered by Hsu

et al. [2008] is a matrix of bigram probabilities P2,1 ∈ Rn×n defined as

[P2,1]x′,x := P (X1 = x,X2 = x′) ∀x, x′ ∈ [n] (4.28)

The matrix relates the past observation (X1) to the future observation (X2). It can be

shown that this matrix can be expressed in terms of the HMM parameters as (Lemma 3,

Hsu et al. [2008]):

P2,1 = OT diag(π)O> (4.29)

It follows that rank(P2,1) = m if O, T,diag(π) have full-rank—even though the dimension

of the matrix is n× n.

Hsu et al. [2008] apply SVD on P2,1 to identify the m-dimensional subspace spanned

by the conditional emission distributions: (O1,h, . . . , On,h) for all h ∈ [m]. Specifically, if

P2,1 = UΣV > is a rank-m SVD, then it can be shown that (Lemma 2, Hsu et al. [2008])

range(U) = range(O) (4.30)

This projection matrix U ∈ Rn×m is then used to reduce the dimension of observations from

Rn to Rm, whereupon the linearly transformed operators (4.25–4.27) are recovered by the

method of moments. Importantly, the spectral dimensionality reduction leads to polynomial

sample complexity (Theorem 6, Hsu et al. [2008]; Theorem 1, Foster et al. [2012]).

Note that the statement is about the true probabilities P2,1 under the HMM. In order

to establish finite sample complexity bounds, we must consider the empirical estimate P̂2,1

of P2,1 where each entry

[P̂2,1]x′,x :=
1

N

N∑
i=1

[[
X1 = x,X2 = x′

]]
∀x, x′ ∈ [n]

is estimated from a finite number of samples N , and examine how a rank-m SVD Û Σ̂V̂ >

of P̂2,1 behaves with respect to a rank-m SVD UΣV > of P2,1 as a function of N . Deriving

such bounds can be quite involved (see Section 3.4) and is a major technical contribution

of Hsu et al. [2008].

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 71

It should be emphasized that the subspace identification component can be disentangled

from the method of moments. In particular, it can be verified that removing U in their

definitions of ~b1, ~b∞, and Bx in Hsu et al. [2008] still results in a consistent estimator of the

distribution in (4.24).

4.8 Alternating Minimization Using SVD

Ando and Zhang [2005] propose learning a shared structure across multiple related classifi-

cation tasks over a single domain. Specifically, they consider T binary classification tasks

each of which has its own linear classifier ft : Rd → R mapping a d-dimensional feature

vector x ∈ Rd to a classification score

ft(x) := (ut + Θvt)
>x (4.31)

Here, ut ∈ Rd and vt ∈ Rm are task-specific parameters but Θ ∈ Rd×m is a global parameter

shared by all classifiers f1 . . . fT (we assume m ≤ min{d, T}). In particular, if Θ is zero

then each classifier is an independent linear function u>t x. The predicted label is the sign

of the classification score sign(ft(x)) ∈ {±1}.
The parameter sharing makes the estimation problem challenging, but Ando and Zhang

[2005] develop an effective alternating loss minimization algorithm using a variational prop-

erty of SVD. To illustrate their method, let L : R×{±1} → R be a convex loss function for

classification, for instance the hinge loss L(p, y) = max(0, 1 − py).3 For each task t ∈ [T],

we are given nt labeled samples (x(1|t), y(1|t)) . . . (x(nt|t), y(nt|t)) ∈ Rd × {±1}. A training

objective is given by the following empirical loss minimization:

min
ut∈Rd ∀t∈[T]
vt∈Rm ∀t∈[T]

Θ∈Rd×m

T∑
t=1

(
r(ut, vt) +

1

nt

nt∑
i=1

L
(

(ut + Θvt)
>x(i|t), y(i|t)

))
+R(Θ) (4.32)

3Ando and Zhang [2005] use a quadratically smoothed hinge loss called modified Huber:

L(p, y) =

 max(0, 1− py)2 if py ≥ −1

−4py otherwise

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 72

where r(ut, vt) and R(Θ) are appropriate regularizers for the parameters. In other words,

we minimize the sum of average losses (averaging is necessary since the amount of labeled

data can vary greatly for each task).

Ando and Zhang [2005] choose a particular version of (4.32) to accomodate the use of

SVD, given by

min
ut∈Rd ∀t∈[T]
vt∈Rm ∀t∈[T]

Θ∈Rd×m: Θ>Θ=Im×m

T∑
t=1

(
λt ||ut||22 +

1

nt

nt∑
i=1

L
(

(ut + Θvt)
>x(i|t), y(i|t)

))
(4.33)

Note that the parameters vt are not regularized: r(ut, vt) = λt ||ut||22 for some hyperparam-

eter λt ≥ 0. Also, Θ is constrained to be an orthonormal matrix and is thus implicitly

regularized. With an orthonormal Θ ∈ Rd×m, the problem can be interpreted as finding an

m-dimensional subspace of Rd which is predictive of labels across all T tasks. If xΘ := Θ>x

denotes the m-dimensional representation of x ∈ Rd projected in the subspace range(Θ),

every ft computes the classification score of x by using this representation:

ft(x) = u>t x+ v>t xΘ

The objective (4.33) can be re-written with the change of variable wt := ut + Θvt:

min
wt∈Rd ∀t∈[T]
vt∈Rm ∀t∈[T]

Θ∈Rd×m: Θ>Θ=Im×m

T∑
t=1

(
λt ||wt −Θvt||22 +

1

nt

nt∑
i=1

L
(
w>t x

(i|t), y(i|t)
))

(4.34)

Clearly, the original solution can be recovered from the solution of this formulation by

ut = wt −Θvt. The intuition behind considering (4.34) instead of (4.33) is that this allows

us to separate the parameters Θ and vt from the loss function L(·, ·) if we fix wt.

Theorem 4.8.1 (Ando and Zhang [2005]). Assume the parameters wt ∈ Rd are fixed in

(4.34) for all t ∈ [T]. Define A := [
√
λ1w1 . . .

√
λTwT] ∈ Rd×T , and let U = [u1 . . . um] ∈

Rd×m be the left singular vectors of A corresponding to the largest m ≤ min{d, T} singular

values. Then the optimal solution for the parameters Θ ∈ Rd×m (under the orthogonality

constraint Θ>Θ = Im×m) and vt ∈ Rm is given by Θ∗ = U and v∗t = U>wt for all t ∈ [T].

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 73

Proof. Since wt’s are fixed, the objective (4.34) becomes

min
vt∈Rm ∀t∈[T]

Θ∈Rd×m: Θ>Θ=Im×m

T∑
t=1

λt ||wt −Θvt||22

Note that for any value of orthonormal Θ, the optimal solution for each vt is given by

regression (Θ>Θ)−1Θ>wt = Θ>wt. Thus we can plug in vt = Θ>wt in the objective to

remove dependence on all variables except for Θ,

min
Θ∈Rd×m: Θ>Θ=Im×m

T∑
t=1

λt

∣∣∣∣∣∣wt −ΘΘ>wt

∣∣∣∣∣∣2
2

Since
∣∣∣∣wt −ΘΘ>wt

∣∣∣∣2
2

= ||wt||22 − w>t ΘΘ>wt, the objective is equivalent to

max
Θ∈Rd×m: Θ>Θ=Im×m

∣∣∣∣∣∣A>Θ
∣∣∣∣∣∣2
F

Thus the columns of an optimal Θ∗ are given by the left singular vectors of A corresponding

to the largest m singular values (Corollary 3.3.4). This also gives the claim on v∗t .

The theorem yields an alternating minimization strategy for optimizing (4.34). That is,

iterate the following two steps until convergence:

• Fix Θ and vt’s: optimize the convex objective (4.34) (convex in wt).

• Fix wt’s: compute optimal values of Θ and vt in (4.34) with SVD (Theorem 4.8.1).

Note, however, that in general this does not guarantee the global optimality of the output

parameters wt, vt, and Θ.

4.9 Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) is the following problem: given a non-negative

matrix A ∈ Rn×d (i.e., Ai,j ≥ 0 for all i and j), and also a rank value m ≤ min{n, d}, find

non-negative matrices B ∈ Rn×m and C ∈ Rm×d such that A = BC (the existence of such

B and C is often given by task-specific assumptions). If Mi denotes the i-th row of matrix

M , it can be easily verified that

Ai =

m∑
j=1

Bi,j × Cj (4.35)

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 74

In other words, a row of A is a (non-negative) linear combination of the rows of C. Thus

NMF can be seen as finding a set of “dictionary” rows C1 . . . Cm that can be non-negatively

added to realize all n rows of A. NMF arises naturally in many applications.

Example 4.9.1 (Image analysis [Lee and Seung, 1999]). Suppose that each row of A ∈ Rn×d

is a facial image represented as a vector of d non-negative pixel values. Let B ∈ Rn×m

and C ∈ Rm×d be non-negative matrices such that A = BC. Then each facial image

Ai = Bi,1C1 + · · · + Bi,mCm is a non-negative linear combination of m “basis images”

C1 . . . Cm.

Example 4.9.2 (Document analysis [Blei et al., 2003; Arora et al., 2012b]). Suppose that

each row of A ∈ Rn×d is a document represented as the document’s distribution over d word

types (thus non-negative). Let B ∈ Rn×m and C ∈ Rm×d be non-negative matrices such

that A = BC and additionally that each row of B sums to 1. Then the word distribution

under the i-th document Ai = Bi,1C1 + · · · + Bi,mCm is a convex combination of the word

distributions under m “topics” C1 . . . Cm.

Note that while NMF is matrix decomposition, it is somewhat divorced from the the-

ory of eigendecompositon. NMF is often implicit in parameter estimation of probabilistic

models; for instance, learning the parameters of latent Dirichlet allocation can be seen as

an implicit NMF [Arora et al., 2012b].

Donoho and Stodden [2003] provide an intuitive geometric interpretation of NMF which

also leads to an understanding of when an NMF is unique. Since all values involved in the

characterization of A’s row

Ai =
m∑
j=1

Bi,j × Cj

are non-negative, we have that

• Ai is a vector residing in the positive orthant of Rd.

• C1 . . . Cm are vectors also in the positive orthant of Rd such that any Ai can be

expressed as their combination (scaled by scalars Bi,1 . . . Bi,m ≥ 0).

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 75

Hence NMF can be viewed as finding a conical hull enclosing all A1 . . . An.4 If A1 . . . An

do not lie on every axis, there are infinitely many conical hulls that enclose A1 . . . An and

hence NMF does not have a unique solution. Using this intuition, Donoho and Stodden

[2003] provide a separability condition for when an NMF is unique.

Vavasis [2009] shows that NMF is NP-hard in general, but Arora et al. [2012b; 2012a]

develop a provable NMF algorithm by exploiting a natural separability condition. In par-

ticular, Arora et al. [2012a] derive a purely combinatorial method for extracting dictionary

rows C1 . . . Cm (shown in Figure 7.1) and successfully apply it to learning topic models. In

Chapter 7, we extend this framework to learning hidden Markov models.

4.10 Tensor Decomposition

(We borrow the tensor notation in previous work [Lim, 2006; Anandkumar et al., 2014].)

A p-th order tensor T is a p-dimensional array with entries Ti1...ip ∈ R (e.g., a matrix

is a second-order tensor). For simplicity, we only consider p ≤ 3. A tensor T ∈ Rn1×n2×n3

defines a function that maps input matrices V1, V2, V3, where Vi ∈ Rni×mi , to an output

tensor T (V1, V2, V3) ∈ Rm1×m2×m3 as follows:

[T (V1, V2, V3)]i,j,k :=
∑
i′,j′,k′

Ti′,j′,k′ [V1]i′,i[V2]j′,j [V3]k′,k (4.36)

This nonlinear function is called multilinear since it is linear in Vi if all input matrices are

fixed except Vi. A tensor T ∈ Rn×n×n is called supersymmetric if its entries are invariant

to a permutation on indices, that is, [T]i,j,k = [T]i,k,j = · · · . The rank of a supersymmetric

T is defined to be the smallest non-negative integer m such that T =
∑m

i=1 viv
>
i v
>
i for some

vectors v1 . . . vm ∈ Rn. Given vectors {u, v, w}, the notation uv>w> denotes a rank-1 tensor

with entries [uv>w>]i,j,k = [u]i[v]j [w]k (analogous to the matrix outer product).

The above terms are similarly defined for the first- and second-order tensors (i.e., vectors

and matrices). Note that a supersymmetric second-order tensor M ∈ Rn1×n2 reduces to

the standard definition of a symmetric matrix; the rank of M reduces to the number of

4When each row of B is contrained to sum to 1 (as in Example 4.9.2), then NMF can be viewed as finding

a convex hull enclosing all A1 . . . An.

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 76

nonzero eigenvalues (Proposition 3.2.1); and the tensor product (4.36) reduces to the matrix

product M(V1, V2) = V >1 MV2. The notation (4.36) also accommodates bypassing certain

input positions with identity matrices. For example, the matrix-vector product can be

expressed as M(In1×n1 , v) = Mv ∈ Rn1 . For a supersymmetric tensor T ∈ Rn×n×n, a unit

eigenvector v ∈ Rn of T is a unit-length vector with a corresponding eigenvalue λ ∈ R

such that

T (In×n, v, v) = λv (4.37)

which is a direct analogue of the matrix counterpart (3.18).

Tensor decomposition is often useful (e.g., in the method of moments). Unfortunately,

many of the tools developed in conventional linear algebra do not generalize to higher-

order tensors. For instance, while a symmetric matrix always has an efficiently computable

eigendecomposition (Theorem 3.2.6), it is not the case for a higher-order supersymmetric

tensor T [Qi, 2005]. While the low-rank matrix approximation problem can be solved

efficiently using SVD (Section 4.2), computing even a rank-1 approximation of T :

min
u,v,w

∣∣∣∣∣∣T − uv>w>∣∣∣∣∣∣
F

(4.38)

(where ||T ||F =
√∑

i,j,k T
2
i,j,k) is NP-hard (Theorem 1.13, Hillar and Lim [2013]).

Anandkumar et al. [2014] show that the problem is much more manageable if tensors are

orthogonal in addition to being supersymmetric. Specifically, they assume a supersymmetric

and orthogonal tensor T ∈ Rn×n×n of rank-m, that is,

T =

m∑
i=1

λiviv
>
i v
>
i (4.39)

where v1 . . . vm ∈ Rn are orthonormal and λ1 ≥ . . . ≥ λm > 0. Since T (In×n, vi, vi) = λivi,

each (vi, λi) is an eigenvector-eigenvalue pair. In this case, a random initial vector v ∈ Rn

under the tensor power iterations:

v 7→ T (In×n, v, v)

||T (In×n, v, v)||2
(4.40)

converges to some vi (Theorem 4.1, Anandkumar et al. [2014]). Thus the eigencomponents

of T can be extracted through the power iteration method similar to the matrix case in

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 77

Figure 3.3. Note a subtle difference: the extracted eigencomponents may not be in a

descending order of eigenvalues, since the iteration (4.40) converges to some eigenvector vi,

not necessarily v1.

Another important contribution of Anandkumar et al. [2014] is a scheme to orthogonalize

a rank-m supersymmetric tensor T =
∑m

i=1wiuiu
>
i u
>
i where w1 ≥ . . . ≥ wm > 0 but

u1 . . . um are not necessarily orthogonal (but assumed to be linearly independent) with a

corresponding rank-m symmetric matrix M =
∑m

i=1wiuiu
>
i . Let W ∈ Rn×m be a whitening

matrix for M , that is,

M(W,W) =

m∑
i=1

(
√
wiW

>ui)(
√
wiW

>ui)
> = Im×m

For instance, one can set W = V Λ−1/2 where M = V ΛV > is a rank-m SVD of M . This

implies that
√
w1W

>u1 . . .
√
wmW

>um ∈ Rm are orthonormal. Then the (m × m × m)

tensor

T (W,W,W) =

m∑
i=1

1√
wi

(
√
wiW

>ui)(
√
wiW

>ui)
>(
√
wiW

>ui)
>

is orthogonal and is decomposable by the tensor power iteration method T (W,W,W) =∑m
i=1 λiviv

>
i v
>
i . The original variables can be recovered as wi = 1/λ2

i and ui = λi(W
>)+vi.

In summary, the method of Anandkumar et al. [2014] can be used to recover linearly

independent u1 . . . um ∈ Rn and positive scalars w1 . . . wm ∈ R from supersymmetric second-

and third-order tensors of rank m:

M =

m∑
i=1

wiuiu
>
i (4.41)

T =

m∑
i=1

wiuiu
>
i u
>
i (4.42)

Anandkumar et al. [2014] show that this can be used as a learning algorithm for a variety of

latent-variable models. For instance, consider learning a bag-of-words model with n word

types and m topic types. The task is to estimate the model parameters

• wi ∈ R: probability of topic i ∈ [m]

• ui ∈ Rn: conditional distribution over n word types given topic i ∈ [m]

CHAPTER 4. EXAMPLES OF SPECTRAL TECHNIQUES 78

Then it is easily verifiable that the observable quantities M ∈ Rn×n and T ∈ Rn×n×n

where Mi,j is the probability of words i, j ∈ [n] occurring together in a document (not

necessarily consecutively) and Ti,j,k is the probability of words i, j, k ∈ [n] occurring together

in a document (not necessarily consecutively) have the form (4.41) and (4.42). Thus the

parameters (wi, ui) can be estimated by tensor decomposition.

We mention that there is ongoing progress in tensor decomposition. For example, see

Kuleshov et al. [2015] for a decomposition scheme applicable to a wider class of tensors.

79

Part II

Inducing Lexical Representations

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 80

Chapter 5

Word Clusters Under Class-Based

Language Models

This chapter is adapted from joint work with Do-kyum Kim, Michael Collins, and Daniel

Hsu entitled “A Spectral Algorithm for Learning Class-Based n-gram Models of Natural

Language” [Stratos et al., 2014].

The Brown clustering algorithm [Brown et al., 1992] is widely used in NLP to derive

lexical representations that are then used to improve performance on various NLP problems.

The algorithm assumes an underlying model that is essentially an HMM, with the restriction

that each word in the vocabulary is emitted from a single state. A greedy, bottom-up method

is then used to find the clustering; this method does not have a guarantee of finding the

correct underlying clustering. In this work, we describe a new algorithm for clustering

under the Brown et al. model. The method relies on two steps: first, the use of canonical

correlation analysis to derive a low-dimensional representation of words; second, a bottom-

up hierarchical clustering over these representations. We show that given a sufficient number

of training examples sampled from the Brown et al. model, the method is guaranteed to

recover the correct clustering. Experiments show that the method recovers clusters of

comparable quality to the algorithm of Brown et al. [1992], but is an order of magnitude

more efficient.

In this chapter, ||v|| denotes the Euclidean norm of a vector v (||v|| = ||v||2) and ||M ||

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 81

denotes the spectral norm of a matrix M (||M || = ||M ||2).

5.1 Introduction

There has recently been great interest in the natural language processing (NLP) community

in methods that derive lexical representations from large quantities of unlabeled data [Brown

et al., 1992; Pereira et al., 1993; Ando and Zhang, 2005; Liang, 2005; Turian et al., 2010;

Dhillon et al., 2011b; Collobert et al., 2011; Mikolov et al., 2013b,c]. These representations

can be used to improve accuracy on various NLP problems, or to give significant reductions

in the number of training examples required for learning. The Brown clustering algorithm

[Brown et al., 1992] is one of the most widely used algorithms for this task. Brown clustering

representations have been shown to be useful in a diverse set of problems including named-

entity recognition [Miller et al., 2004; Turian et al., 2010], syntactic chunking [Turian et al.,

2010], parsing [Koo et al., 2008], and language modeling [Kneser and Ney, 1993; Gao et al.,

2001].

The Brown clustering algorithm assumes a model that is essentially a hidden Markov

model (HMM), with a restriction that each word in the vocabulary can only be emitted from

a single state in the HMM (i.e, there is a deterministic mapping from words to underlying

states). The algorithm uses a greedy, bottom-up method in deriving the clustering. This

method is a heuristic, in that there is no guarantee of recovering the correct clustering. In

practice, the algorithm is quite computationally expensive: for example in our experiments,

the implementation of Liang [2005] takes over 22 hours to derive a clustering from a dataset

with 205 million tokens and 300,000 distinct word types.

We introduce a new algorithm for clustering under the Brown et al. [1992] model (hence-

forth, the Brown model). Crucially, under an assumption that the data is generated from

the Brown model, our algorithm is guaranteed to recover the correct clustering when given

a sufficient number of training examples (see the theorems in Section 5.4). The algorithm

draws on ideas from canonical correlation analysis (CCA) and agglomerative clustering, and

has the following simple form:

1. Estimate a normalized covariance matrix from a corpus and use singular value de-

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 82

composition (SVD) to derive low-dimensional vector representations for word types

(Figure 5.4).

2. Perform a bottom-up hierarchical clustering of these vectors (Figure 5.7).

In our experiments, we find that our clusters are comparable to the Brown clusters in

improving the performance of a supervised learner, but our method is significantly faster.

For example, both our clusters and Brown clusters improve the F1 score in named-entity

recognition (NER) by 2-3 points, but the runtime of our method is around 10 times faster

than the Brown algorithm (Table 5.3).

The chapter is structured as follows. In Section 5.2, we discuss related work. In Sec-

tion 5.3, we define the Brown model. In Section 5.4, we present the main result and describe

the algorithm. In Section 5.5, we report experimental results.

5.2 Background

5.2.1 The Brown Clustering Algorithm

The Brown clustering algorithm [Brown et al., 1992] has been used in many NLP applica-

tions [Koo et al., 2008; Miller et al., 2004; Liang, 2005]. We briefly describe the algorithm

below. For details, see Section A.1.

The input to the algorithm is a corpus of text with N tokens of n distinct word types.

The algorithm initializes each word type as a distinct cluster, and repeatedly merges the

pair of clusters that cause the smallest decrease in the likelihood of the corpus according

to a discrete hidden Markov model (HMM). The observation parameters of this HMM are

assumed to satisfy a certain disjointedness condition (Assumption 5.3.1). We will explicitly

define the model in Section 5.3.

At the end of the algorithm, one obtains a hierarchy of word types which can be repre-

sented as a binary tree as in Figure 5.2. Within this tree, each word is uniquely identified

by its path from the root, and this path can be compactly represented with a bit string.

In order to obtain a clustering of the words, we select all nodes at a certain depth from

the root of the hierarchy. For example, in Figure 5.2 we might select the four nodes at

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 83

Input: corpus withN tokens of n distinct word types w(1), . . . , w(n) ordered by decreasing frequency;

number of clusters m.

Output: hierarchical clustering of w(1), . . . , w(n).

1. Initialize active clusters C = {{w(1)}, . . . , {w(m)}}.

2. For i = m+ 1 to n+m− 1:

(a) If i ≤ n: set C = C ∪ {{w(i)}}.

(b) Merge c, c′ ∈ C that cause the smallest decrease in the likelihood of the corpus.

Figure 5.1: A standard implementation of the Brown clustering algorithm. See Figure A.1

for more details.

0

00

000

coffee

001

tea

01

010

dog

011

cat

1

10

100

walk

101

run

11

110

walked

111

ran

Figure 5.2: An example of a Brown word-cluster hierarchy. Each node in the tree is labeled

with a bit string indicating the path from the root node to that node, where 0 indicates a

left branch and 1 indicates a right branch.

depth 2 from the root, yielding the clusters {coffee, tea}, {dog, cat}, {walk, run}, and

{walked, ran}. Note that the same clustering can be obtained by truncating each word’s

bit string to a 2-bit prefix. By using prefixes of various lengths, we can produce clusterings

of different granularities.

A naive implementation of this algorithm has runtimeO(n5). Brown et al. [1992] propose

a technique to reduce the runtime to O(n3). Since this is still not acceptable for large

values of n, a common trick used for practical implementation is to specify the number of

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 84

active clusters m � n, for example, m = 1000. A sketch of this implementation is shown

in Figure 5.1. Using this technique, it is possible to achieve O(N + nm2) runtime. We

note that our algorithm in Figure 5.7 has a similar form and asymptotic runtime, but is

empirically much faster. We discuss this issue in Section 5.5.3.1.

In this work, we present a very different algorithm for deriving a word hierarchy based

on the Brown model. In all our experiments, we compared our method against the highly

optimized implementation of the Brown algorithm in Figure 5.1 by Liang (2005).

5.2.2 CCA and Agglomerative Clustering

Our algorithm in Figure 5.4 operates in a fashion similar to the mechanics of CCA. CCA is

a statistical technique used to maximize the correlation between a pair of random variables

[Hotelling, 1936]. A central operation in CCA to achieve this maximization is SVD; in this

work, we also critically rely on SVD to recover the desired parameters.

Recently, it has been shown that one can use CCA-style algorithms, so-called spectral

methods, to learn HMMs in polynomial sample/time complexity [Hsu et al., 2012]. These

methods will be important to our goal since the Brown model can be viewed as a special

case of an HMM.

We briefly note that one can view our approach from the perspective of spectral clus-

tering [Ng et al., 2002]. A spectral clustering algorithm typically proceeds by constructing

a graph Laplacian matrix from the data and performing a standard clustering algorithm

(e.g., k-means) on reduced-dimensional points that correspond to the top eigenvalues of

the Laplacian. We do not make use of a graph Laplacian, but we do make use of spectral

methods for dimensionality reduction before clustering.

Agglomerative clustering refers to hierarchical grouping of n points using a bottom-up

style algorithm [Ward Jr, 1963; Shanbehzadeh and Ogunbona, 1997]. It is commonly used

for its simplicity, but a naive implementation requires O(dn3) time where d is the dimension

of a point. Franti et al. [2000] presented a faster algorithm that requires O(γdn2) time where

γ is a data-dependent quantity which is typically much smaller than n. In our work, we

use a variant of this last approach that has runtime O(γdmn) where m� n is the number

of active clusters we specify (Figure 5.7). We also remark that under our derivation, the

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 85

dimension d is always equal to m, thus we express the runtime simply as O(γnm2).

5.3 Brown Model Definition

A Brown model is a 5-tuple (n,m, π, t, o) for integers n,m and functions π, t, o where

• [n] is a set of states that represent word types.

• [m] is a set of states that represent clusters.

• π(c) is the probability of generating c ∈ [m] in the first position of a sequence.

• t(c′|c) is the probability of generating c′ ∈ [m] given c ∈ [m].

• o(x|c) is the probability of generating x ∈ [n] given c ∈ [m].

In addition, the model makes the following assumption on the parameters o(x|c). This

assumption comes from Brown et al. [1992] who require that the word clusters partition the

vocabulary.

Assumption 5.3.1 (Brown et al. [1992] assumption). For each x ∈ [n], there is a unique

C(x) ∈ [m] such that o(x|C(x)) > 0 and o(x|c) = 0 for all c 6= C(x).

In other words, the model is a discrete HMM with a many-to-one deterministic mapping

C : [n] → [m] from word types to clusters. Under the model, a sequence of N tokens

(x1, . . . , xN) ∈ [n]N has probability

p(x1, . . . , xN) = π(C(x1))×
N∏
i=1

o(xi|C(xi))×
N−1∏
i=1

t(C(xi+1)|C(xi))

An equivalent definition of a Brown model is given by organizing the parameters in

matrix form. Under this definition, a Brown model has parameters (π, T,O) where π ∈ Rm

is a vector and T ∈ Rm×m, O ∈ Rn×m are matrices whose entries are set to:

• πc = π(c) for c ∈ [m]

• Tc′,c = t(c′|c) for c, c′ ∈ [m]

• Ox,c = o(x|c) for c ∈ [m], x ∈ [n]

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 86

We will assume throughout that T,O have rank m. The following is an equivalent reformu-

lation of Assumption 5.3.1 and will be important to the derivation of our algorithm.

Assumption 5.3.2 (Brown et al. [1992] assumption). Each row of O has exactly one non-

zero entry.

5.4 Clustering Under the Brown Model

In this section, we develop a method for clustering words based on the Brown model. The

resulting algorithm is a simple two-step procedure: an application of SVD followed by

agglomerative hierarchical clustering in Euclidean space.

5.4.1 An Overview of the Approach

Suppose the parameter matrix O is known. Under Assumption 5.3.2, a simple way to

recover the correct word clustering is as follows:

1. Compute M̄ ∈ Rn×m whose rows are the rows of
√
O normalized to have length 1.

2. Put words x, x′ in the same cluster iff M̄x = M̄x′ , where M̄x is the x-th row of M̄ .

This works because Assumption 5.3.2 implies that the rows of
√
O corresponding to words

from the same cluster lie along the same coordinate-axis in Rm. Row-normalization puts

these rows precisely at the standard basis vectors. See Figure 5.3 for illustration.

In Section 5.4.2, we prove that the rows of
√
O can be recovered, up to an orthogonal

transformation Q ∈ Rm×m, just from unigram and bigram word probabilities (which can be

estimated from observed sequences). It is clear that the correctness of the above procedure

is unaffected by the orthogonal transformation. Let M denote the row-normalized form

of
√
OQ>: then M still satisfies the property that Mx = Mx′ iff x, x′ belong to the same

cluster. We give an algorithm to estimate this M from a sequence of words in Figure 5.4.

5.4.2 Spectral Estimation of Observation Parameters

To derive a method for estimating the observation parameter
√
O (up to an orthogonal

transformation), we first define the following random variables to model a single random

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 87

1

1

dog cat

ate

drank

dog

cat

ate
drank

(a) (b)

1

Figure 5.3: Illustration of our clustering scheme. (a) Original rows of
√
O. (b) After

row-normalization.

sentence. Let (X1, . . . , XN) ∈ [n]N be a random sequence of tokens drawn from the Brown

model, along with the corresponding (hidden) cluster sequence (C1, . . . , CN) ∈ [m]N ; inde-

pendently, pick a position I ∈ [N − 1] uniformly at random. Let B ∈ Rn×n be a matrix

of bigram probabilities, u, v ∈ Rn vectors of unigram probabilities, and π̃ ∈ Rm a vector of

cluster probabilities:

Bx,x′ := P (XI = x,XI+1 = x′) ∀x, x′ ∈ [n]

ux := P (XI = x) ∀x ∈ [n]

vx := P (XI+1 = x) ∀x ∈ [n]

π̃c := P (CI = c) ∀c ∈ [m].

We assume that diag(π̃) has rank m; note that this assumption is weaker than requiring

diag(π) to have rank m. We will consider a matrix Ω ∈ Rn×n defined as

Ω := diag(u)−1/2B diag(v)−1/2 (5.1)

Theorem 5.4.1. Let U ∈ Rn×m be the matrix of m left singular vectors of Ω corresponding

to nonzero singular values. Then there exists an orthogonal matrix Q ∈ Rm×m such that

U =
√
OQ>.

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 88

To prove Theorem 5.4.1, we need to examine the structure of the matrix Ω. The following

matrices A, Ã ∈ Rn×m will be important for this purpose:

A = diag(Oπ̃)−1/2O diag(π̃)1/2

Ã = diag(OTπ̃)−1/2OT diag(π̃)1/2

The first lemma shows that Ω can be decomposed into A and Ã>.

Lemma 5.4.2. Ω = AÃ>.

Proof. It can be algebraically verified from the definition ofB, u, v thatB = O diag(π̃)(OT)>,

u = Oπ̃, and v = OTπ̃. Plugging in these expressions in Eq. (5.1), we have

Ω = diag(Oπ̃)−1/2O diag(π̃)1/2(
diag(OTπ̃)−1/2OT diag(π̃)1/2

)>
= AÃ>.

The second lemma shows that A is in fact the desired matrix. The proof of this lemma

crucially depends on the disjoint-cluster assumption of the Brown model.

Lemma 5.4.3. A =
√
O and A>A = Im×m.

Proof. By Assumption 5.3.2, the x-th entry of Oπ̃ has value Ox,C(x) × π̃C(x), and the

(x,C(x))-th entry of O diag(π̃)1/2 has value Ox,C(x) ×
√
π̃C(x). Thus the (x,C(x))-th entry

of A is

Ax,C(x) =
Ox,C(x)

√
π̃C(x)√

Ox,C(x)π̃C(x)

=
√
Ox,C(x)

The columns of A have disjoint supports since A has the same sparsity pattern as O.

Furthermore, the l2 (Euclidean) norm of any column of A is the l1 norm of the corresponding

column of O. This implies A>A = Im×m

Now we give a proof of the main theorem.

Proof of Theorem 5.4.1. The orthogonal projection matrix onto range(Ω) is given by UU>

and also by Ω(Ω>Ω)+Ω>. Hence from Lemma 5.4.2 and 5.4.3, we have

UU> = Ω(Ω>Ω)+Ω>

= (AÃ>)(ÃA>AÃ>)+(AÃ>)>

= (AÃ>)(ÃÃ>)+(AÃ>)> = AΠA>

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 89

Input: sequence of N ≥ 2 words (x1, . . . , xN) ∈ [n]N ; number of clusters m; smoothing

parameter κ.

Output: matrix M̂ ∈ Rn×m defining f : x 7→ M̂x ∀x ∈ [n].

1. Compute B̂ ∈ Rn×n, û ∈ Rn, and v̂ ∈ Rn where

B̂x,x′ :=
1

N − 1

N−1∑
i=1

[[xi = x, xi+1 = x′]] ∀x, x′ ∈ [n]

ûx :=
1

N − 1

N−1∑
i=1

[[xi = x]] +
κ

N − 1
∀x ∈ [n]

v̂x :=
1

N − 1

N−1∑
i=1

[[xi+1 = x]] +
κ

N − 1
∀x ∈ [n]

2. Compute rank-m SVD of the sparse matrix

Ω̂ := diag(û)−1/2 B̂ diag(v̂)−1/2.

Let Û ∈ Rn×m be a matrix of m left singular vectors of Ω̂ corresponding to the m

largest singular values.

3. Let M̂ be the result of normalizing every row of Û to have length 1.

Figure 5.4: Estimation of M from samples.

where Π = Ã(Ã>Ã)+Ã> is the orthogonal projection matrix onto range(Ã). But since Ã

has rank m, range(Ã) = Rm and thus Π = Im×m. Then we have UU> = AA> where both

U and A have orthogonal columns (Lemma 5.4.3). This implies that there is an orthogonal

matrix Q ∈ Rm×m such that U = AQ>.

5.4.3 Estimation from Samples

In Figure 5.4, we give an algorithm for computing an estimate M̂ of M from a sample of

words (x1, . . . , xN) ∈ [n]N (where M is described in Section 5.4.1). The algorithm estimates

unigram and bigram word probabilities u, v,B to form a plug-in estimate Ω̂ of Ω (defined

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 90

in Eq. (5.1)), computes a low-rank SVD of a sparse matrix, and normalizes the rows of the

resulting left singular vector matrix.

The following theorem implies the consistency of our algorithm, assuming the consis-

tency of Ω̂.

Theorem 5.4.4. Let ε :=
∣∣∣∣∣∣Ω̂− Ω

∣∣∣∣∣∣ /σm(Ω). If ε ≤ 0.07 minx∈[n]

√
o(x|C(x)), then the

word embedding f(x) := M̂x (where M̂x is the x-th row of M̂) satisfies the following property:

for all x, x′, x′′ ∈ [n],

C(x) = C(x′) 6= C(x′′) =⇒
∣∣∣∣f(x)− f(x′)

∣∣∣∣ < ∣∣∣∣f(x)− f(x′′)
∣∣∣∣

(i.e., the embedding of any word x is closer to that of other words x′ from the same cluster

than it is to that of any word x′′ from a different cluster).

The property established by Theorem 5.4.4 (proved in Section A.3) allows many distance-

based clustering algorithms (e.g., single-linkage, average-linkage) to recover the correct clus-

tering:

Corollary 5.4.5. The ground-truth clustering C : [n] → [m] in the Brown model is some

pruning (of size m) of a tree over the vocabulary produced by single-linkage or average-

linkage hierarchical clustering applied on the word embeddings f(x) in Theorem 5.4.4.

Proof. By Theorem 5.4.4, the Euclidiean distance for word embeddings f(x) is a symmetric

similarity function satisfying the strict separation property (Property 1, Balcan et al., 2008)

with respect to C, thus C is some pruning of a tree produced by single-linkage clustering

(Theorem 2, Balcan et al., 2008). Since it satisfies the strict separation property, it also

satisfies the strong stability property (Property 2, Balcan et al., 2008), thus C is also

some pruning of a tree produced by average-linkage clustering (Theorem 8, Balcan et al.,

2008).

Moreover, it is possible to establish finite sample complexity bounds for the estimation

error of Ω̂. For simplicity, instead of estimating B, u, and v from a single long sentence,

we estimate them (via maximum likelihood) using N i.i.d. sentences, each of length 2. Let

κm(Ω) := σ1(Ω)/σm(Ω) be the rank-m condition number of Ω. Let umin := minx ux and

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 91

vmin := minx vx. Define

n1 := max
x∈[n]

∑
x′∈[n]

P (C2 = C(x′)|C1 = C(x))

P (C2 = C(x′))
n2 := max

x′∈[n]

∑
x∈[n]

P (C2 = C(x′)|C1 = C(x))

P (C2 = C(x′))

Theorem 5.4.6. There is an absolute constant c′′ > 0 such that for any ε ∈ (0, 1), if

N ≥ c′′ · κm(Ω)2 log(n/δ) max {n1, n2, 1/umin, 1/vmin}
ε2

then with probability at least 1− δ,
∣∣∣∣∣∣Ω̂− Ω

∣∣∣∣∣∣ /σm(Ω) ≤ ε.

Theorem 5.4.4 together with Theorem 5.4.6 (proved in Section A.4) imply that given

enough samples from the Brown model, the word embeddings induced by our algorithm in

Figure 5.4 can be used to infer the underlying clusters of word types.

In practice, it is important to regularize the estimates û and v̂ using a smoothing pa-

rameter κ ≥ 0. This can be viewed as adding pseudocounts to alleviate the noise from

infrequent words, and has a significant effect on the resulting representations. The practi-

cal importance of smoothing is also seen in previous methods using CCA [Hardoon et al.,

2004].

Another practical consideration is the use of richer context. So far, the context used for

the token XI is just the next token XI+1; hence, the spectral estimation is based just on

unigram and bigram probabilities. However, it is straightforward to generalize the technique

to use other context—details are in Section A.2. For instance, if we use the previous and next

tokens (XI−1, XI+1) as context, then we form Ω̂ ∈ Rn×2n from B̂ ∈ Rn×2n, û ∈ Rn, v̂ ∈ R2n;

however, we still extract M̂ ∈ Rn×m from Ω̂ in the same way to form the word embedding.

5.4.4 Agglomerative Clustering

As established in Theorem 5.4.4, the word embedding obtained by mapping words to their

corresponding rows of M̂ permits distance-based clustering algorithms to recover the correct

clustering. However, with small sample sizes and model approximation errors, the property

from Theorem 5.4.4 may not hold exactly. Therefore, we propose to compute a hierarchical

clustering of the word embeddings, with the goal of finding the correct clustering (or at least

a good clustering) as some pruning of the resulting tree. Simple agglomerative clustering

algorithms can provably recover the correct clusters when idealized properties (such as that

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 92

from Theorem 5.4.4) hold [Balcan et al., 2008], and can also be seen to be optimizing a

sensible objective regardless [Dasgupta and Long, 2005]. These algorithms also yield a

hierarchy of word types—just as the original Brown clustering algorithm.

We use a form of average-linkage agglomerative clustering called Ward’s algorithm [Ward Jr,

1963], which is particularly suited for hierarchical clustering in Euclidean spaces. In this

algorithm, the cost of merging clusters c and c′ is defined as

d(c, c′) =
|c||c′|
|c|+ |c′| ||µc − µc′ ||

2 (5.2)

where |c| refers to the number of elements in cluster c and µc = |c|−1
∑

u∈c u is the mean of

cluster c. The algorithm starts with every point (word) in its own cluster, and repeatedly

merges the two clusters with cheapest merge cost.

Figure 5.7 sketches a variant of Ward’s algorithm that only considers merges among (at

most) m + 1 clusters at a time. The initial m + 1 (singleton) clusters correspond to the

m + 1 most frequent words (according to û); after a merge, the next most frequent word

(if one exists) is used to initialize a new singleton cluster. This heuristic is also adopted by

the original Brown algorithm, and is known to be very effective.

Using an implementation trick from Franti et al. [2000], the runtime of the algorithm

is O(γnm2), where γ is a data-dependent constant often much smaller than m, as opposed

to O(nm3) in a naive implementation in which we search for the closest pair among O(m2)

pairs at every merge.

The basic idea of Franti et al. [2000] is the following. For each cluster, we keep an

estimation of the lower bound on the distance to the nearest cluster. We also track if this

lower bound is tight; in the beginning, every bound is tight. When searching for the nearest

pair, we simply look for a cluster with the smallest lower bound among m clusters instead

of O(m2) cluster pairs. If the cluster has a tight lower bound, we merge it with its nearest

cluster. Otherwise, we tighten its bound and again look for a cluster with the smallest

bound. Thus γ is the effective number of searches at each iteration. At merge, the bound

of a cluster whose nearest cluster is either of the two merged clusters becomes loose. We

report empirical values of γ in our experimental study (see Table 5.3).

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 93

5.5 Experiments

To evaluate the effectiveness of our approach, we used the clusters from our algorithm as

additional features in supervised models for NER. We then compared the improvement in

performance and also the time required to derive the clusters against those of the Brown

clustering algorithm. Additionally, we examined the mutual information (MI) of the derived

clusters on the training corpus:∑
c,c′

count(c, c′)

N
log

count(c, c′)N

count(c)count(c′)
(5.3)

where N is the number of tokens in the corpus, count(c) is the number of times cluster c

appears, and count(c, c′) is the number of times clusters c, c′ appear consecutively. Note

that this is the quantity the Brown algorithm directly maximizes [Brown et al., 1992].

5.5.1 Experimental Settings

For NER experiments, we used the scripts provided by Turian et al. [2010]. We used

the greedy perceptron for NER experiments [Ratinov and Roth, 2009] using the standard

features as our baseline models. We used the CoNLL 2003 dataset for NER with the

standard train/dev/test split.

For the choice of unlabeled text data, we used the Reuters-RCV1 corpus which contains

205 million tokens with 1.6 million distinct word types. To keep the size of the vocabulary

manageable and also to reduce noise from infrequent words, we used only a selected number

of the most frequent word types and replaced all other types in the corpus with a special

token. For the size of the vocabulary, we used 50,000 and 300,000.

Our algorithm can be broken down into two stages: the SVD stage (Figure 5.4) and

the clustering stage (Figure 5.7). In the SVD stage, we need to choose the number of

clusters m and the smoothing parameter κ. As mentioned, we can easily define Ω to

incorporate information beyond one word to the right. We experimented with the following

configurations for context:

1. R1 (Ω ∈ Rn×n): 1 word to the right. This is the version presented in Figure 5.4.

2. LR1 (Ω ∈ Rn×2n): 1 word to the left/right.

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 94

vocab context dev test

Baseline — — 90.03 84.39

Spectral 50k LR1 92 86.72

(κ = 200) 300k LR2 92.31 87.76

Brown 50k — 92 88.56

300k 92.68 88.76

Table 5.1: Performance gains in NER.

vocab size context MI

Spectral 50k LR2 1.48

(κ = 5000) 300k LR2 1.54

Brown 50k — 1.52

300k — 1.6

Table 5.2: Mutual information computed as in Eq. (5.3) on the RCV1 corpus.

3. LR2 (Ω ∈ Rn×4n): 2 words to the left/right.

5.5.2 Comparison to the Brown Algorithm: Quality

There are multiple ways to evaluate the quality of clusters. We considered the improvement

in the F1 score in NER from using the clusters as additional features. We also examined

the MI on the training corpus. For all experiments in this section, we used 1,000 clusters

for both the spectral algorithm (i.e., m = 1000) and the Brown algorithm.

5.5.2.1 NER

In NER, there is significant improvement in the F1 score from using the clusters as additional

features (Table 5.1). The dev F1 score is improved from 90.03 to 92 with either spectral or

Brown clusters using 50k vocabulary size; it is improved to 92.31 with the spectral clusters

and to 92.68 with the Brown clusters using 300k vocabulary size. The spectral clusters

are a little behind the Brown clusters in the test set results. However, we remark that the

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 95

well-known discrepancy between the dev set and the test set in the CoNLL 2003 dataset

makes a conclusive interpretation difficult. For example, Turian et al. [2010] report that the

F1 score using the embeddings of Collobert and Weston [2008] is higher than the F1 score

using the Brown clusters on the dev set (92.46 vs 92.32) but lower on the test set (87.96 vs

88.52).

5.5.2.2 MI

Table 5.2 shows the MI computed as in Eq. (5.3) on the RCV1 corpus. The Brown algo-

rithm optimizes the MI directly and generally achieves higher MI scores than the spectral

algorithm. However, the spectral algorithm also achieves a surprisingly respectable level of

MI scores even though the MI is not its objective. That is, the Brown algorithm specifically

merges clusters in order to maximize the MI score in Eq. (5.3). In contrast, the spectral al-

gorithm first recovers the model parameters using SVD and perform hierarchical clustering

according to the parameter estimates, without any explicit concern for the MI score.

5.5.3 Comparison to the Brown Algorithm: Speed

To see the runtime difference between our algorithm and the Brown algorithm, we measured

how long it takes to extract clusters from the RCV1 corpus for various numbers of clusters.

In all the reported runtimes, we exclude the time to read and write data. We report results

with 200, 400, 600, 800, and 1,000 clusters. All timing experiments were done on a machine

with dual-socket, 8-core, 2.6GHz Intel Xeon E5-2670 (Sandy Bridge). The implementations

for both algorithms were written in C++. The spectral algorithm also made use of Matlab

for matrix calculations such as the SVD calculation.

Table 5.3 shows the runtimes required to extract these clusters as well as the F1 scores on

the NER dev set obtained with these clusters. The spectral algorithm is considerably faster

than the Brown algorithm while providing comparable improvement in the F1 scores. The

runtime difference becomes more prominent as the number of clusters increases. Moreover,

the spectral algorithm scales much better with larger vocabulary size. With 1,000 clusters

and 300k vocabulary size, the Brown algorithm took over 22 hours whereas the spectral

algorithm took 2 hours, 4 minutes, and 15 seconds—less than 10% of the time the Brown

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 96

1.0

1.2

1.4

10 100 1000 10000
κ

M
u
tu
al

in
fo
rm

at
io
n

R1

LR1

LR2

90

91

92

10 100 1000 10000
κ

N
E
R

d
ev

F
1

(a) (b)

Figure 5.5: Effect of the choice of κ and context on (a) MI and (b) NER dev F1 score. We used

1,000 clusters on RCV1 with vocabulary size 50k. In (a), the horizontal line is the MI achieved by

Brown clusters. In (b), the top horizontal line is the F1 score achieved with Brown clusters and the

bottom horizontal line is the baseline F1 score achieved without using clusters.

algorithm takes.

We also note that for the Brown algorithm, the improvement varies significantly de-

pending on how many clusters are used; it is 0.76 with 200 clusters but 1.97 with 1,000

clusters. For the spectral algorithm, this seems to be less the case; the improvement is 1.5

with 200 clusters and 1.97 with 1,000 clusters.

5.5.3.1 Discussion on Runtimes

The final asymptotic runtime is O(N + γnm2) for the spectral algorithm and O(N + nm2)

for the Brown algorithm, where N is the size of the corpus, n is the number of distinct word

types, m is the number of clusters, and γ is a data-dependent constant. Thus it may be

puzzling why the spectral algorithm is significantly faster in practice. We explicitly discuss

the issue in this section.

The spectral algorithm proceeds in two stages. First, it constructs a scaled covariance

matrix in O(N) time and performs a rank-m SVD of this matrix. Table 5.3 shows that

SVD scales well with the value of m and the size of the corpus.

Second, the algorithm performs hierarchical clustering in O(γnm2) time. This stage

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 97

computeL2usingOld(s, t, u, v, w) = L2[v][w]

− q2[v][s]− q2[s][v]− q2[w][s]− q2[s][w]

− q2[v][t]− q2[t][v]− q2[w][t]− q2[t][w]

+ (p2[v][s] + p2[w][s]) ∗ log((p2[v][s] + p2[w][s])/((p1[v] + p1[w]) ∗ p1[s]))

+ (p2[s][v] + p2[s][w]) ∗ log((p2[s][v] + p2[s][w])/((p1[v] + p1[w]) ∗ p1[s]))

+ (p2[v][t] + p2[w][t]) ∗ log((p2[v][t] + p2[w][t])/((p1[v] + p1[w]) ∗ p1[t]))

+ (p2[t][v] + p2[t][w]) ∗ log((p2[t][v] + p2[t][w])/((p1[v] + p1[w]) ∗ p1[t]))

+ q2[v][u] + q2[u][v] + q2[w][u] + q2[u][w]

− (p2[v][u] + p2[w][u]) ∗ log((p2[v][u] + p2[w][u])/((p1[v] + p1[w]) ∗ p1[u]))

− (p2[u][v] + p2[u][w]) ∗ log((p2[u][v] + p2[u][w])/((p1[v] + p1[w]) ∗ p1[u]))

Figure 5.6: A O(1) function that is called O(nm2) times in Liang’s implementation of the

Brown algorithm, accounting for over 40% of the runtime. Similar functions account for

the vast majority of the runtime. The values in the arrays L2, q2, p2, p1 are precomputed.

p2[v][w] = p(v, w), i.e, the probability of cluster v being followed by cluster w; p1[v] = p(v) is

the probability of cluster v; q2[v][w] = p(v, w) log((p(v)p(w))−1p(v, w)) is the contribution

of the mutual information between clusters v and w. The function recomputes L2[v][w],

which is the loss in log-likelihood if clusters v and w are merged. The function updates L2

after clusters s and t have been merged to form a new cluster u. There are many operations

involved in this calculation: 6 divisions, 12 multiplications, 36 additions (26 additions and

10 subtractions), and 6 log operations.

consists of O(γnm) calls to an O(m) time function that computes Eq. (5.2), that is,

d(c, c′) =
|c||c′|
|c|+ |c′| ||µc − µc′ ||

2

This function is quite simple: it calculates a scaled distance between two vectors in Rm.

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 98

Moreover, it avails itself readily to existing optimization techniques such as vectorization.1

Finally, we found that the empirical value of γ was typically small: it ranged from 3.35 to

13.77 in our experiments reported in Table 5.3 (higher m required higher γ).

In contrast, while the main body of the Brown algorithm requires O(N+nm2) time, the

constant factors are high due to fairly complex book-keeping that is required. For example,

the function in Figure 5.6 (obtained from Liang’s implementation) is invoked O(nm2) times

in total: specifically, whenever two clusters s and t are merged to form a new cluster u (this

happens O(n) times), the function is called O(m2) times, for all pairs of clusters v, w such

that v and w are not equal to s, t, or u. The function recomputes the loss in likelihood if

clusters v and w are merged, after s and t are merged to form u. It requires a relatively large

number of arithmetic operations, leading to high constant factors. Calls to this function

alone take over 40% of the runtime for the Brown algorithm; similar functions account for

the vast majority of the algorithm’s runtime. It is not clear that this overhead can be

reduced.

5.5.4 Effect of the Choice of κ and Context

Figure 5.5 shows the MI and the F1 score on the NER dev set for various choices of κ and

context. For NER, around 100-200 for the value of κ gives good performance. For the MI,

the value of κ needs to be much larger.

LR1 and LR2 perform much better than R1 but are very similar to each other across the

results, suggesting that words in the immediate vicinity are necessary and nearly sufficient

for these tasks.

5.6 Conclusion

In this work, we have presented a new and faster alternative to the Brown clustering algo-

rithm. Our algorithm has a provable guarantee of recovering the underlying model parame-

ters. This approach first uses SVD to consistently estimate low-dimensional representations

1Many linear algebra libraries automatically support vectorization. For instance, the Eigen library in our

implementation enables vectorization by default, which gave a 2-3 time speedup in our experiments.

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 99

of word types that reveal their originating clusters by exploiting the implicit disjoint-cluster

assumption of the Brown model. Then agglomerative clustering is performed over these

representations to build a hierarchy of word types. The resulting clusters give a competi-

tive level of improvement in performance in NER as the clusters from the Brown algorithm,

but the spectral algorithm is significantly faster.

There are several areas for the future work. One can try to speed up the algorithm

even more via a top-down rather than bottom-up approach for hierarchical clustering, for

example recursively running the 2-means algorithm. Experiments with the clusters in tasks

other than NER (e.g., dependency parsing), as well as larger-scale experiments, can help

further verify the quality of the clusters and highlight the difference between the spectral

algorithm and the Brown algorithm.

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 100

Input: vectors µ(1), . . . , µ(n) ∈ Rm corresponding to word types [n] ordered in decreasing

frequency.

Output: hierarchical clustering of the input vectors.

Tightening: Given a set of clusters C, the subroutine tighten(c) for c ∈ C consists of the

following three steps:

nearest(c) := arg min
c′∈C:c′ 6=c

d(c, c′)

lowerbound(c) := min
c′∈C:c′ 6=c

d(c, c′)

tight(c) := True

Main body:

1. Initialize active clusters C = {{µ(1)}, . . . , {µ(m)}} and call tighten(c) for all c ∈ C.

2. For i = m+ 1 to n+m− 1:

(a) If i ≤ n: let c := {µ(i)}, call tighten(c), and let C := C ∪ {c}.

(b) Let c∗ := arg minc∈C lowerbound(c).

(c) While tight(c∗) is False,

i. Call tighten(c∗).

ii. Let c∗ := arg minc∈C lowerbound(c).

(d) Merge c∗ and nearest(c∗) in C.

(e) For each c ∈ C: if nearest(c) ∈ {c∗, nearest(c∗)}, set tight(c) := False.

Figure 5.7: Variant of Ward’s algorithm from Section 5.4.4.

CHAPTER 5. WORD CLUSTERS UNDER THE BROWN MODEL 101

m
vo

ca
b

S
p

ec
tr

al
ru

n
ti

m
e

B
ro

w
n

ru
n
ti

m
e

R
at

io
(%

)
S

p
ec

tr
a
l

F
1

B
ro

w
n

F
1

γ
S

V
D

cl
u

st
er

to
ta

l

2
0
0

5
0
k

3
.3

5
4m

2
4
s

13
s

4m
37

s
10

m
37

s
43

.4
8

9
1.

5
3

9
0.

7
9

4
0
0

5
.1

7
6m

3
9
s

1m
8s

7m
47

s
37

m
16

s
20

.8
9

9
1.

7
3

9
1.

2
1

6
0
0

9
.8

0
5m

2
9
s

3m
1s

8m
30

s
1h

33
m

55
s

9.
05

9
1.

6
8

9
1.

7
9

8
0
0

1
2
.6

4
9
m

26
s

6m
59

s
16

m
25

s
2h

20
m

40
s

11
.6

7
9
1.

8
1

9
1.

8
3

10
0
0

1
2
.6

8
1
1m

1
0
s

10
m

25
s

21
m

35
s

3h
37

m
9.

95
9
2.

0
0

9
2.

0
0

10
0
0

30
0
k

1
3
.7

7
5
9m

3
8
s

1h
4m

37
s

2h
4m

15
s

22
h

19
m

37
s

9.
28

9
2.

3
1

9
2.

6
8

T
a
b

le
5
.3

:
S

p
ee

d
a
n

d
p

er
fo

rm
a
n

ce
co

m
p

a
ri

so
n

w
it

h
th

e
B

ro
w

n
al

go
ri

th
m

fo
r

d
iff

er
en

t
n
u

m
b

er
s

o
f

cl
u

st
er

s
a
n

d
v
o
ca

b
u

la
ry

si
ze

s.

In
a
ll

th
e

re
p

or
te

d
ru

n
ti

m
es

,
w

e
ex

cl
u

d
e

th
e

ti
m

e
to

re
ad

an
d

w
ri

te
d

at
a.

W
e

re
p

or
t

th
e

F
1

sc
or

es
o
n

th
e

N
E

R
d

ev
se

t;
fo

r
th

e

sp
ec

tr
al

a
lg

or
it

h
m

,
w

e
re

p
or

t
th

e
b

es
t

sc
o
re

s.

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 102

Chapter 6

Word Embeddings from

Decompositions of Count Matrices

This chapter is adapted from joint work with Michael Collins and Daniel Hsu entitled

“Model-Based Word Embeddings from Decompositions of Count Matrices” [Stratos et al.,

2015].

This work develops a new statistical understanding of word embeddings induced from

transformed count data. Using the class of hidden Markov models (HMMs) underlying

Brown clustering as a generative model, we demonstrate how canonical correlation analysis

(CCA) and certain count transformations permit efficient and effective recovery of model

parameters with lexical semantics. We further show in experiments that these techniques

empirically outperform existing spectral methods on word similarity and analogy tasks, and

are also competitive with other popular methods such as WORD2VEC and GLOVE.1

In this chapter, we use M 〈a〉 to denote the element-wise power of matrix M by a scalar

a, that is, [
√
M
〈a〉

]i,j = Ma
i,j . This is distinguished from the usual matrix power Ma (defined

only for a square M).

1We consistently denote the method of Mikolov et al. [2013b] by “WORD2VEC” and the method of

Pennington et al. [2014] by “GLOVE” in this chapter.

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 103

6.1 Introduction

The recent spike of interest in dense, low-dimensional lexical representations (i.e., word

embeddings) is largely due to their ability to capture subtle syntactic and semantic patterns

that are useful in a variety of natural language tasks. A successful method for deriving

such embeddings is the negative sampling training of the skip-gram model suggested by

Mikolov et al. [2013b] and implemented in the popular software WORD2VEC. The form

of its training objective was motivated by efficiency considerations, but has subsequently

been interpreted by Levy and Goldberg [2014b] as seeking a low-rank factorization of a

matrix whose entries are word-context co-occurrence counts, scaled and transformed in a

certain way. This observation sheds new light on WORD2VEC, yet also raises several new

questions about word embeddings based on decomposing count data. What is the right

matrix to decompose? Are there rigorous justifications for the choice of matrix and count

transformations?

In this paper, we answer some of these questions by investigating the decomposition

specified by CCA Hotelling [1936], a powerful technique for inducing generic representations

whose computation is efficiently and exactly reduced to that of a matrix singular value

decomposition (SVD). We build on the work of Stratos et al. [2014] which uses CCA for

learning the class of HMMs underlying Brown clustering. We show that certain count

transformations enhance the accuracy of the estimation method and significantly improve

the empirical performance of word representations derived from these model parameters

(Table 6.1).

In addition to providing a rigorous justification for CCA-based word embeddings, we

also supply a general template that encompasses a range of spectral methods (algorithms

employing SVD) for inducing word embeddings in the literature, including the method of

Levy and Goldberg [2014b]. In experiments, we demonstrate that CCA combined with the

square-root transformation achieves the best result among spectral methods and performs

competitively with other popular methods such as WORD2VEC and GLOVE on word sim-

ilarity and analogy tasks. We additionally demonstrate that CCA embeddings provide the

most competitive improvement when used as features in named-entity recognition (NER).

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 104

6.2 Background in CCA

In this section, we review the variational characterization of CCA. This provides a flexible

framework for a wide variety of tasks. CCA seeks to maximize a statistical quantity known

as the Pearson correlation coefficient between random variables L,R ∈ R:

Cor(L,R) :=
E[LR]−E[L]E[R]√

E[L2]−E[L]2
√
E[R2]−E[R]2

This is a value in [−1, 1] indicating the degree of linear dependence between L and R.

6.2.1 CCA Objective

Let X ∈ Rn and Y ∈ Rn′ be two random vectors. Without loss of generality, we will assume

that X and Y have zero mean.2 Let m ≤ min(n, n′). CCA can be cast as finding a set of

projection vectors (called canonical directions) a1 . . . am ∈ Rn and b1 . . . bm ∈ Rn′ such that

for i = 1 . . .m:

(ai, bi) = arg max
a∈Rn, b∈Rn′

Cor(a>X, b>Y) (6.1)

Cor(a>X, a>j X) = 0 ∀j < i

Cor(b>Y, b>j Y) = 0 ∀j < i

That is, at each i we simultaneously optimize vectors a, b so that the projected random vari-

ables a>X, b>Y ∈ R are maximally correlated, subject to the constraint that the projections

are uncorrelated to all previous projections.

Let A := [a1 . . . am] and B := [b1 . . . bm]. Then we can think of the joint projections

X = A>X Y = B>Y (6.2)

as new m-dimensional representations of the original variables that are transformed to be

as correlated as possible with each other. Furthermore, often m� min(n, n′), leading to a

dramatic reduction in dimensionality.

2This can be always achieved through data preprocessing (“centering”).

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 105

6.2.2 Exact Solution via SVD

Eq. (6.1) is non-convex due to the terms a and b that interact with each other, so it cannot

be solved exactly using a standard optimization technique. However, a method based on

SVD provides an efficient and exact solution. For a proof and more detailed discussions,

see Hardoon et al. [2004].

Lemma 6.2.1 (Hotelling [1936]). Assume X and Y have zero mean. The solution (A,B)

to (6.1) is given by A = E[XX>]−1/2U and B = E[Y Y >]−1/2V where the i-th column of

U ∈ Rn×m (V ∈ Rn′×m) is the left (right) singular vector of

Ω := E[XX>]−1/2 E[XY >]E[Y Y >]−1/2 (6.3)

corresponding to the i-th largest singular value σi. Furthermore, σi = Cor(a>i X, b
>
i Y).

6.2.3 Using CCA for Word Representations

As presented in Section 6.2.1, CCA is a general framework that operates on a pair of random

variables. Adapting CCA specifically to inducing word representations results in a simple

recipe for calculating (6.3).

A natural approach is to set X to represent a word and Y to represent the relevant

“context” information about a word. We can use CCA to project X and Y to a low-

dimensional space in which they are maximally correlated: see Eq. (6.2). The projected X

can be considered as a new word representation.

Denote the set of distinct word types by [n]. We setX,Y ∈ Rn to be one-hot encodings of

words and their associated context words. We define a context word to be a word occurring

within ρ positions to the left and right (excluding the current word). For example, with

ρ = 1, the following snippet of text where the current word is “souls”:

Whatever our souls are made of

will generate two samples of X × Y : a pair of indicator vectors for “souls” and “our”, and

a pair of indicator vectors for “souls” and “are”.

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 106

CCA requires performing SVD on the following matrix Ω ∈ Rn×n:

Ω =(E[XX>]−E[X]E[X]>)−1/2

(E[XY >]−E[X]E[Y]>)

(E[Y Y >]−E[Y]E[Y]>)−1/2

At a quick glance, this expression looks daunting: we need to perform matrix inversion and

multiplication on potentially large dense matrices. However, Ω is easily computable with

the following observations:

Observation 1. We can ignore the centering operation when the sample size is large

[Dhillon et al., 2011a]. To see why, let {(x(i), y(i))}Ni=1 be N samples of X and Y . Consider

the sample estimate of the term E[XY >]−E[X]E[Y]>:

1

N

N∑
i=1

x(i)(y(i))> − 1

N2

(
N∑
i=1

x(i)

)(
N∑
i=1

y(i)

)>
The first term dominates the expression when N is large. This is indeed the setting in this

task where the number of samples (word-context pairs in a corpus) easily tends to billions.

Observation 2. The (uncentered) covariance matrices E[XX>] and E[Y Y >] are diagonal.

This follows from our definition of the word and context variables as one-hot encodings since

E[XwXw′] = 0 for w 6= w′ and E[YcYc′] = 0 for c 6= c′.

With these observations and the binary definition of (X,Y), each entry in Ω now has a

simple closed-form solution:

Ωw,c =
P (Xw = 1, Yc = 1)√
P (Xw = 1)P (Yc = 1)

(6.4)

which can be readily estimated from a corpus.

6.3 Using CCA for Parameter Estimation

In a less well-known interpretation of Eq. (6.4), CCA is seen as a parameter estimation

algorithm for a language model [Stratos et al., 2014]. This model is a restricted class

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 107

1

1

smile grin

frown

cringe

1

1

smile grin

frown
cringe

smile

grin

frown

cringe

smile

grin

frown

cringe

(a) (b)

Figure 6.1: Visualization of the representational scheme under a Brown model with 2 hidden

states. (a) Normalizing the original rows of O. (b) Normalizing the scaled and rotated rows

of O.

of HMMs introduced by Brown et al. [1992], henceforth called the Brown model. In this

section, we extend the result of Stratos et al. [2014] and show that its correctness is preserved

under certain element-wise data transformations.

6.3.1 Clustering under a Brown Model

A Brown model is a 5-tuple (n,m, π, t, o) for n,m ∈ N and functions π, t, o where

• [n] is a set of word types.

• [m] is a set of hidden states.

• π(h) is the probability of generating h ∈ [m] in the first position of a sequence.

• t(h′|h) is the probability of generating h′ ∈ [m] given h ∈ [m].

• o(w|h) is the probability of generating w ∈ [n] given h ∈ [m].

Importantly, the model makes the following additional assumption:

Assumption 6.3.1 (Brown assumption). For each word type w ∈ [n], there is a unique

hidden state H(w) ∈ [m] such that o(w|H(w)) > 0 and o(w|h) = 0 for all h 6= H(w).

In other words, this model is an HMM in which observation states are partitioned by

hidden states. Thus a sequence of N words w1 . . . wN ∈ [n]N has probability π(H(w1)) ×∏N
i=1 o(wi|H(wi))×

∏N−1
i=1 t(H(wi+1)|H(wi)).

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 108

An equivalent definition of a Brown model is given by organizing the parameters in

matrix form. Under this definition, a Brown model has parameters (π, T,O) where π ∈ Rm

is a vector and T ∈ Rm×m, O ∈ Rn×m are matrices whose entries are set to:

πh = π(h) h ∈ [m]

Th′,h = t(h′|h) h, h′ ∈ [m]

Ow,h = o(w|h) h ∈ [m], w ∈ [n]

Our main interest is in obtaining some representations of word types that allow us to

identify their associated hidden states under the model. For this purpose, representing a

word by the corresponding row of O is sufficient. To see this, note that each row of O must

have a single nonzero entry by Assumption 6.3.1. Let v(w) ∈ Rm be the w-th row of O

normalized to have unit 2-norm: then v(w) = v(w′) iff H(w) = H(w′). See Figure 6.1(a)

for illustration.

A crucial aspect of this representational scheme is that its correctness is invariant to

scaling and rotation. In particular, clustering the normalized rows of diag(s)O〈a〉 diag(s2)Q>

where O〈a〉 is any element-wise power of O with any a 6= 0, Q ∈ Rm×m is any orthogonal

transformation, and s1 ∈ Rn and s2 ∈ Rm are any positive vectors yields the correct clusters

under the model. See Figure 6.1(b) for illustration.

6.3.2 Spectral Estimation

Thus we would like to estimate O and use its rows for representing word types. But the

likelihood function under the Brown model is non-convex, making an MLE estimation of the

model parameters difficult. However, the hard-clustering assumption (Assumption 6.3.1)

allows for a simple spectral method for consistent parameter estimation of O.

To state the theorem, we define an additional quantity. Let ρ be the number of left/right

context words to consider in CCA. Let (H1, . . . ,HN) ∈ [m]N be a random sequence of

hidden states drawn from the Brown model where N ≥ 2ρ + 1. Independently, pick a

position I ∈ [ρ + 1, N − ρ] uniformly at random. Define π̃ ∈ Rm where π̃h := P (HI = h)

for each h ∈ [m].

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 109

Theorem 6.3.1. Assume π̃ > 0 and rank(O) = rank(T) = m. Assume that a Brown model

(π, T,O) generates a sequence of words. Let X,Y ∈ Rn be one-hot encodings of words and

their associated context words. Let U ∈ Rn×m be the matrix of m left singular vectors of

Ω〈a〉 ∈ Rn×n corresponding to nonzero singular values where Ω is defined in Eq. (6.4) and

a 6= 0:

Ω〈a〉w,c =
P (Xw = 1, Yc = 1)a√
P (Xw = 1)aP (Yc = 1)a

Then there exists an orthogonal matrix Q ∈ Rm×m and a positive s ∈ Rm such that U =

O〈a/2〉 diag(s)Q>.

This theorem states that the CCA projection of words in Section 6.2.3 is the rows of O

up to scaling and rotation even if we raise each element of Ω in Eq. (6.4) to an arbitrary

(nonzero) power. The proof is a variant of the proof in Stratos et al. [2014] and is given in

Appendix B.

6.3.3 Choice of Data Transformation

Given a corpus, the sample estimate of Ω〈a〉 is given by:

Ω̂〈a〉w,c =
#(w, c)a√

#(w)a#(c)a
(6.5)

where #(w, c) denotes the co-occurrence count of word w and context c in the corpus,

#(w) :=
∑

c #(w, c), and #(c) :=
∑

w #(w, c). What choice of a is beneficial and why?

We use a = 1/2 for the following reason: it stabilizes the variance of the term and thereby

gives a more statistically stable solution.

6.3.3.1 Variance Stabilization for Word Counts

The square-root transformation is a variance-stabilizing transformation for Poisson random

variables [Bartlett, 1936; Anscombe, 1948]. In particular, the square-root of a Poisson

variable has variance close to 1/4, independent of its mean.

Lemma 6.3.2 (Bartlett [1936]). Let X be a random variable with distribution Poisson(n×p)
for any p ∈ (0, 1) and positive integer n. Define Y :=

√
X. Then the variance of Y

approaches 1/4 as n→∞.

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 110

This transformation is relevant for word counts because they can be naturally modeled

as Poisson variables. Indeed, if word counts in a corpus of length N are drawn from a

multinomial distribution over [n] with N observations, then these counts have the same

distribution as n independent Poisson variables (whose rate parameters are related to the

multinomial probabilities), conditioned on their sum equaling N [Steel, 1953]. Empirically,

the peaky concentration of a Poisson distribution is well-suited for modeling word occur-

rences.

6.3.3.2 Variance-Weighted Squared-Error Minimization

At the heart of CCA is computing the SVD of the Ω〈a〉 matrix: this can be interpreted as

solving the following (non-convex) squared-error minimization problem:

min
uw,vc∈Rm

∑
w,c

(
Ω〈a〉w,c − u>wvc

)2

But we note that minimizing unweighted squared-error objectives is generally suboptimal

when the target values are heteroscedastic. For instance, in linear regression, it is well-

known that a weighted least squares estimator dominates ordinary least squares in terms

of statistical efficiency [Aitken, 1936; Lehmann and Casella, 1998]. For our setting, the

analogous weighted least squares optimization is:

min
uw,vc∈Rm

∑
w,c

1

Var
(

Ω
〈a〉
w,c

) (Ω〈a〉w,c − u>wvc
)2

(6.6)

where Var(X) := E[X2]−E[X]2. This optimization is, unfortunately, generally intractable

[Srebro et al., 2003]. The square-root transformation, nevertheless, obviates the variance-

based weighting since the target values have approximately the same variance of 1/4.

6.4 A Template for Spectral Methods

Figure 6.2 gives a generic template that encompasses a range of spectral methods for deriving

word embeddings. All of them operate on co-occurrence counts #(w, c) and share the low-

rank SVD step, but they can differ in the data transformation method (t) and the definition

of the matrix of scaled counts for SVD (s).

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 111

We introduce two additional parameters α, β ≤ 1 to account for the following details.

Mikolov et al. [2013b] proposed smoothing the empirical context distribution as p̂α(c) :=

#(c)α/
∑

c #(c)α and found α = 0.75 to work well in practice. We also found that setting

α = 0.75 gave a small but consistent improvement over setting α = 1. Note that the choice

of α only affects methods that make use of the context distribution (s ∈ {ppmi, cca}).
The parameter β controls the role of singular values in word embeddings. This is always

0 for CCA as it does not require singular values. But for other methods, one can consider

setting β > 0 since the best-fit subspace for the rows of Ω is given by UΣ. For example,

Deerwester et al. [1990] use β = 1 and Levy and Goldberg [2014b] use β = 0.5. However, it

has been found by many (including ourselves) that setting β = 1 yields substantially worse

representations than setting β ∈ {0, 0.5} [Levy et al., 2015].

Different combinations of these aspects reproduce various spectral embeddings explored

in the literature. We enumerate some meaningful combinations:

No scaling
[
t ∈ {—, log, sqrt}, s = —

]
. This is a commonly considered setting (e.g.,

in Pennington et al. [2014]) where no scaling is applied to the co-occurrence counts. It is

however typically accompanied with some kind of data transformation.

Positive point-wise mutual information (PPMI)
[
t = —, s = ppmi

]
. Mutual infor-

mation is a popular metric in many natural language tasks [Brown et al., 1992; Pantel and

Lin, 2002]. In this setting, each term in the matrix for SVD is set as the point-wise mutual

information between word w and context c:

log
p̂(w, c)

p̂(w)p̂α(c)
= log

#(w, c)
∑

c #(c)α

#(w)#(c)α

Typically negative values are thresholded to 0 to keep Ω sparse. Levy and Goldberg [2014b]

observed that the negative sampling objective of the skip-gram model of Mikolov et al.

[2013b] is implicitly factorizing a shifted version of this matrix.3

Regression
[
t ∈ {—, sqrt}, s = reg

]
. Another novelty of our work is considering a low-

rank approximation of a linear regressor that predicts the context from words. Denoting

3This is not equivalent to applying SVD on this matrix, however, since the loss function is different.

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 112

SPECTRAL-TEMPLATE

Input: word-context co-occurrence counts #(w, c), dimension m, transformation method t, scaling

method s, context smoothing exponent α ≤ 1, singular value exponent β ≤ 1

Output: vector v(w) ∈ Rm for each word w ∈ [n]

Definitions: #(w) :=
∑
c #(w, c), #(c) :=

∑
w #(w, c), N(α) :=

∑
c #(c)α

1. Transform all #(w, c), #(w), and #(c):

#(·)←



#(·) if t = —

log(1 + #(·)) if t = log

#(·)2/3 if t = two-thirds√
#(·) if t = sqrt

2. Scale statistics to construct a matrix Ω ∈ Rn×n:

Ωw,c ←



#(w, c) if s = —

#(w,c)
#(w) if s = reg

max
(

log #(w,c)N(α)
#(w)#(c)α , 0

)
if s = ppmi

#(w,c)√
#(w)#(c)α

√
N(α)
N(1) if s = cca

3. Perform rank-m SVD on Ω ≈ UΣV > where Σ = diag(σ1, . . . , σm) is a diagonal matrix of

ordered singular values σ1 ≥ · · · ≥ σm ≥ 0.

4. Define v(w) ∈ Rm to be the w-th row of UΣβ normalized to have unit 2-norm.

Figure 6.2: A template for spectral word embedding methods.

the word sample matrix by X ∈ RN×n and the context sample matrix by Y ∈ RN×n, we

seek U∗ = arg minU∈Rn×n ||Y − XU ||2 whose closed-from solution is given by:

U∗ = (X>X)−1X>Y (6.7)

Thus we aim to compute a low-rank approximation of U∗ with SVD. This is inspired by

other predictive models in the representation learning literature [Ando and Zhang, 2005;

Mikolov et al., 2013a]. We consider applying the square-root transformation for the same

variance stabilizing effect discussed in Section 6.3.3.

CCA
[
t ∈ {—, two-thirds, sqrt}, s = cca

]
. This is the focus of our work. As shown

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 113

in Theorem 6.3.1, we can take the element-wise power transformation on counts (such as

the power of 1, 2/3, 1/2 in this template) while preserving the representational meaning of

word embeddings under the Brown model interpretation. If there is no data transformation

(t = —), then we recover the original spectral algorithm of Stratos et al. [2014].

6.5 Related Work

We make a few remarks on related works not already discussed earlier. Dhillon et al. [2011a,

2012] propose novel modifications of CCA (LR-MVL and two-step CCA) to derive word

embeddings, but do not establish any explicit connection to learning HMM parameters or

justify the square-root transformation. Pennington et al. [2014] propose a weighted factor-

ization of log-transformed co-occurrence counts, which is generally an intractable problem

[Srebro et al., 2003]. In contrast, our method requires only efficiently computable matrix

decompositions. Finally, word embeddings have also been used as features to improve per-

formance in a variety of supervised tasks such as sequence labeling [Dhillon et al., 2011a;

Collobert et al., 2011] and dependency parsing [Lei et al., 2014; Chen and Manning, 2014].

Here, we focus on understanding word embeddings in the context of a generative word class

model, as well as in empirical tasks that directly evaluate the word embeddings themselves.

6.6 Experiments

6.6.1 Word Similarity and Analogy

We first consider word similarity and analogy tasks for evaluating the quality of word

embeddings. Word similarity measures the Spearman’s correlation coefficient between the

human scores and the embeddings’ cosine similarities for word pairs. Word analogy measures

the accuracy on syntactic and semantic analogy questions. We refer to Levy and Goldberg

[2014a] for a detailed description of these tasks. We use the multiplicative technique of

Levy and Goldberg [2014a] for answering analogy questions.

For the choice of corpus, we use a preprocessed English Wikipedia dump (http://

dumps.wikimedia.org/). The corpus contains around 1.4 billion words. We only preserve

http://dumps.wikimedia.org/
http://dumps.wikimedia.org/

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 114

Transform (t) AVG-SIM SYN MIXED

— 0.572 39.68 57.64

log 0.675 55.61 69.26

two-thirds 0.650 60.52 74.00

sqrt 0.690 65.14 77.70

Table 6.1: Performance of CCA (1000 dimensions) on the development portion of data with

different data transformation methods (α = 0.75, β = 0).

word types that appear more than 100 times and replace all others with a special symbol,

resulting in a vocabulary of size around 188k. We define context words to be 5 words to

the left/right for all considered methods.

We use three word similarity datasets each containing 353, 3000, and 2034 word pairs.4

We report the average similarity score across these datasets under the label AVG-SIM. We

use two word analogy datasets that we call SYN (8000 syntactic analogy questions) and

MIXED (19544 syntactic and semantic analogy questions).5

We implemented the template in Figure 6.2 in C++.6 We compared against the public

implementation of WORD2VEC by Mikolov et al. [2013b] and GLOVE by Pennington et al.

[2014]. These external implementations have numerous hyperparameters that are not part

of the core algorithm, such as random subsampling in WORD2VEC and the word-context

averaging in GLOVE. We refer to Levy et al. [2015] for a discussion of the effect of these

features. In our experiments, we enable all these features with the recommended default

settings.

We reserve a half of each dataset (by category) as a held-out portion for development

and use the other half for final evaluation.

4 WordSim-353: http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/; MEN: http:

//clic.cimec.unitn.it/~elia.bruni/MEN.html; Stanford Rare Word: http://www-nlp.stanford.edu/

~lmthang/morphoNLM/.

5http://research.microsoft.com/en-us/um/people/gzweig/Pubs/myz_naacl13_test_set.tgz; http:

//www.fit.vutbr.cz/~imikolov/rnnlm/word-test.v1.txt

6The code is available at https://github.com/karlstratos/singular.

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
http://clic.cimec.unitn.it/~elia.bruni/MEN.html
http://clic.cimec.unitn.it/~elia.bruni/MEN.html
http://www-nlp.stanford.edu/~lmthang/morphoNLM/
http://www-nlp.stanford.edu/~lmthang/morphoNLM/
http://research.microsoft.com/en-us/um/people/gzweig/Pubs/myz_naacl13_test_set.tgz
http://www.fit.vutbr.cz/~imikolov/rnnlm/word-test.v1.txt
http://www.fit.vutbr.cz/~imikolov/rnnlm/word-test.v1.txt
https://github.com/karlstratos/singular

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 115

Configuration 500 dimensions 1000 dimensions

Transform (t) Scale (s) AVG-SIM SYN MIXED AVG-SIM SYN MIXED

— — 0.514 31.58 28.39 0.522 29.84 32.15

sqrt — 0.656 60.77 65.84 0.646 57.46 64.97

log — 0.669 59.28 66.86 0.672 55.66 68.62

— reg 0.530 29.61 36.90 0.562 32.78 37.65

sqrt reg 0.625 63.97 67.30 0.638 65.98 70.04

— ppmi 0.638 41.62 58.80 0.665 47.11 65.34

sqrt cca 0.678 66.40 74.73 0.690 65.14 77.70

Table 6.2: Performance of various spectral methods on the development portion of data.

6.6.1.1 Effect of Data Transformation for CCA

We first look at the effect of different data transformations on the performance of CCA.

Table 6.1 shows the result on the development portion with 1000-dimensional embeddings.

We see that without any transformation, the performance can be quite bad—especially in

word analogy. But there is a marked improvement upon transforming the data. More-

over, the square-root transformation gives the best result, improving the accuracy on the

two analogy datasets by 25.46% and 20.06% in absolute magnitude. This aligns with the

discussion in Section 6.3.3.

6.6.1.2 Comparison Among Different Spectral Embeddings

Next, we look at the performance of various combinations in the template in Figure 6.2.

We smooth the context distribution with α = 0.75 for PPMI and CCA. We use β = 0.5 for

PPMI (which has a minor improvement over β = 0) and β = 0 for all other methods. We

generally find that using β = 0 is critical to obtaining good performance for s ∈ {—, reg}.
Table 6.2 shows the result on the development portion for both 500 and 1000 dimensions.

Even without any scaling, SVD performs reasonably well with the square-root and log

transformations. The regression scaling performs very poorly without data transformation,

but once the square-root transformation is applied it performs quite well (especially in

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 116

Method 500 dimensions 1000 dimensions

AVG-SIM SYN MIXED AVG-SIM SYN MIXED

Spectral LOG 0.652 59.52 67.27 0.635 56.53 68.67

REG 0.602 65.51 67.88 0.609 66.47 70.48

PPMI 0.628 43.81 58.38 0.637 48.99 63.82

CCA 0.655 68.38 74.17 0.650 66.08 76.38

Others GLOVE 0.576 68.30 78.08 0.586 67.40 78.73

CBOW 0.597 75.79 73.60 0.509 70.97 60.12

SKIP 0.642 81.08 78.73 0.641 79.98 83.35

Table 6.3: Performance of different word embedding methods on the test portion of data.

See the main text for the configuration details of spectral methods.

analogy questions). The PPMI scaling achieves good performance in word similarity but

not in word analogy. The CCA scaling, combined with the square-root transformation,

gives the best overall performance. In particular, it performs better than all other methods

in mixed analogy questions by a significant margin.

6.6.1.3 Comparison with Other Embedding Methods

We compare spectral embedding methods against WORD2VEC and GLOVE on the test

portion. We use the following combinations based on their performance on the development

portion:

• LOG: log transform, — scaling

• REG: sqrt transform, reg scaling

• PPMI: — transform, ppmi scaling

• CCA: sqrt transform, cca scaling

For WORD2VEC, there are two model options: continuous bag-of-words (CBOW) and

skip-gram (SKIP). Table 6.3 shows the result for both 500 and 1000 dimensions.

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 117

In word similarity, spectral methods generally excel, with CCA consistently performing

the best. SKIP is the only external package that performs comparably, with GLOVE

and CBOW falling behind. In word analogy, REG and CCA are significantly better than

other spectral methods. They are also competitive to GLOVE and CBOW, but SKIP does

perform the best among all compared methods on (especially syntactic) analogy questions.

6.6.2 As Features in a Supervised Task

Finally, we use word embeddings as features in NER and compare the subsequent improve-

ments between various embedding methods. The experimental setting is identical to that

of Stratos et al. [2014]. We use the Reuters RCV1 corpus which contains 205 million words.

With frequency thresholding, we end up with a vocabulary of size around 301k. We derive

LOG, REG, PPMI, and CCA embeddings as described in Section 6.6.1.3, and GLOVE,

CBOW, and SKIP embeddings again with the recommended default settings. The number

of left/right contexts is 2 for all methods. For comparison, we also derived 1000 Brown

clusters (BROWN) on the same vocabulary and used the resulting bit strings as features

Brown et al. [1992].

Table 6.4 shows the result for both 30 and 50 dimensions. In general, using any of

these lexical features provides substantial improvements over the baseline.7 In particular,

the 30-dimensional CCA embeddings improve the F1 score by 2.84 on the development

portion and by 4.88 on the test portion. All spectral methods perform competitively with

external packages, with CCA and SKIP consistently delivering the biggest improvements

on the development portion.

6.7 Conclusion

In this work, we revisited SVD-based methods for inducing word embeddings. We examined

a framework provided by CCA and showed that the resulting word embeddings can be

viewed as cluster-revealing parameters of a certain model and that this result is robust to

7We mention that the well-known dev/test discrepancy in the CoNLL 2003 dataset makes the results on

the test portion less reliable.

CHAPTER 6. WORD EMBEDDINGS FROM SPECTRAL DECOMPOSITIONS 118

Features 30 dimensions 50 dimensions

Dev Test Dev Test

— 90.04 84.40 90.04 84.40

BROWN 92.49 88.75 92.49 88.75

LOG 92.27 88.87 92.91 89.67

REG 92.51 88.08 92.73 88.88

PPMI 92.25 89.27 92.53 89.37

CCA 92.88 89.28 92.94 89.01

GLOVE 91.49 87.16 91.58 86.80

CBOW 92.44 88.34 92.83 89.21

SKIP 92.63 88.78 93.11 89.32

Table 6.4: NER F1 scores when word embeddings are added as real-valued features to the

baseline (—). For comparison, we also derive 1000 Brown clusters (BROWN) on the same

vocabulary and use the resulting bit strings as features Brown et al. [1992].

data transformation. Our proposed method gives the best result among spectral methods

and is competitive to other popular word embedding techniques.

This work suggests many directions for future work. Past spectral methods that in-

volved CCA without data transformation (e.g., Cohen et al. [2013]) may be revisited with

the square-root transformation. Using CCA to induce representations other than word

embeddings is another important future work. It would also be interesting to formally in-

vestigate the theoretical merits and algorithmic possibility of solving the variance-weighted

objective in Eq. (6.6). Even though the objective is hard to optimize in the worst case, it

may be tractable under natural conditions.

119

Part III

Estimating Latent-Variable Models

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 120

Chapter 7

Spectral Learning of Anchor

Hidden Markov Models

This chapter is adapted from joint work with Michael Collins and Daniel Hsu entitled

“Unsupervised Part-Of-Speech Tagging with Anchor Hidden Markov Models” [Stratos et

al., 2016].

We tackle unsupervised part-of-speech (POS) tagging by learning hidden Markov models

(HMMs) that are particularly well-suited for the problem. These HMMs, which we call

anchor HMMs, assume that each tag is associated with at least one word that can have

no other tag, which is a relatively benign condition for POS tagging (e.g., “the” is a word

that appears only under the determiner tag). We exploit this assumption and extend the

non-negative matrix factorization framework of Arora et al. [2012a] to design a consistent

estimator for anchor HMMs. In experiments, our algorithm is competitive with strong

baselines such as the clustering method of Brown et al. [1992] and the log-linear model of

Berg-Kirkpatrick et al. [2010]. Furthermore, it produces an interpretable model in which

hidden states are automatically lexicalized by words.

In this chapter, we use Mi denotes the i-th row of a matrix M (used as a column vector).

Also, ∆m−1 denotes the (m − 1)-dimensional probability simplex, that is, ∆m−1 := {v ∈
Rm : v ≥ 0,

∑
i vi = 1}.

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 121

7.1 Introduction

Part-of-speech (POS) tagging without supervision is a quintessential problem in unsuper-

vised learning for natural language processing (NLP). A major application of this task is

reducing annotation cost: for instance, it can be used to produce rough syntactic annota-

tions for a new language that has no labeled data, which can be subsequently refined by

human annotators.

Hidden Markov models (HMMs) are a natural choice of model and have been a workhorse

for this problem. Early works estimated vanilla HMMs with standard unsupervised learning

methods such as the expectation-maximization (EM) algorithm, but it quickly became

clear that they performed very poorly in inducing POS tags [Merialdo, 1994]. Later works

improved upon vanilla HMMs by incorporating specific structures that are well-suited for

the task, such as a sparse prior [Johnson, 2007] or a hard-clustering assumption [Brown et

al., 1992].

In this work, we tackle unsupervised POS tagging with HMMs whose structure is de-

liberately suitable for POS tagging. These HMMs impose an assumption that each hidden

state is associated with an observation state (“anchor word”) that can appear under no

other state. For this reason, we denote this class of restricted HMMs by anchor HMMs.

Such an assumption is relatively benign for POS tagging; it is reasonable to assume that

each POS tag has at least one word that occurs only under that tag. For example, in

English, “the” is an anchor word for the determiner tag; “laughed” is an anchor word for

the verb tag.

We build on the non-negative matrix factorization (NMF) framework of Arora et al.

[2012a] to derive a consistent estimator for anchor HMMs. We make several new contribu-

tions in the process. First, to our knowledge, there is no previous work directly building on

this framework to address unsupervised sequence labeling. Second, we generalize the NMF-

based learning algorithm to obtain extensions that are important for empirical performance

(Table 7.2). Third, we perform extensive experiments on unsupervised POS tagging and

report competitive results against strong baselines such as the clustering method of Brown

et al. [1992] and the log-linear model of Berg-Kirkpatrick et al. [2010].

One characteristic of the approach is the immediate interpretability of inferred hidden

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 122

states. Because each hidden state is associated with an observation, we can examine the set

of such anchor observations to qualitatively evaluate the learned model. In our experiments

on POS tagging, we find that anchor observations correspond to possible POS tags across

different languages (Table 7.7). This property can be useful when we wish to develop a

tagger for a new language that has no labeled data; we can label only the anchor words to

achieve a complete labeling of the data.

This chapter is structured as follows. In Section 7.2, we define the model family of anchor

HMMs. In Section 7.3, we derive a matrix decomposition algorithm for estimating the

parameters of an anchor HMM. In Section 7.4, we present our experiments on unsupervised

POS tagging. In Section 7.5, we discuss related works.

7.2 The Anchor Hidden Markov Model

Definition 7.2.1. An anchor HMM (A-HMM) is a 6-tuple (n,m, π, t, o,A) for positive

integers n,m and functions π, t, o,A where

• [n] is a set of observation states.

• [m] is a set of hidden states.

• π(h) is the probability of generating h ∈ [m] in the first position of a sequence.

• t(h′|h) is the probability of generating h′ ∈ [m] given h ∈ [m].

• o(x|h) is the probability of generating x ∈ [n] given h ∈ [m].

• A(h) := {x ∈ [n] : o(x|h) > 0 ∧ o(x|h′) = 0 ∀h′ 6= h} is non-empty for each h ∈ [m].

In other words, an A-HMM is an HMM in which each hidden state h is associated with

at least one “anchor” observation state that can be generated by, and only by, h. Note that

the anchor condition implies n ≥ m.

An equivalent definition of an A-HMM is given by organizing the parameters in matrix

form. Under this definition, an A-HMM has parameters (π, T,O) where π ∈ Rm is a vector

and T ∈ Rm×m, O ∈ Rn×m are matrices whose entries are set to:

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 123

• πh = π(h) for h ∈ [m]

• Th′,h = t(h′|h) for h, h′ ∈ [m]

• Ox,h = o(x|h) for h ∈ [m], x ∈ [n]

The anchor condition implies that rank(O) = m. To see this, consider the rows Oa1 . . . Oam

where ah ∈ A(h). Since each Oah has a single non-zero entry at the h-th index, the columns

of O are linearly independent. We assume rank(T) = m.

An important special case of A-HMM introduced by Brown et al. [1992] is defined below.

Under this A-HMM, every observation state is an anchor of some hidden state.

Definition 7.2.2. A Brown model is an A-HMM in which A(1) . . .A(m) partition [n].

7.3 Parameter Estimation for A-HMMs

We now derive an algorithm for learning A-HMMs. The algorithm reduces the learning

problem to an instance of NMF from which the model parameters can be computed in

closed-form.

7.3.1 NMF

We give a brief review of the NMF method of Arora et al. [2012a]. (Exact) NMF is the

following problem: given an n × d matrix A = BC where B ∈ Rn×m and C ∈ Rm×d

have non-negativity constraints, recover B and C. This problem is NP-hard in general

[Vavasis, 2009], but Arora et al. [2012a] provide an exact and efficient method when A has

the following special structure:

Condition 7.3.1. A matrix A ∈ Rn×d satisfies this condition if A = BC for B ∈ Rn×m

and C ∈ Rm×d where

1. For each x ∈ [n], Bx ∈ ∆m−1. That is, each row of B defines a probability distribution

over [m].

2. For each h ∈ [m], there is some ah ∈ [n] such that Bah,h = 1 and Bah,h′ = 0 for all

h′ 6= h.

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 124

Anchor-NMF

Input: A ∈ Rn×d satisfying Condition 7.3.1 with A = BC for some B ∈ Rn×m and

C ∈ Rm×d, value m

• For h = 1 . . .m, find a vertex ah as

U ← Gram-Schmidt({Aal}h−1
l=1)

ah ← arg max
x∈[n]

∣∣∣∣∣∣Ax − UU>Ax∣∣∣∣∣∣
2

where Gram-Schmidt({Aal}h−1
l=1) is the Gram-Schmidt process that orthonormalizes

{Aal}h−1
l=1 .

• For x = 1 . . . n, recover the x-th row of B as

Bx ← arg min
u∈∆m−1

∣∣∣∣∣
∣∣∣∣∣Ax −

m∑
h=1

uhAah

∣∣∣∣∣
∣∣∣∣∣
2

(7.1)

• Set C = [Aa1 . . . Aam]>.

Output: B and C such that B>h = B>ρ(h) and Ch = Cρ(h) for some permutation ρ : [m]→
[m]

Figure 7.1: Non-negative matrix factorization algorithm of Arora et al. (2012).

3. rank(C) = m.

Since rank(B) = rank(C) = m (by property 2 and 3), the matrix A must have rank m.

Note that by property 1, each row of A is given by a convex combination of the rows of C:

for x ∈ [n],

Ax =

m∑
h=1

Bx,h × Ch

Furthermore, by property 2 each h ∈ [m] has an associated row ah ∈ [n] such that Aah =

Cah . These properties can be exploited to recover B and C.

A concrete algorithm for factorizing a matrix satisfying Condition 7.3.1 is given in

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 125

Figure 7.1 [Arora et al., 2012a]. It first identifies a1 . . . am (up to some permutation) by

greedily locating the row of A furthest away from the subspace spanned by the vertices

selected so far. Then it recovers each Bx as the convex coefficients required to combine

Aa1 . . . Aam to yield Ax. The latter computation (7.1) can be achieved with any constrained

optimization method; we use the Frank-Wolfe algorithm [Frank and Wolfe, 1956]. See Arora

et al. [2012a] for a proof of the correctness of this algorithm.

7.3.2 Random Variables

To derive our algorithm, we make use of certain random variables under the A-HMM. Let

(X1, . . . , XN) ∈ [n]N be a random sequence of N ≥ 2 observations drawn from the model,

along with the corresponding hidden state sequence (H1, . . . ,HN) ∈ [m]N ; independently,

pick a position I ∈ [N − 1] uniformly at random. Let YI ∈ Rd be a d-dimensional vector

which is conditionally independent of XI given HI , that is, P (YI |HI , XI) = P (YI |HI).

We will provide how to define such a variable in Section 7.3.4.1: YI will be a function of

(X1, . . . , XN) serving as a “context” representation of XI revealing the hidden state HI .

Define unigram probabilities u∞, u1 ∈ Rn and bigram probabilities B ∈ Rn×n where

u∞x := P (XI = x) ∀x ∈ [n]

u1
x := P (XI = x|I = 1) ∀x ∈ [n]

Bx,x′ := P (XI = x,XI+1 = x′) ∀x, x′ ∈ [n]

Additionally, define π̄ ∈ Rm where

π̄h = P (HI = h) ∀h ∈ [m] (7.2)

We assume π̄h > 0 for all h ∈ [m].

7.3.3 Derivation of a Learning Algorithm

The following proposition provides a way to use the NMF algorithm in Figure 7.1 to recover

the emission parameters O up to scaling.

Proposition 7.3.1. Let XI ∈ [n] and YI ∈ Rd be respectively an observation and a context

vector drawn from the random process described in Section 7.3.2. Define a matrix Ω ∈ Rn×d

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 126

with rows

Ωx = E[YI |XI = x] ∀x ∈ [n] (7.3)

If rank(Ω) = m, then Ω satisfies Condition 7.3.1:

Ω = ÕΘ

where Õx,h = P (HI = h|XI = x) and Θh = E[YI |HI = h].

Proof.

E[YI |XI = x] =

m∑
h=1

P (HI = h|XI = x)×E[YI |HI = h,XI = x]

=
m∑
h=1

P (HI = h|XI = x)×E[YI |HI = h]

The last equality follows by the conditional independence of YI . This shows Ω = ÕΘ. By

the anchor assumption of the A-HMM, each h ∈ [m] has at least one x ∈ A(h) such that

P (HI = h|XI = x) = 1, thus Ω satisfies Condition 7.3.1.

A useful interpretation of Ω in Proposition 7.3.1 is that its rows Ω1 . . .Ωn are d-dimensional

vector representations of observation states forming a convex hull in Rd. This convex hull

has m vertices Ωa1 . . .Ωam corresponding to anchors ah ∈ A(h) which can be convexly

combined to realize all Ω1 . . .Ωn.

Given Õ, we can recover the A-HMM parameters as follows. First, we recover the

stationary state distribution π̄ as:

π̄h =
∑
x∈[n]

P (HI = h|XI = x)× P (XI = x) =
∑
x∈[n]

Õx,h × u∞x

The emission parameters O are given by Bayes’ theorem:

Ox,h =
P (HI = h|XI = x)× P (XI = x)∑
x∈[n] P (HI = h|XI = x)× P (XI = x)

=
Õx,h × u∞x

π̄h

Using the fact that the emission probabilities are position-independent, we see that the

initial state distribution π satisfies u1 = Oπ:

u1
x =

∑
h∈[m]

P (XI = x|HI = h, I = 1)× P (HI = h|I = 1) =
∑
h∈[m]

Ox,h × πh

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 127

Learn-Anchor-HMM

Input: Ω in Proposition 7.3.1, number of hidden states m, bigram probabilities B, unigram

probabilities u∞, u1

• Compute (Õ,Θ)← Anchor-NMF(Ω,m).

• Recover the parameters:

π̄ ← Õ>u∞ (7.4)

O ← diag(π̄)−1 diag(u∞)Õ (7.5)

π = O+u1 (7.6)

T ← (diag(π̄)−1O+B(O>)+)> (7.7)

Output: A-HMM parameters (π, T,O)

Figure 7.2: NMF-based learning algorithm for A-HMMs. The algorithm Anchor-NMF is

given in Figure 7.1.

Thus π can be recovered as π = O+u1. Finally, it can be algebraically verified that B =

O diag(π̄)T>O> [Hsu et al., 2012]. Since all the involved matrices have rank m, we can

directly solve for T as

T = (diag(π̄)−1O+B(O>)+)>

Figure 7.2 shows the complete algorithm. As input, it receives a matrix Ω satisfying

Proposition 7.3.1, the number of hidden states, and the probabilities of observed unigrams

and bigrams. It first decomposes Ω using the NMF algorithm in Figure 7.1. Then it

computes the A-HMM parameters whose solution is given analytically.

The following theorem guarantees the consistency of the algorithm.

Theorem 7.3.1. Let (π, T,O) be an A-HMM such that rank(T) = m and π̄ defined in (7.2)

has strictly positive entries π̄h > 0. Given random variables Ω satisfying Proposition 7.3.1

and B, u∞, u1 under this model, the algorithm Learn-Anchor-HMM in Figure 7.2 outputs

(π, T,O) up to a permutation on hidden states.

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 128

Proof. By Proposition 7.3.1, Ω satisfies Condition 7.3.1 with Ω = ÕΘ, thus Õ can be

recovered up to a permutation on columns with the algorithm Anchor-NMF. The consis-

tency of the recovered parameters follows from the correctness of (7.4–7.7) under the rank

conditions.

7.3.3.1 Constrained Optimization for π and T

Note that (7.6) and (7.7) require computing the pseudoinverse of the estimated O, which

can be expensive and vulnerable to sampling errors in practice. To make our parameter

estimation more robust, we can explicitly impose probability constraints. We recover π by

solving:

π = arg min
π′∈∆m−1

∣∣∣∣u1 −Oπ′
∣∣∣∣

2
(7.8)

which can again be done with algorithms such as Frank-Wolfe. We recover T by maximizing

the log likelihood of observation bigrams

∑
x,x′

Bx,x′ log

 ∑
h,h′∈[m]

π̄hOx,hTh′,hOx′,h′

 (7.9)

subject to the constraint (T>)h ∈ ∆m−1. Since (7.9) is concave in T with other parameters

O and π̄ fixed, we can use EM to find the global optimum.

7.3.4 Construction of the Convex Hull Ω

In this section, we provide several ways to construct a convex hull Ω satisfying Proposi-

tion 7.3.1.

7.3.4.1 Choice of the Context YI

In order to satisfy Proposition 7.3.1, we need to define the context variable YI ∈ Rd with

two properties:

• P (YI |HI , XI) = P (YI |HI)

• The matrix Ω with rows

Ωx = E[YI |XI = x] ∀x ∈ [n]

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 129

has rank m.

A simple construction [Arora et al., 2012a] is given by defining YI ∈ Rn to be an indicator

vector for the next observation:

[YI]x′ =

 1 if XI+1 = x′

0 otherwise
(7.10)

The first condition is satisfied since XI+1 does not depend on XI given HI . For the second

condition, observe that Ωx,x′ = P (XI+1 = x′|XI = x), or in matrix form

Ω = diag (u∞)−1 B (7.11)

Under the rank conditions in Theorem 7.3.1, (7.11) has rank m.

More generally, we can let YI be an observation (encoded as an indicator vector as in

(7.10)) randomly drawn from a window of L ∈ N nearby observations. We can either only

use the identity of the chosen observation (in which case YI ∈ Rn) or additionally indicate

the relative position in the window (in which case YI ∈ RnL). It is straightforward to

verify that the above two conditions are satisfied under these definitions. Clearly, (7.11) is

a special case with L = 1.

7.3.4.2 Reducing the Dimension of Ωx

With the definition of Ω in the previous section, the dimension of Ωx is d = O(n) which can

be difficult to work with when n� m. Proposition 7.3.1 allows us to reduce the dimension

as long as the final matrix retains the form in (7.3) and has rank m. In particular, we can

multiply Ω by any rank-m projection matrix Π ∈ Rd×m on the right side: if Ω satisfies the

properties in Proposition 7.3.1, then so does ΩΠ with m-dimensional rows

(ΩΠ)x = E[YIΠ|XI = x]

Since rank(Ω) = m, a natural choice of Π is the projection onto the best-fit m-dimensional

subspace of the row space of Ω.

We mention that previous works on the NMF-learning framework have employed var-

ious projection methods, but they do not examine relative merits of their choices. For

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 130

instance, Arora et al. [2012a] simply use random projection, which is convenient for theo-

retical analysis. Cohen and Collins [2014] use a projection based on canonical correlation

analysis (CCA) without further exploration. In contrast, we give a full comparison of valid

construction methods and find that the choice of Ω is crucial in practice.

7.3.4.3 Construction of Ω for the Brown Model

We can formulate an alternative way to construct a valid Ω when the model is further

restricted to be a Brown model. Since every observation is an anchor, Ox ∈ Rm has a single

nonzero entry for every x. Thus the rows defined by Ωx = Ox/ ||Ox|| (an indicator vector

for the unique hidden state of x) form a trivial convex hull in which every point is a vertex.

This corresponds to choosing an oracle context YI ∈ Rm where

[YI]h =

 1 if HI = h

0 otherwise

It is possible to recover the Brown model parameters O up to element-wise scaling

and rotation of rows using the algorithm of Stratos et al. [2015]. More specifically, let

f(O) ∈ Rn×m denote the output of their algorithm. Then they show that for some vector

s ∈ Rm with strictly positive entries and an orthogonal matrix Q ∈ Rm×m:

f(O) = O〈1/4〉 diag(s)Q>

where O〈1/4〉 is an element-wise exponentiation of O by 1/4. Since the rows of f(O) are

simply some scaling and rotation of the rows of O, using Ωx = f(O)x/ ||f(O)x|| yields a

valid Ω.

While we need to impose an additional assumption (the Brown model restriction) in

order to justify this choice of Ω, we find in our experiments that it performs better than

other alternatives. We speculate that this is because a Brown model is rather appropriate

for the POS tagging task; many words are indeed unambiguous with respect to POS tags

(Table 7.4). Also, the general effectiveness of f(O) for representational purposes has been

demostrated in previous works [Stratos et al., 2014, 2015]. By restricting the A-HMM to

be a Brown model, we can piggyback on the proven effectiveness of f(O).

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 131

Input: bigram probabilities B, unigram probabilities u∞, number of hidden states m,

construction method τ

Scaled Matrices: (
√· is element-wise)

B := diag (u∞)−1/2 B diag (u∞)−1/2

B̃ := diag
(√

u∞
)−1/2√

B diag
(√

u∞
)−1/2

Singular Vectors: U(M) (V (M)) is an n ×m matrix of the left (right) singular vectors

of M corresponding to the largest m singular values

• If τ 6= brown: set

Ω← diag (u∞)−1 BΠ

where the projection matrix Π ∈ Rn×m is given by

Πi,j ∼ N (0, 1/m) if τ = random

Π = V (diag (u∞)−1 B) if τ = best-fit

Π = diag (u∞)−1/2 V (B) if τ = cca

• If τ = brown: compute the transformed emission matrix as f(O) = U(B̃) and set

Ω← diag(v)−1f(O)

where vx := ||f(O)x||2 is the length of the x-th row of f(O).

Output: Ω ∈ Rn×m in Proposition 7.3.1

Figure 7.3: Algorithm for constructing a valid Ω with different construction methods. For

simplicity, we only show the bigram construction (context size L = 1), but an extension for

larger context (L > 1) is straightforward.

Figure 7.3 shows an algorithm for constructing Ω with these different construction meth-

ods. For simplicity, we only show the bigram construction (context size L = 1), but an ex-

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 132

tension for larger context (L > 1) is straightforward as discussed earlier. The construction

methods random (random projection), best-fit (projection to the best-fit subspace), and

cca (CCA projection) all compute (7.11) and differ only in how the dimension is reduced.

The construction method brown computes the transformed Brown parameters f(O) as the

left singular vectors of a scaled covariance matrix and then normalizes its rows. We direct

the reader to Theorem 6.3.1 for a derivation of this calculation.

7.3.4.4 Ω with Feature Augmentation

The x-th row of Ω is a d-dimensional vector representation of x lying in a convex set with

m vertices. This suggests a natural way to incorporate domain-specific features: we can

add additional dimensions that provide information about hidden states from the surface

form of x.

For instance, consider the the POS tagging task. In the simple construction (7.11), the

representation of word x is defined in terms of neighboring words x′:

[Ωx]x′ = E
[

[[XI+1 = x′]] |XI = x
]

We can augment this vector with s additional dimensions indicating the spelling features

of x. For instance, the (n+ 1)-th dimension may be defined as:

[Ωx]n+1 = E [[[x ends in “ing”]] |XI = x]

This value will be generally large for verbs and small for non-verbs, nudging verbs closer

together and away from non-verbs. The modified (n+ s)-dimensional representation is fol-

lowed by the usual dimension reduction. Note that the spelling features are a deterministic

function of a word, and we are implicitly assuming that they are independent of the word

given its tag. While this is of course not true in practice, we find that these features can

significantly boost the tagging performance.

7.4 Experiments

We evaluate our A-HMM learning algorithm on the task of unsupervised POS tagging.

The goal of this task is to induce the correct sequence of POS tags (hidden states) given a

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 133

sequence of words (observation states). The anchor condition corresponds to assuming that

each POS tag has at least one word that occurs only under that tag.

7.4.1 Background on Unsupervised POS Tagging

Unsupervised POS tagging has long been an active area of research [Smith and Eisner,

2005a; Johnson, 2007; Toutanova and Johnson, 2007; Haghighi and Klein, 2006; Berg-

Kirkpatrick et al., 2010], but results on this task are complicated by varying assumptions

and unclear evaluation metrics [Christodoulopoulos et al., 2010]. Rather than addressing

multiple alternatives for evaluating unsupervised POS tagging, we focus on a simple and

widely used metric: many-to-one accuracy (i.e., we map each hidden state to the most

frequently coinciding POS tag in the labeled data and compute the resulting accuracy).

7.4.1.1 Better Model v.s. Better Learning

Vanilla HMMs are notorious for their mediocre performance on this task, and it is well

known that they perform poorly largely because of model misspecification, not because

of suboptimal parameter estimation (e.g., because EM gets stuck in local optima). More

generally, a large body of work points to the inappropriateness of simple generative models

for unsupervised induction of linguistic structure [Merialdo, 1994; Smith and Eisner, 2005b;

Liang and Klein, 2008].

Consequently, many works focus on using more expressive models such as log-linear

models [Smith and Eisner, 2005a; Berg-Kirkpatrick et al., 2010] and Markov random fields

(MRF) [Haghighi and Klein, 2006]. These models are shown to deliver good performance

even though learning is approximate. Thus one may question the value of having a consistent

estimator for A-HMMs and Brown models in this work: if the model is wrong, what is the

point of learning it accurately?

However, there is also ample evidence that HMMs are competitive for unsupervised

POS induction when they incorporate domain-specific structures. Johnson [2007] is able

to outperform the sophisticated MRF model of Haghighi and Klein [2006] on one-to-one

accuracy by using a sparse prior in HMM estimation. The clustering method of Brown et

al. [1992] which is based on optimizing the likelihood under the Brown model (a special

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 134

de en es fr id it ja ko pt-br sv

tokens 293k 1047k 424k 397k 122k 168k 92k 70k 298k 96k

types 52k 46k 50k 45k 22k 22k 57k 36k 34k 16k

ratio 5.6 22.6 8.4 8.9 5.5 7.5 1.6 1.9 8.8 5.9

Table 7.1: Numbers of word tokens and types across 10 languages in the universal treebank

dataset (version 2.0).

case of HMM) remains a baseline difficult to outperform [Christodoulopoulos et al., 2010].

We add to this evidence by demonstrating the effectiveness of A-HMMs on this task.

We also check the anchor assumption on data and show that the A-HMM model structure

is in fact appropriate for the problem (Table 7.4).

7.4.2 Experimental Setting

We use the universal treebank dataset (version 2.0) which contains sentences annotated

with 12 POS tag types for 10 languages [McDonald et al., 2013]. Table 7.1 shows word

statistics across languages (“de” for German, “en” for English, “es” for Spanish, “fr” for

French, “id” for Indonesian, “it” for Italian, “ja” for Japanese, “ko” for Korean, “pt-br” for

Portuguese-Brazilian, and “sv” for Swedish). Note that the amount of data differs across

different languages. Also, the ratio between the number of word tokens and the number of

word types is very different. In particular, the ratio is very small for Japanese and Korean

due to segmentation issues. While we would like to have similar qualities for all languages,

we can isolate the issue of data by comparing different models on the same dataset.

All models are trained with 12 hidden states. We use the English portion to experiment

with different hyperparameter configurations. At test time, we fix a configuration (based

on the English portion) and apply it across all languages.

The list of compared methods is given below:

BW The Baum-Welch algorithm, an EM algorithm for HMMs [Baum and Petrie, 1966].

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 135

CLUSTER A parameter estimation scheme for HMMs based on Brown clustering [Brown

et al., 1992]. We run the Brown clustering algorithm1 to obtain 12 word clusters C1 . . . C12.

Then we set the emission parameters o(x|h), transition parameters t(h′|h), and prior π(h)

to be the maximum-likelihood estimates under the fixed clusters.

ANCHOR Our algorithm Learn-Anchor-HMM in Figure 7.2 but with the constrained

optimization (7.8) and (7.9) for estimating π and T .2

ANCHOR-FEAT Same as anchor but employs the feature augmentation scheme de-

scribed in Section 7.3.4.4.

LOG-LINEAR The unsupervised log-linear model described in Berg-Kirkpatrick et al.

[2010]. Instead of emission parameters o(x|h), the model maintains a miniature log-linear

model with a weight vector w and a feature function φ. The probability of a word x given

tag h is computed as

p(x|h) =
exp(w>φ(x, h))∑
x∈[n] exp(w>φ(x, h))

The model can be trained by maximizing the likelihood of observed sequences. We use

L-BFGS to directly optimize this objective.3 This approach obtains the current state-of-

the-art accuracy on fine-grained (45 tags) English WSJ dataset.

We use maximum marginal decoding for HMM predictions: that is, at each position, we

predict the most likely tag given the entire sentence.

7.4.3 Practical Issues with the Anchor Algorithm

In our experiments, we find that Anchor-NMF (Figure 7.1) tends to propose extremely

rare words as anchors. A simple fix is to search for anchors only among relatively frequent

words. We find that any reasonable frequency threshold works well; we use the 300 most

1We use the implementation of Liang [2005].

2The code is available at https://github.com/karlstratos/anchor.

3We use the implementation of Berg-Kirkpatrick et al. [2010] (personal communication).

https://github.com/karlstratos/anchor

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 136

Choice of Ω Accuracy

Random 48.2

Best-Fit 53.4

CCA 57.0

Brown 66.1

Table 7.2: Many-to-one accuracy on the English data with different choices of the convex

hull Ω (Figure 7.3). These results do not use spelling features.

frequent words. Note that this is not a problem if these 300 words include anchor words

corresponding to all the 12 tags.

We must define the context for constructing Ω. We use the previous and next words

(i.e., context size L = 2) marked with relative positions. Thus Ω has 2n columns before

dimension reduction. Table 7.2 shows the performance on the English portion with different

construction methods for Ω. The Brown construction (τ = brown in Figure 7.3) clearly

performs the best: essentially, the anchor algorithm is used to extract the HMM parameters

from the CCA-based word embeddings of Stratos et al. [2015].

We also explore feature augmentation discussed in Section 7.3.4.4. For comparison, we

employ the same word features used by Berg-Kirkpatrick et al. [2010]:

• Indicators for whether a word is capitalized, contains a hyphen, or contains a digit

• Suffixes of length 1, 2, and 3

We weigh the l2 norm of these extra dimensions in relation to the original dimensions: we

find a small weight (e.g., 0.1 of the norm of the original dimensions) works well. We also

find that these features can sometimes significantly improve the performance. For instance,

the accuracy on the English portion can be improved from 66.1% to 71.4% with feature

augmentation.

Another natural experiment is to refine the HMM parameters obtained from the anchor

algorithm (or Brown clusters) with a few iterations of the Baum-Welch algorithm. In our

experiments, however, it did not significantly improve the tagging performance, so we omit

this result.

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 137

Model de en es fr id it ja ko pt-br sv

bw
(4.8)

45.5

(3.4)

59.8

(2.2)

60.6

(3.6)

60.1

(3.1)

49.6

(2.6)

51.5

(2.1)

59.5

(0.6)

51.7

(3.7)

59.5

(3.0)

42.4

cluster 60.0 62.9 67.4 66.4 59.3 66.1 60.3 47.5 67.4 61.9

anchor 61.1 66.1 69.0 68.2 63.7 60.4 65.3 53.8 64.9 51.1

anchor-feat 63.4 71.4 74.3 71.9 67.3 60.2 69.4 61.8 65.8 61.0

log-linear
(1.8)

67.5

(3.5)

62.4

(3.1)

67.1

(4.5)

62.1

(3.9)

61.3

(2.9)

52.9

(2.9)

78.2

(3.6)

60.5

(2.2)

63.2

(2.5)

56.7

Table 7.3: Many-to-one accuracy on each language using 12 universal tags. The first four

models are HMMs estimated with the Baum-Welch algorithm (bw), the clustering algorithm

of Brown et al. [1992], the anchor algorithm without (anchor) and with (anchor-feat)

feature augmentation. log-linear is the model of Berg-Kirkpatrick et al. [2010] trained

with the direct-gradient method using L-BFGS. For bw and log-linear, we report the

mean and the standard deviation (in parentheses) of 10 random restarts run for 1,000

iterations.

7.4.4 Tagging Accuracy

Table 7.3 shows the many-to-one accuracy on all languages in the dataset. For the Baum-

Welch algorithm and the unsupervised log-linear models, we report the mean and the stan-

dard deviation (in parentheses) of 10 random restarts run for 1,000 iterations.

Both anchor and anchor-feat compete favorably. On 5 out of 10 languages, anchor-

feat achieves the highest accuracy, often closely followed by anchor. The Brown clus-

tering estimation is also competitive and has the highest accuracy on 3 languages. Not

surprisingly, vanilla HMMs trained with bw perform the worst (see Section 7.4.1.1 for a

discussion).

log-linear is a robust baseline and performs the best on the remaining 2 languages. It

performs especially strongly on Japanese and Korean datasets in which poorly segmentated

strings such as “1950年11月5日には” (on November 5, 1950) and “40.3%로” (by 40.3%)

abound. In these datasets, it is crucial to make effective use of morphological features.

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 138

7.4.5 Qualitative Analysis

7.4.5.1 A-HMM Parameters

An A-HMM can be easily interpreted since each hidden state is marked with an anchor

observation. Table 7.7 shows the 12 anchors found in each language. Note that these

anchor words generally have a wide coverage of possible POS tags.

We also experimented with using true anchor words (obtained from labeled data), but

they did not improve performance over automatically induced anchors. Since anchor discov-

ery is inherently tied to parameter estimation, it is better to obtain anchors in a data-driven

manner. In particular, certain POS tags (e.g., X) appear quite infrequently, and the model

is worse off by being forced to allocate a hidden state for such a tag.

Table 7.8 shows words with highest emission probabilities o(x|h) under each anchor. We

observe that an anchor is representative of a certain group of words. For instance, the state

“loss” represents noun-like words, “1” represents numbers, “on” represents preposition-like

words, “one” represents determiner-like words, and “closed” represents verb-like words. The

conditional distribution is peaked for anchors that represent function tags (e.g., determiners,

punctuation) and flat for anchors that represent content tags (e.g., nouns). Occasionally, an

anchor assigns high probabilities to words that do not seem to belong to the corresponding

POS tag. But this is to be expected since o(x|h) ∝ P (XI = x) is generally larger for

frequent words.

7.4.5.2 Model Assumptions on Data

Table 7.4 checks the assumptions in A-HMMs and Brown models on the universal tree-

bank dataset. The anchor assumption is indeed satisfied with 12 universal tags: in every

language, each tag has at least one word uniquely associated with the tag. The Brown

assumption (each word has exactly one possible tag) is of course not satisfied, since some

words are genuinely ambiguous with respect to their POS tags. However, the percentage

of unambiguous words is very high (well over 90%). This analysis supports that the model

assumptions made by A-HMMs and Brown models are appropriate for POS tagging.

Table 7.5 reports the log likelihood (normalized by the number of words) on the En-

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 139

glish portion of different estimation methods for HMMs. bw and cluster obtain higher

likelihood than the anchor algorithm, but this is expected given that both EM and Brown

clustering directly optimize likelihood. In contrast, the anchor algorithm is based on the

method of moments and does not (at least directly) optimize likelihood. Note that high

likelihood does not imply high accuracy under HMMs.

7.5 Related Work

7.5.1 Latent-Variable Models

There has recently been great progress in estimation of models with latent variables. Despite

the NP-hardness in general cases [Terwijn, 2002; Arora et al., 2012b], many algorithms

with strong theoretical guarantees have emerged under natural assumptions. For example,

for HMMs with full-rank conditions, Hsu et al. [2012] derive a consistent estimator of

the marginal distribution of observed sequences. With similar non-degeneracy conditions,

Anandkumar et al. [2014] propose an exact tensor decomposition method for learning a

wide class of latent variable models. For topic models with a certain parameter structure,

Arora et al. [2012a] derive a provably correct learning algorithm.

The anchor-based framework has been originally formulated for learning topic models

[Arora et al., 2012a]. It has been subsequently adopted to learn other models such as

latent-variable probabilistic context-free grammars [Cohen and Collins, 2014]. In our work,

we have extended this framework to address unsupervised sequence labeling.

Zhou et al. [2014] also extend Arora et al. [2012a]’s framework to learn various models

including HMMs, but they address a more general problem. Consequently, their algorithm

draws from Anandkumar et al. [2012c] and is substantially different from ours.

7.5.2 Unsupervised POS Tagging

Unsupervised POS tagging is a classic problem in unsupervised learning that has been

tackled with various approaches. Johnson [2007] observes that EM performs poorly in this

task because it induces flat distributions; this is not the case with our algorithm as seen in

the peaky distributions in Table 7.8. Haghighi and Klein [2006] assume a set of prototypical

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 140

de en es fr id it ja ko pt-br sv

% anchored tags 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

% unambig words 96.6 91.5 94.0 94.2 94.8 94.8 99.5 98.4 94.8 97.4

. VERB PRON ADP NOUN ADV CONJ DET NUM ADJ X PRT

, said it from Mr. n’t or which billion new bono na

53928 6339 5147 4856 4436 3582 2748 2458 1935 1542 8 5

Table 7.4: Verifying model assumptions on the universal treebank. The anchor assumption

is satisfied in every language. The Brown assumption (each word has exactly one possible

tag) is violated but not by a large margin. The lower table shows the most frequent anchor

word and its count under each tag on the English portion.

Model Normalized LL Acc

bw -6.45 59.8

cluster -6.71 62.9

anchor -7.06 66.1

anchor-feat -7.05 71.4

Table 7.5: Log likelihood normalized by the number of words on English (along with accu-

racy). For bw, we report the mean of 10 random restarts run for 1,000 iterations.

words for each tag and report high accuracy. In contrast, our algorithm automatically finds

such prototypes in a subroutine.

Berg-Kirkpatrick et al. [2010] achieve the state-of-the-art result in unsupervised fine-

grained POS tagging (mid-70%). As described in Section 7.4.2, their model is an HMM in

which probabilties are given by log-linear models. Table 7.6 provides a point of reference

comparing our work with Berg-Kirkpatrick et al. [2010] in their setting: models are trained

and tested on the entire 45-tag WSJ dataset. Their model outperforms our approach in

this setting: with fine-grained tags, spelling features become more important, for instance

to distinguish “played” (VBD) from “play” (VBZ). Nonetheless, we have shown that our

approach is competitive when universal tags are used (Table 7.3).

Many past works on POS induction predate the introduction of the universal tagset by

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 141

Models Accuracy

bw 62.6 (1.1)

cluster 65.6

anchor 67.2

anchor-feat 67.7

log-linear 74.9 (1.5)

Table 7.6: Many-to-one accuracy on the English data with 45 original tags. We use the

same setting as in Table 7.3. For bw and log-linear, we report the mean and the standard

deviation (in parentheses) of 10 random restarts run for 1,000 iterations.

Petrov et al. [2011] and thus report results with fine-grained tags. More recent works adopt

the universal tagset but they leverage additional resources. For instance, Das and Petrov

[2011] and Täckström et al. [2013] use parallel data to project POS tags from a supervised

source language. Li et al. [2012] use tag dictionaries built from Wiktionary. Thus their

results are not directly comparable to ours.4

7.6 Conclusion

We have presented an exact estimation method for learning anchor HMMs from unlabeled

data. There are several directions for future work. An important direction is to extend the

method to a richer family of models such as log-linear models or neural networks. Another

direction is to further generalize the method to handle a wider class of HMMs by relaxing

the anchor condition (Condition 7.3.1). This will require a significant extension of the NMF

algorithm in Figure 7.1.

4Das and Petrov [2011] conduct unsupervised experiments using the model of Berg-Kirkpatrick et al.

[2010], but their dataset and evaluation method differ from ours.

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 142

d
e

en
es

fr
id

it
ja

ko
p

t-
b

r
sv

em
p

fe
h

le
n

lo
ss

y
av

ai
t

b
u

la
n

ra
d

ar
お
世
話
に

완
전

E
o
ch

w
ie

1
h

iz
o

co
m

m
u

n
e

te
ta

p
i

p
er

ò
な
い
と

중
에

d
e

b
ör

;
on

-
L

e
w

il
ay

ah
su

ll
e

こ
と
に
よ
り

경
우

p
ar

ti
d

a
gr

u
n

d

S
ei

n
o
n

e
es

p
ec

ie
d

e
-

-
さ
れ
て
い
る
。

줄
fa

ze
r

m
el

la
n

B
er

li
n

cl
os

ed
A

d
em

á
s

p
ré

si
d

en
t

B
ag

ai
m

an
a

S
ta

ti
も
の
を

같
아
요

m
es

es
i

u
n

d
ar

e
el

q
u

i
,

L
o

,
많
은

os
so

ci
a
la

,
ta

ke
p

áı
se

s
(

sa
m

a
le

gg
e

し
た

,
:

.

-
,

la
à

.
al

そ
れ
は

볼
d

ir
et

or
b

li

d
er

v
ic

e
E

sp
añ

a
É

ta
ts

d
an

fa
r-

、
자
신
의

20
10

d
en

im
to

en
U

n
is

U
ta

ra
d

i
幸
福
の

받
고

,
,

d
es

Y
o
rk

d
e

C
et

te
p

ad
a

la
こ
と
が

맛
있
는

u
m

a
ti

d

R
eg

io
n

J
ap

a
n

m
u

n
ic

ip
io

q
u

el
q
u

es
ya

n
g

ar
t.

通
常
の

위
한

O
D

et
ta

T
ab

le
7
.7

:
A

n
ch

or
w

or
d

s
fo

u
n

d
in

ea
ch

la
n

gu
ag

e
(m

o
d

el
a
n
c
h
o
r
-f
e
a
t

).

CHAPTER 7. SPECTRAL LEARNING OF ANCHOR HMMS 143

lo
ss

ye
a
r

(.
0
2
)

m
ar

ke
t

(.
0
1
)

sh
ar

e
(.
0
1
)

co
m

p
an

y
(.
0
1
)

st
o
ck

(.
0
1
)

q
u

ar
te

r
(.
0
1
)

sh
a
re

s
(.
0
1
)

p
ri

ce
(.
0
1
)

1
1

(.
0
3
)

1
0

(.
0
2
)

30
(.
0
2
)

15
(.
0
2
)

8
(.
0
2
)

2
(.
0
1
)

2
0

(.
0
1
)

50
(.
0
1
)

on
o
f

(.
1
4
)

in
(.
1
2
)

.
(.
0
8
)

fo
r

(.
0
6
)

on
(.
0
4
)

b
y

(.
0
4
)

fr
o
m

(.
0
4
)

an
d

(.
0
3
)

o
n

e
th

e
(.
2
3
)

a
(.
1
2
)

“
(.
0
3
)

an
(.
0
3
)

$
(.
0
2
)

it
s

(.
0
2
)

th
at

(.
0
2
)

th
is

(.
0
2
)

cl
o
se

d
sa

id
(.
0
5
)

’s
(.
0
2
)

is
(.
0
2
)

sa
y
s

(.
0
2
)

w
as

(.
0
1
)

h
as

(.
0
1
)

h
a
d

(.
0
1
)

ex
p

ec
te

d
(.
0
1
)

a
re

an
d

(.
0
8
)

is
(.
0
8
)

ar
e

(.
0
5
)

w
as

(.
0
4
)

’s
(.
0
4
)

“
(.
0
4
)

h
a
s

(.
0
3
)

o
f

(.
0
3
)

ta
ke

b
e

(.
0
4
)

%
(.
0
2
)

h
av

e
(.
0
2
)

m
il

li
on

(.
0
2
)

B
u

t
(.
0
2
)

d
o

(.
0
1
)

T
h

e
(.
0
1
)

m
a
ke

(.
0
1
)

,
,

(.
5
3
)

.
(.
2
5
)

an
d

(.
0
5
)

”
(.
0
4
)

%
(.
0
1
)

m
il

li
on

(.
0
1
)

–
(.
0
1
)

th
a
t

(.
0
1
)

v
ic

e
’s

(.
0
3
)

T
h

e
(.
0
2
)

“
(.
0
2
)

N
ew

(.
0
1
)

an
d

(.
0
1
)

n
ew

(.
0
1
)

fi
rs

t
(.
0
1
)

ch
ie

f
(.
0
1
)

to
to

(.
3
9
)

.
(.
1
1
)

a
(.
0
6
)

w
il

l
(.
0
4
)

$
(.
0
3
)

n
’t

(.
0
3
)

w
ou

ld
(.
0
2
)

%
(.
0
2
)

Y
o
rk

th
e

(.
1
5
)

a
(.
0
5
)

T
h

e
(.
0
4
)

of
(.
0
4
)

’s
(.
0
4
)

m
il

li
on

(.
0
1
)

%
(.
0
1
)

it
s

(.
0
1
)

J
ap

an
M

r.
(.
0
3
)

it
(.
0
2
)

”
(.
0
2
)

$
(.
0
2
)

h
e

(.
0
2
)

th
at

(.
0
2
)

w
h

ic
h

(.
0
1
)

co
m

p
an

y
(.
0
1
)

T
a
b

le
7
.8

:
M

o
st

li
ke

ly
w

or
d

s
u

n
d

er
ea

ch
a
n

ch
or

w
or

d
(E

n
gl

is
h

m
o
d

el
a
n
c
h
o
r
-f
e
a
t

).
E

m
is

si
on

p
ro

b
ab

il
it

ie
s
o(
x
|h

)
a
re

g
iv

en
in

p
ar

en
th

es
es

.

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 144

Chapter 8

Spectral Learning of Refinement

Hidden Markov Models

This chapter is adapted from joint work with Alexander Rush, Shay Cohen, and Michael

Collins entitled “Spectral learning of refinement HMMs” [Stratos et al., 2013].

We derive a spectral algorithm for learning the parameters of a refinement HMM. This

method is simple, efficient, and can be applied to a wide range of supervised sequence

labeling tasks. Like other spectral methods, it avoids the problem of local optima and

provides a consistent estimate of the parameters. Our experiments on a phoneme recognition

task show that when equipped with informative feature functions, it performs significantly

better than a supervised HMM and competitively with EM.

In this chapter, C ∈ Rm×m×m denotes a third-order tensor, that is, a set of m3 values

Ci,j,k for i, j, k ∈ [m]. C(v) denotes the m × m matrix with [C(v)]i,j =
∑

k∈[m]Ci,j,kvk.

Finally, C = xy>z> where x, y, z ∈ Rm denotes an m×m×m tensor with [C]i,j,k = xiyjzk.

8.1 Introduction

Consider the task of supervised sequence labeling. We are given a training set where the

j’th training example consists of a sequence of observations x
(j)
1 ...x

(j)
N paired with a sequence

of labels a
(j)
1 ...a

(j)
N and asked to predict the correct labels on a test set of observations. A

common approach is to learn a joint distribution over sequences p(a1 . . . aN , x1 . . . xN) as a

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 145

a1, h1 a2, h2 aN , hN

x1 x2 xN

(a)

a1 a2 aN

h1 h2 hN

x1 x2 xN

(b)

Figure 8.1: (a) An R-HMM chain. (b) An equivalent representation where labels and hidden

states are intertwined.

hidden Markov model (HMM). The downside of HMMs is that they assume each label ai is

independent of labels before the previous label ai−1. This independence assumption can be

limiting, particularly when the label space is small. To relax this assumption we can refine

each label ai with a hidden state hi, which is not observed in the training data, and model

the joint distribution p(a1 . . . aN , x1 . . . xN , h1 . . . hN). This refinement HMM (R-HMM),

illustrated in Figure 8.1, is able to propagate information forward through the hidden state

as well as the label.

Unfortunately, estimating the parameters of an R-HMM is complicated by the unob-

served hidden variables. A standard approach is to use the expectation-maximization (EM)

algorithm which has no guarantee of finding the global optimum of its objective function.

The problem of local optima prevents EM from yielding statistically consistent parame-

ter estimates: even with very large amounts of data, EM is not guaranteed to estimate

parameters which are close to the “correct” model parameters.

In this work, we derive a spectral algorithm for learning the parameters of R-HMMs.

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 146

Unlike EM, this technique is guaranteed to find the true parameters of the underlying

model under mild conditions on the singular values of the model. The algorithm we derive

is simple and efficient, relying on singular value decomposition followed by standard matrix

operations.

We also describe the connection of R-HMMs to L-PCFGs. Cohen et al. [2012] present

a spectral algorithm for L-PCFG estimation, but the naive transformation of the L-PCFG

model and its spectral algorithm to R-HMMs is awkward and opaque. We therefore work

through the non-trivial derivation the spectral algorithm for R-HMMs.

We note that much of the prior work on spectral algorithms for discrete structures in

NLP has shown limited experimental success for this family of algorithms (see, for exam-

ple, Luque et al. [2012]). Our experiments demonstrate empirical success for the R-HMM

spectral algorithm. The spectral algorithm performs competitively with EM on a phoneme

recognition task, and is more stable with respect to the number of hidden states.

Cohen et al. [2013] present experiments with a parsing algorithm and also demonstrate

it is competitive with EM. Our set of experiments comes as an additional piece of evidence

that spectral algorithms can function as a viable, efficient and more principled alternative

to the EM algorithm.

8.2 Related Work

Recently, there has been a surge of interest in spectral methods for learning HMMs [Hsu

et al., 2008; Foster et al., 2012; Jaeger, 2000; Siddiqi et al., 2010; Song et al., 2010]. Like

these previous works, our method produces consistent parameter estimates; however, we

estimate parameters for a supervised learning task. Balle et al. [2011] also consider a

supervised problem, but our model is quite different since we estimate a joint distribution

p(a1 . . . aN , x1 . . . xN , h1 . . . hN) as opposed to a conditional distribution and use feature

functions over both the labels and observations of the training data. These feature functions

also go beyond those previously employed in other spectral work [Siddiqi et al., 2010; Song

et al., 2010]. Experiments show that features of this type are crucial for performance.

Spectral learning has been applied to related models beyond HMMs including: head

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 147

automata for dependency parsing [Luque et al., 2012], tree-structured directed Bayes nets

[Parikh et al., 2011], finite-state transducers [Balle et al., 2011], and mixture models [Anand-

kumar et al., 2012a,c].

Of special interest is Cohen et al. [2012], who describe a derivation for a spectral al-

gorithm for L-PCFGs. This derivation is the main driving force behind the derivation of

our R-HMM spectral algorithm. For work on L-PCFGs estimated with EM, see Petrov

et al. [2006], Matsuzaki et al. [2005], and Pereira and Schabes [1992]. Petrov et al. [2007]

proposes a split-merge EM procedure for phoneme recognition analogous to that used in

latent-variable parsing.

8.3 The R-HMM Model

We decribe in this section the notation used throughout and the formal details of R-HMMs.

8.3.1 Definition of an R-HMM

An R-HMM is a 7-tuple 〈l,m, n, π, o, t, f〉 for integers l,m, n ≥ 1 and functions π, o, t, f

where

• [l] is a set of labels.

• [m] is a set of hidden states.

• [n] is a set of observations.

• π(a, h) is the probability of generating a ∈ [l] and h ∈ [m] in the first position in the

labeled sequence.

• o(x|a, h) is the probability of generating x ∈ [n], given a ∈ [l] and h ∈ [m].

• t(b, h′|a, h) is the probability of generating b ∈ [l] and h′ ∈ [m], given a ∈ [l] and

h ∈ [m].

• f(∗|a, h) is the probability of generating the stop symbol ∗, given a ∈ [l] and h ∈ [m].

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 148

See Figure 8.1(b) for an illustration. At any time step of a sequence, a label a is associated

with a hidden state h. By convention, the end of an R-HMM sequence is signaled by the

symbol ∗.
For the subsequent illustration, let N be the length of the sequence we consider. A

full sequence consists of labels a1 . . . aN , observations x1 . . . xN , and hidden states h1 . . . hN .

The model assumes

p(a1 . . . aN , x1 . . . xN , h1 . . . hN)

= π(a1, h1)×
N∏
i=1

o(xi|ai, hi)×
N−1∏
i=1

t(ai+1, hi+1|ai, hi)× f(∗|aN , hN)

A skeletal sequence consists of labels a1 . . . aN and observations x1 . . . xN without hidden

states. Under the model, it has probability

p(a1 . . . aN , x1 . . . xN) =
∑

h1...hN

p(a1 . . . aN , x1 . . . xN , h1 . . . hN)

An equivalent definition of an R-HMM is given by organizing the parameters in matrix

form. Specifically, an R-HMM has parameters
〈
πa, oax, T

b|a, fa
〉

where πa ∈ Rm is a column

vector, oax ∈ R1×m is a row vector, T b|a ∈ Rm×m is a matrix, and fa ∈ R1×m is a row vector,

defined for all a, b ∈ [l] and x ∈ [n]. Their entries are set to

• [πa]h = π(a, h) for h ∈ [m]

• [oax]h = o(x|a, h) for h ∈ [m]

• [T b|a]h′,h = t(b, h′|a, h) for h, h′ ∈ [m]

• [fa]h = f(∗|a, h) for h ∈ [m]

8.4 The Forward-Backward Algorithm

Given an observation sequence x1 . . . xN , we want to infer the associated sequence of labels

under an R-HMM. This can be done by computing the marginals of x1 . . . xN

µ(a, i) =
∑

a1...aN : ai=a

p(a1 . . . aN , x1 . . . xN)

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 149

Input: a sequence of observations x1 . . . xN ; operators
〈
Cb|a, C∗|a, c1a, c

a
x

〉
Output: µ(a, i) for all a ∈ [l] and i ∈ [N]

[Forward case]

• α1
a ← c1a for all a ∈ [l].

• For i = 1 . . . N − 1

αi+1
b ←

∑
a∈[l]

Cb|a(caxi)× αia for all b ∈ [l]

[Backward case]

• βNa ← C∗|a(caxN) for all a ∈ [l]

• For i = N − 1 . . . 1

βia ←
∑
b∈[l]

βi+1
b × Cb|a(caxi) for all a ∈ [l]

[Marginals]

• µ(a, i)← βia × αia for all a ∈ [l], i ∈ [N]

Figure 8.2: The forward-backward algorithm (in matrix form) for an R-HMM.

for all labels a ∈ [l] and positions i ∈ [N]. Then the most likely label at each position i is

given by

a∗i = arg max
a∈[l]

µ(a, i)

The marginals can be computed using a tensor variant of the forward-backward algorithm,

shown in Figure 8.2. The algorithm takes additional quantities
〈
Cb|a, C∗|a, c1

a, c
a
x

〉
called the

operators:

• Tensors Cb|a ∈ Rm×m×m for a, b ∈ [l]

• Tensors C∗|a ∈ R1×m×m for a ∈ [l]

• Column vectors c1
a ∈ Rm for a ∈ [l]

• Row vectors cax ∈ R1×m for a ∈ [l] and x ∈ [n]

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 150

The following proposition states that these operators can be defined in terms of the R-HMM

parameters to guarantee the correctness of the algorithm.

Proposition 8.4.1. Given an R-HMM with parameters
〈
πa, oax, T

b|a, fa
〉
, for any vector

v ∈ Rm define the operators:

Cb|a(v) = T b|a diag(v) c1
a = πa

C∗|a(v) = fa diag(v) cax = oax

Then the algorithm in Figure 8.2 correctly computes marginals µ(a, i) under the R-HMM.

Proof. At any time step i ∈ [N] in the algorithm in Figure 8.2, for all label a ∈ [l] we have

a column vector αia ∈ Rm and a row vector βia ∈ R1×m. The value of these vectors at each

index h ∈ [m] can be verified as

[αia]h =
∑

a1...ai,h1...hi:
ai=a,hi=h

p(a1 . . . ai, x1 . . . xi−1, h1 . . . hi)

[βia]h =
∑

ai...aN ,hi...hN :
ai=a,hi=h

p(ai+1 . . . aN , xi . . . xN , hi+1 . . . hN |ai, hi)

Thus βiaα
i
a is a scalar equal to

∑
a1...aN ,h1...hN :

ai=a

p(a1 . . . aN , x1 . . . xN , h1 . . . hN)

which is the value of the marginal µ(a, i).

Note that the running time of the algorithm as written is O(l2m3N).1

Proposition 8.4.1 can be generalized to the following theorem. This theorem implies

that the operators can be linearly transformed by some invertible matrices as long as the

transformation leaves the embedded R-HMM parameters intact. This observation is cen-

tral to the derivation of the spectral algorithm which estimates the linearly transformed

operators but not the actual R-HMM parameters.

1We can reduce the complexity to O(l2m2N) by pre-computing the matrices Cb|a(cax) for all a, b ∈ [l] and

x ∈ [n] after parameter estimation.

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 151

Theorem 8.4.1. Given an R-HMM with parameters
〈
πa, oax, T

b|a, fa
〉
, assume that for each

a ∈ [l] we have invertible m×m matrices Ga and Ha. For any row vector v ∈ R1×m define

the operators:

Cb|a(v) = GbT b|a diag(vHa)(Ga)−1 c1
a = Gaπa

C∗|a(v) = fa diag(vHa)(Ga)−1 cax = oax(Ha)−1

Then the algorithm in Figure 8.2 correctly computes marginals µ(a, i) under the R-HMM.

The proof is similar to that of Cohen et al. [2012].

8.5 Spectral Estimation of R-HMMs

In this section, we derive a consistent estimator for the operators
〈
Cb|a, C∗|a, c1

a, c
a
x

〉
in

Theorem 8.4.1 through the use of singular-value decomposition (SVD) followed by the

method of moments.

Section 8.5.1 describes the decomposition of the R-HMM model into random variables

which are used in the final algorithm. Section 8.5.2 can be skimmed through on the first

reading, especially if the reader is familiar with other spectral algorithms. It includes a

detailed account of the derivation of the R-HMM algorithm.

For a first reading, note that an R-HMM sequence can be seen as a right-branching

L-PCFG tree. Thus, in principle, one can convert a sequence into a tree and run the inside-

outside algorithm of Cohen et al. [2012] to learn the parameters of an R-HMM. However,

projecting this transformation into the spectral algorithm for L-PCFGs is cumbersome and

unintuitive. This is analogous to the case of the Baum-Welch algorithm for HMMs [Rabiner,

1989], which is a special case of the inside-outside algorithm for PCFGs [Lari and Young,

1990].

8.5.1 Random Variables

We first introduce the random variables underlying the approach then describe the operators

based on these random variables. From p(a1 . . . aN , x1 . . . xN , h1 . . . hN), we draw an R-

HMM sequence (a1 . . . aN , x1 . . . xN , h1 . . . hN) and choose a time step i uniformly at random

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 152

from [N]. The random variables are then defined as

X = xi

A1 = ai and A2 = ai+1 (if i = N , A2 = ∗)

H1 = hi and H2 = hi+1

F1 = (ai . . . aN , xi . . . xN) (future)

F2 = (ai+1 . . . aN , xi+1 . . . xN) (skip-future)

P = (a1 . . . ai, x1 . . . xi−1) (past)

R = (ai, xi) (present)

D = (a1 . . . aN , x1 . . . xi−1, xi+1 . . . xN) (destiny)

B = [[i = 1]]

Figure 8.3 shows the relationship between the random variables. They are defined in such a

way that the future is independent of the past and the present is independent of the destiny

conditioning on the current node’s label and hidden state.

Next, we assume a set of feature functions over the random variables.

• φ maps F1, F2 respectively to φ(F1), φ(F2) ∈ Rd1 .

• ψ maps P to ψ(P) ∈ Rd2 .

• ξ maps R to ξ(R) ∈ Rd3 .

• υ maps D to υ(D) ∈ Rd4 .

We will see that the feature functions should be chosen to capture the influence of the

hidden states. For instance, they might track the next label, the previous observation, or

important combinations of labels and observations.

Finally, we assume projection matrices

Φa ∈ Rm×d1 Ψa ∈ Rm×d2

Ξa ∈ Rm×d3 Υa ∈ Rm×d4

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 153

a1 ai−1 ai ai+1 aN

x1 xi−1 xi xi+1 xN

P

F1

F2

(a)

a1 ai−1 ai ai+1 aN

x1 xi−1 xi xi+1 xN

D R

(b)

Figure 8.3: Given an R-HMM sequence, we define random variables over observed quantities

so that conditioning on the current node, (a) the future F1 is independent of the past P

and (b) the present R is independent of the density D.

defined for all labels a ∈ [l]. These matrices will project the feature vectors of φ, ψ, ξ,

and υ from (d1, d2, d3, d4)-dimensional spaces to an m-dimensional space. We refer to this

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 154

reduced dimensional representation by the following random variables:

F 1 = ΦA1φ(F1) (projected future)

F 2 = ΦA2φ(F2) (projected skip-future defined for i < N)

P = ΨA1ψ(P) (projected past)

R = ΞA1ξ(R) (projected present)

D = ΥA1υ(D) (projected destiny)

Note that they are all vectors in Rm.

8.5.2 Estimation of the Operators

Since F 1, F 2, P , R, and D do not involve hidden variables, the following quantities can be

directly estimated from the training data of skeletal sequences. For this reason, they are

called observable blocks:

Σa = E[F 1P
>|A1 = a] ∀a ∈ [l]

Λa = E[R D>|A1 = a] ∀a ∈ [l]

Db|a = E[[[A2 = b]]F 2P
>R>|A1 = a] ∀a, b ∈ [l]

D∗|a = E[[[A2 = ∗]]PR>|A1 = a] ∀a ∈ [l]

dax = E[[[X = x]]D>|A1 = a] ∀a ∈ [l], x ∈ [n]

We treat D∗|a as a tensor of size 1 ×m ×m. The main result of this work is that under

certain conditions, matrices Σa and Λa are invertible and the operators
〈
Cb|a, C∗|a, c1

a, c
a
x

〉
in Theorem 8.4.1 can be expressed in terms of these observable blocks.

Cb|a(v) = Db|a(v)(Σa)−1 (8.1)

C∗|a(v) = D∗|a(v)(Σa)−1 (8.2)

cax = dax(Λa)−1 (8.3)

c1
a = E[[[A1 = a]]F 1|B = 1] (8.4)

To derive this result, we use the following definition to help specify the conditions on the

expectations of the feature functions.

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 155

Definition 8.5.1. For each a ∈ [l], define matrices Ia ∈ Rd1×m, Ja ∈ Rd2×m, Ka ∈
Rd3×m,W a ∈ Rd4×m by

[Ia]k,h = E[[φ(F1)]k|A1 = a,H1 = h]

[Ja]k,h = E[[ψ(P)]k|A1 = a,H1 = h]

[Ka]k,h = E[[ξ(R)]k|A1 = a,H1 = h]

[W a]k,h = E[[υ(D)]k|A1 = a,H1 = h]

In addition, let Γa ∈ Rm×m be a diagonal matrix with [Γa]h,h = P (H1 = h|A1 = a).

We now state the conditions for the correctness of Eq. (8.1-8.4). For each label a ∈ [l], we

require that

Condition 6.1 Ia, Ja,Ka,W a have rank m.

Condition 6.2 [Γa]h,h > 0 for all h ∈ [m].

The conditions lead to the following proposition.

Proposition 8.5.1. Assume Condition 8.5.2 and 8.5.2 hold. For all a ∈ [l], define matrices

Ωa
1 = E[φ(F1)ψ(P)>|A1 = a] ∈ Rd1×d2

Ωa
2 = E[ξ(R)υ(D)>|A1 = a] ∈ Rd3×d4

Let ua1 . . . u
a
m ∈ Rd1 and va1 . . . v

a
m ∈ Rd2 be the top m left and right singular vectors of Ωa.

Similarly, let la1 . . . l
a
m ∈ Rd3 and ra1 . . . r

a
m ∈ Rd4 be the top m left and right singular vectors

of Ψa. Define projection matrices

Φa = [ua1 . . . u
a
m]> Ψa = [va1 . . . v

a
m]>

Ξa = [la1 . . . l
a
m]> Υa = [ra1 . . . r

a
m]>

Then the following m×m matrices

Ga = ΦaIa Ga = ΨaJa

Ha = ΞaKa Ha = ΥaW a

are invertible.

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 156

The proof resembles that of lemma 2 of Hsu et al. [2012]. Finally, we state the main result

that shows
〈
Cb|a, C∗|a, c1

a, c
a
x

〉
in Eq. (8.1-8.4) using the projections from proposition 8.5.1

satisfy Theorem 8.4.1.

Theorem 8.5.1. Assume conditions 6.1 and 6.2 hold. Let 〈Φa,Ψa,Ξa,Υa〉 be the projection

matrices from proposition 8.5.1. Then the operators in Eq. (8.1-8.4) satisfy Theorem 8.4.1.

Proof Sketch. It can be verified that c1
a = Gaπa. For the others, under the conditional

independence illustrated in Figure 8.3 we can decompose the observable blocks in terms of

the R-HMM parameters and invertible matrices

Σa = GaΓa(Ga)> Λa = HaΓa(Ha)>

Db|a(v) = GbT b|a diag(vHa)Γa(Ga)>

D∗|a(v) = fa diag(vHa)Γa(Ga)> dax = oaxΓa(Ha)>

using techniques similar to those sketched in Cohen et al. [2012]. By proposition 8.5.1, Σa

and Λa are invertible, and these observable blocks yield the operators that satisfy Theo-

rem 8.4.1 when placed in Eq. (8.1-8.3).

In summary, these results show that with the proper selection of feature functions, we

can construct projection matrices 〈Φa,Ψa,Ξa,Υa〉 to obtain operators
〈
Cb|a, C∗|a, c1

a, c
a
x

〉
which satisfy the conditions of Theorem 8.4.1.

8.6 The Spectral Estimation Algorithm

In this section, we give an algorithm to estimate the operators
〈
Cb|a, C∗|a, c1

a, c
a
x

〉
from

samples of skeletal sequences. Suppose the training set consists of M skeletal sequences

(a(j), x(j)) for j ∈ [M]. Then M samples of the random variables can be derived from this

training set as follows

• At each j ∈ [M], choose a position ij uniformly at random from the positions in

(a(j), x(j)). Sample the random variables (X,A1, A2, F1, F2, P,R,D,B) using the pro-

cedure defined in section 8.5.1.

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 157

This process yields M samples

(x(j), a
(j)
1 , a

(j)
2 , f

(j)
1 , f

(j)
2 , p(j), r(j), d(j), b(j)) for j ∈ [M]

Assuming (a(j), x(j)) are i.i.d. draws from the PMF p(a1 . . . aN , x1 . . . xN) over skeletal

sequences under an R-HMM, the tuples obtained through this process are i.i.d. draws from

the joint PMF over (X,A1, A2, F1, F2, P,R,D,B).

The algorithm in Figure 8.8 shows how to derive estimates of the observable representa-

tions from these samples. It first computes the projection matrices 〈Φa,Ψa,Ξa,Υa〉 for each

label a ∈ [l] by computing empirical estimates of Ωa
1 and Ωa

2 in proposition 8.5.1, calculating

their singular vectors via an SVD, and setting the projections in terms of these singular vec-

tors. These projection matrices are then used to project (d1, d2, d3, d4)-dimensional feature

vectors (
φ(f

(j)
1), φ(f

(j)
2), ψ(p(j)), ξ(r(j)), υ(d(j))

)
down to m-dimensional vectors (

f (j)
1
, f (j)

2
, p(j), r(j), d(j)

)
for all j ∈ [M]. It then computes correlation between these vectors in this lower dimensional

space to estimate the observable blocks which are used to obtain the operators as in Eq. (8.1-

8.4). These operators can be used in algorithm 8.2 to compute marginals.

As in other spectral methods, this estimation algorithm is consistent; that is, the

marginals µ̂(a, i) computed with the estimated operators approach the true marginal values

given more data. For details, see Cohen et al. [2012] and Foster et al. [2012].

8.7 Experiments

We apply the spectral algorithm for learning R-HMMs to the task of phoneme recognition.

The goal is to predict the correct sequence of phonemes a1 . . . aN for a given a set of speech

frames x1 . . . xN . Phoneme recognition is often modeled with a fixed-structure HMM trained

with EM, which makes it a natural application for spectral training.

We train and test on the TIMIT corpus of spoken language utterances [Garofolo and

others, 1988]. The label set consists of l = 39 English phonemes following a standard

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 158

0 5 10 15 20 25 30
hidden states (m)

54.0

54.5

55.0

55.5

56.0

56.5

57.0

57.5

ac
cu

ra
cy

Spectral

EM

Figure 8.4: Accuracy of the spectral algorithm and EM on TIMIT development data for

varying numbers of hidden states m. For EM, the highest scoring iteration is shown.

phoneme set [Lee and Hon, 1989]. For training, we use the sx and si utterances of the

TIMIT training section made up of M = 3696 utterances. The parameter estimate is

smoothed using the method of Cohen et al. [2013].

Each utterance consists of a speech signal aligned with phoneme labels. As preprocess-

ing, we divide the signal into a sequence of N overlapping frames, 25ms in length with a

10ms step size. Each frame is converted to a feature representation using MFCC with its

first and second derivatives for a total of 39 continuous features. To discretize the problem,

we apply vector quantization using euclidean k-means to map each frame into n = 10000

observation classes. After preprocessing, we have 3696 skeletal sequence with a1 . . . aN as

the frame-aligned phoneme labels and x1 . . . xN as the observation classes.

For testing, we use the core test portion of TIMIT, consisting of 192 utterances, and

for development we use 200 additional utterances. Accuracy is measured by the percentage

of frames labeled with the correct phoneme. During inference, we calculate marginals µ

for each label at each position i and choose the one with the highest marginal probability,

a∗i = arg maxa∈[l] µ(a, i).

The spectral method requires defining feature functions φ, ψ, ξ, and υ. We use binary-

valued feature vectors which we specify through features templates, for instance the template

ai × xi corresponds to binary values for each possible label and output pair (ln binary

dimensions).

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 159

φ(F1) ai+1 × xi, ai+1, xi, np(ai . . . aN)

ψ(P) (ai−1, xi−1), ai−1, xi−1, pp(a1 . . . ai)

ξ(R) xi

υ(D) ai−1 × xi−1, ai−1, xi−1, pp(a1 . . . ai),

pos(a1 . . . aN)

iy r r r r r r ow

pp b m e np

Figure 8.5: The feature templates for phoneme recognition. The simplest features look only

at the current label and observation. Other features indicate the previous phoneme type

used before ai (pp), the next phoneme type used after ai (np), and the relative position

(beginning, middle, or end) of ai within the current phoneme (pos). The figure gives a

typical segment of the phoneme sequence a1 . . . aN .

Figure 8.5 gives the full set of templates. These feature functions are specially for the

phoneme labeling task. We note that the HTK baseline explicitly models the position

within the current phoneme as part of the HMM structure. The spectral method is able to

encode similar information naturally through the feature functions.

We implement several baseline for phoneme recognition: Unigram chooses the most

likely label, arg maxa∈[l] p(a|xi), at each position; HMM is a standard HMM trained with

maximum-likelihood estimation; EM(m) is an R-HMM with m hidden states estimated

using EM; and Spectral(m) is an R-HMM with m hidden states estimated with the

spectral method described in this work. We also compare to HTK, a fixed-structure HMM

with three segments per phoneme estimated using EM with the HTK speech toolkit. See

Young et al. [1997] for more details on this method.

An important consideration for both EM and the spectral method is the number of

hidden states m in the R-HMM. More states allow for greater label refinement, with the

downside of possible overfitting and, in the case of EM, more local optima. To determine

the best number of hidden states, we optimize both methods on the development set for a

range of m values between 1 to 32. For EM, we run 200 training iterations on each value

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 160

Method Accuracy

EM(4) 56.80

EM(24) 56.23

Spectral(24), no np, pp, pos 55.45

Spectral(24), no pos 56.56

Spectral(24) 56.94

Figure 8.6: Feature ablation experiments on TIMIT development data for the best spectral

model (m = 24) with comparisons to the best EM model (m = 4) and EM with m = 24.

of m and choose the iteration that scores best on the development set. As the spectral

algorithm is non-iterative, we only need to evaluate the development set once per m value.

Figure 8.4 shows the development accuracy of the two method as we adjust the value of

m. EM accuracy peaks at 4 hidden states and then starts degrading, whereas the spectral

method continues to improve until 24 hidden states.

Another important consideration for the spectral method is the feature functions. The

analysis suggests that the best feature functions are highly informative of the underlying

hidden states. To test this empirically we run spectral estimation with a reduced set of

features by ablating the templates indicating adjacent phonemes and relative position. Fig-

ure 8.6 shows that removing these features does have a significant effect on development

accuracy. Without either type of feature, development accuracy drops by 1.5%.

We can interpret the effect of the features in a more principled manner. Informative

features yield greater singular values for the matrices Ωa
1 and Ωa

2, and these singular values

directly affect the sample complexity of the algorithm; see Cohen et al. [2012] for details.

In sum, good feature functions lead to well-conditioned Ωa
1 and Ωa

2, which in turn require

fewer samples for convergence.

Figure 8.7 gives the final performance for the baselines and the spectral method on

the TIMIT test set. For EM and the spectral method, we use best performing model

from the development data, 4 hidden states for EM and 24 for the spectral method. The

experiments show that R-HMM models score significantly better than a standard HMM and

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 161

Method Accuracy

Unigram 48.04

HMM 54.08

EM(4) 55.49

Spectral(24) 55.82

HTK 55.70

Figure 8.7: Performance of baselines and spectral R-HMM on TIMIT test data. Number of

hidden states m optimized on development data (see Figure 8.4). The improvement of the

spectral method over the EM baseline is significant at the p ≤ 0.05 level (and very close to

significant at p ≤ 0.01, with a precise value of p ≤ 0.0104).

comparatively to the fixed-structure HMM. In training the R-HMM models, the spectral

method performs competitively with EM while avoiding the problems of local optima.

8.8 Conclusion

This work derives a spectral algorithm for the task of supervised sequence labeling using an

R-HMM. Unlike EM, the spectral method is guaranteed to provide a consistent estimate of

the parameters of the model. In addition, the algorithm is simple to implement, requiring

only an SVD of the observed counts and other standard matrix operations. We show

empirically that when equipped with informative feature functions, the spectral method

performs competitively with EM on the task of phoneme recognition.

CHAPTER 8. SPECTRAL LEARNING OF REFINEMENT HMMS 162

Input: samples of (X,A1, A2, F1, F2, P,R,D,B); feature functions φ, ψ, ξ, and υ; number of hidden

states m

Output: estimates
〈
Ĉb|a, Ĉ∗|a, ĉ1a, ĉ

a
x

〉
of the operators used in the algorithm in Figure 8.2

[Singular Value Decomposition]

• For each label a ∈ [l], compute empirical estimates of

Ωa1 = E[φ(F1)ψ(P)>|A1 = a]

Ωa2 = E[ξ(R)υ(D)>|A1 = a]

and obtain their singular vectors via an SVD. Use the top m singular vectors to construct

projections
〈

Φ̂a, Ψ̂a, Ξ̂a, Υ̂a
〉

.

[Sample Projection]

• Project (d1, d2, d3, d4)-dimensional samples of

(φ(F1), φ(F2), ψ(P), ξ(R), υ(D))

with matrices
〈

Φ̂a, Ψ̂a, Ξ̂a, Υ̂a
〉

to obtain m-dimensional samples of

(F 1, F 2, P ,R,D)

[Method of Moments]

• For each a, b ∈ [l] and x ∈ [n], compute empirical estimates
〈

Σ̂a, Λ̂a, D̂b|a, D̂∗|a, d̂ax

〉
of the

observable blocks

Σa = E[F 1P
>|A1 = a] Db|a = E[[[A2 = b]]F 2P

>R>|A1 = a]

Λa = E[R D>|A1 = a] D∗|a = E[[[A2 = ∗]]PR>|A1 = a]

dax = E[[[X = x]]D>|A1 = a]

and also ĉ1a = E[[[A1 = a]]F 1|B = 1]. Finally, set

Ĉb|a(v)← D̂b|a(v)(Σ̂a)−1 Ĉ∗|a(v)← D̂∗|a(v)(Σ̂a)−1

ĉax ← d̂ax(Λ̂a)−1

Figure 8.8: The spectral estimation algorithm for an R-HMM.

CHAPTER 9. CONCLUSIONS 163

Chapter 9

Conclusions

In this thesis, we have considered how to address the computational difficulties associated

with models that involve hidden or unobserved variables for natural language processing

(NLP)—a family of models that underlie many state-of-the-art approaches. In particular, we

have posed the question: can we develop provable algorithms for handling these difficulties?

We have supplied a positive answer by developing algorithms with guarantees for a

variety of unsupervised and semi-supervised tasks that can be solved with latent-variable

models. Our main weapon is spectral methods: techniques that use matrix or tensor factor-

ization such as singular value decomposition (SVD). Our work builds on the recent advance

in spectral methods, notably the SVD-based algorithm for learning hidden Markov mod-

els (HMMs) [Hsu et al., 2008] and the non-negative matrix factorization (NMF) algorithm

for learning topic models [Arora et al., 2012a], to attack the following language processing

problems:

1. Inducing hierarchical word clusters (Chapter 5). We have derived the first

provably correct algorithm for clustering under the class-based language model pro-

posed by Brown et al. [1992]. Unlike the original greedy algorithm, our algorithm

is guaranteed to recover the true clusters given sufficiently many samples (Theo-

rem 5.4.4). It is also much more scalable in practice—up to an order of magnitude

(Table 5.3).

2. Inducing word embeddings (Chapter 6). We have derived a spectral algorithm

CHAPTER 9. CONCLUSIONS 164

for inducing word embeddings with an SVD on a simple co-occurrence count ma-

trix. We give a novel model-based interpretation of the previous approaches based on

canonical correlation anaylsis (CCA) by Dhillon et al. [2011a; 2012]. The algorithm

is a consistent estimator of the underlying model (Theorem 6.3.1), provides a unified

view of a number of spectral methods in the literature, and yields embeddings that

achieve state-of-the-art results on various lexical and semi-supervised tasks.

3. Unsupervised part-of-speech (POS) tagging (Chapter 7). We have derived

a spectral algorithm for learning HMMs with an “anchor” assumption, which is par-

ticularly appropriate for unsupervised POS tagging. We have extended the NMF

method of Arora et al. [2012a] to develop a consistent estimator of anchor HMMs

(Theorem 7.3.1). In experiments, the algorithm is competitive with strong baselines

on the universal POS tagset; moreover, it produces an interpretable model in which

hidden states are automatically lexicalized.

4. Phoneme recognition (Chapter 8). We have derived a spectral algorithm for

learning “refinement” HMMs (R-HMMs): HMMs with additional unobserved vari-

ables further refining hidden states. The algorithm extends the observable operator

learning method of Hsu et al. [2008] and is guaranteed to find the true parameters of

R-HMMs under mild conditions (Theorem 8.5.1). In experiments, the spectral algo-

rithm is competitive with the expectation-maximization (EM) algorithm in accuracy

on phoneme recognition.

These results support our earlier claims on the advantages of the presented spectral

methods over existing methods. Namely, (i) our algorithms provide a new theoretical

framework that is amenable to rigorous analysis, and (ii) they are also empirically effective,

yielding results that are competitive with the state-of-the-art on many tasks.

We now conclude the thesis with a critical view of spectral methods and a discussion of

future directions.

CHAPTER 9. CONCLUSIONS 165

9.1 Limitations of the Existing Spectral Framework

(This discussion is confined to the existing spectral framework and not meant to assess the

intrinsic soundness of the approach. Many of the issues may be resolved in the future.)

Spectral methods are sometimes accused of being a rigid approach, that is, an approach

difficult to generalize to arbitrary problems of interest. In practice, it is desirable to have

an approach in which a given problem can be modeled as freely as possible. This is be-

cause modeling is an art that requires much empirical experimentation and domain-specific

expertise; there is usually no “true” model for the problem known in advance.

However, in spectral methods, a large portion of work is in simplifying the problem into

a form that is amenable to the framework. From a variational perspective, this involves

mandating the objective to take a particular form such as trace or Rayleigh quotient maxi-

mization with orthogonality constraints (e.g., see (4.22) for spectral clustering or Ando and

Zhang [2005]) or unconstrained squared error minimization shown in (4.2). From a modeling

perspective, this involves restricting the class of models under consideration. For instance,

the methods of Hsu et al. [2008] and Arora et al. [2012a] consider simple probabilistic mod-

els such as HMMs and topic models. While their methods are certainly extendable to other

related models (as done in Chapter 7 and 8 of the thesis), it is not clear how they can be

used for much more general model families.

To be clear, there is ongoing progress in further generalizing the spectral framework.

The tensor decomposition method of Anandkumar et al. [2014] can be used to learn a wide

variety of latent-variable models; the algorithm of Chaganty and Liang [2014] can be used to

estimate a broader class of graphical models; another tensor-based method of Janzamin et

al. [2015] can be used to train a certain class of neural networks. But these methods are still

relatively limited in flexibility, for instance compared to backpropagation training of neural

networks [Rumelhart et al., 1988]. In the latter approach, a model can be an arbitrary

composition of linear and nonlinear functions, and the resulting objective is approximately

optimized by gradient-based search.

There are many benefits in the restricted approach adopted in spectral methods. The

restrictions are often designed to explicitly take advantage of our prior knowledge of the

problem: for example, in Chapter 7, we exploit the tendency of a POS tag to have at least

CHAPTER 9. CONCLUSIONS 166

one tag-revealing word associated with it through a restriction on the model structure. This

step often results in a new understanding of the problem which can lead to other interesting

algorithms. Also, framing the problem as decomposition makes it possible to leverage many

techniques in linear algebra such as SVD, which is one of the few techniques known to solve

a non-convex problem (e.g., see Section 4.2 on low-rank matrix approximation). Finally,

the approach is naturally accomodating to theoretical analysis: with tools from mature

mathematical branches such as matrix perturbation theory.

But, under the current framework, it is not obvious how to apply spectral methods

to more general optimization objectives or more expressive model families that may be

suitable for many empirical tasks. This can be seen as an undesirable aspect, particularly

in an applied field such as NLP.

9.2 Future Work

There are several directions for future work.

9.2.1 Flexible Framework for Spectral Optimization

As discussed in the previous section, a limitation of the current spectral framework is that

it is often nontrivial to extend a spectral method to much more general settings. A way

to address this issue is to develop a more flexible framework for spectral optimization that

can be readily applied to many problems of interest in NLP and machine learning without

needing the problems to be significantly simplified.

One possibility is to develop a general recipe for breaking down the objective into simpler

subproblems (e.g., by alternating minimization) that have a spectral solution or approxi-

mation. Task-specific versions of such a recipe have been derived. For instance, Ando and

Zhang [2005] optimize a non-convex loss function by alternating between a convex objective

and an objective whose solution is given by SVD. Janzamin et al. [2015] learn the parame-

ters of the first layer of a neural network by tensor decomposition and use them to find the

parameters of subsequent layers.

Another possibility is to consider manifold optimization [Absil et al., 2009], which refers

CHAPTER 9. CONCLUSIONS 167

to general optimization over a space of structured matrices called matrix manifold. For

instance, finding the dominant eigenvalues and eigenvectors is a particular maximization

problem over the (compact) Stiefel manifold.

Increased flexibility may come at a cost, for instance in theoretical guarantees (e.g.,

Ando and Zhang [2005] do not have guarantees of global optimality). But even a heuristic

optimization framework in which it is easy to leverage powerful decomposition tools in linear

algebra may be interesting in itself and effective in practice.

9.2.2 Online/Randomized Spectral Methods

In recent years, the amount of digitally available data has skyrocketed, especially unlabeled

data. Accordingly, it has become increasingly important to develop algorithms that can

scale to arbitrarily large inputs. Online or randomized algorithms that can be distributed

across multiple machines are such algorithms.

Conventional spectral methods are batch algorithms and require all input data to be

stored in memory. While they are already quite scalable (as demonstrated in Chapter 6

in which we perform SVD on matrices with billions of nonzeros), a fruitful research di-

rection is to make online or randomized variants of these methods that can handle any

size of data, preferably with strong guarantees. For example, Halko et al. [2011] develop

a randomized, distributable algorithm for computing an SVD of a large matrix. Ma et

al. [2015] develop an online algorithm for computing CCA, which can be parallelized with

schemes such as the hogwild! algorithm of Recht et al. [2011]. Liberty [2013] develops a

streaming, distributable algorithm for approximating a matrix with fixed memory (where

the approximation has the property of preserving the covariance structure of the original

matrix).

9.2.3 Spectral Methods for Other NLP Tasks

In the thesis, we have focused on developing spectral approaches for two specific tasks in

NLP: inducing lexical representations and estimating parameters of latent-variable models

for certain NLP problems. However, spectral methods are potentially appropriate for a

much wider class of NLP tasks that can benefit from either the theoretically sound frame-

CHAPTER 9. CONCLUSIONS 168

work or the powerful optimization tools that spectral methods can offer; many of them are

left unexplored in the thesis. To give a few examples, generalized CCA for finding correla-

tion between multiple views can have a natural application in multi-lingual tasks (e.g., see

Rastogi et al. [2015]). Spectral methods may be derived for learning other latent-variable

models used in NLP such as the IBM translation model [Brown et al., 1993] or the deciper-

ment model [Ravi and Knight, 2011]. It would be interesting to explore novel applications

of spectral methods for other NLP tasks beside the ones investigated in the thesis.

169

Part IV

Bibliography

BIBLIOGRAPHY 170

Bibliography

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix

manifolds. Princeton University Press, 2009.

Alexander C Aitken. On least squares and linear combination of observations. Proceedings

of the Royal Society of Edinburgh, 55:42–48, 1936.

A. Anandkumar, D. P. Foster, D. Hsu, S.M. Kakade, and Y.K. Liu. Two svds suffice:

Spectral decompositions for probabilistic topic modeling and latent dirichlet allocation.

Arxiv preprint arXiv:1204.6703, 2012.

Anima Anandkumar, Yi-kai Liu, Daniel J Hsu, Dean P Foster, and Sham M Kakade. A

spectral algorithm for latent dirichlet allocation. In Advances in Neural Information

Processing Systems, pages 917–925, 2012.

Animashree Anandkumar, Daniel Hsu, and Sham M Kakade. A method of moments for

mixture models and hidden markov models. arXiv preprint arXiv:1203.0683, 2012.

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgar-

sky. Tensor decompositions for learning latent variable models. The Journal of Machine

Learning Research, 15(1):2773–2832, 2014.

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from

multiple tasks and unlabeled data. The Journal of Machine Learning Research, 6:1817–

1853, 2005.

Francis J Anscombe. The transformation of poisson, binomial and negative-binomial data.

Biometrika, pages 246–254, 1948.

BIBLIOGRAPHY 171

Sanjeev Arora, Rong Ge, Yoni Halpern, David Mimno, Ankur Moitra, David Sontag, Yichen

Wu, and Michael Zhu. A practical algorithm for topic modeling with provable guarantees.

arXiv preprint arXiv:1212.4777, 2012.

Sanjeev Arora, Rong Ge, and Ankur Moitra. Learning topic models–going beyond svd.

In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on,

pages 1–10. IEEE, 2012.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Random walks

on context spaces: Towards an explanation of the mysteries of semantic word embeddings.

arXiv preprint arXiv:1502.03520, 2015.

Raphaël Bailly, Xavier Carreras Pérez, Franco M Luque, and Ariadna Julieta Quattoni.

Unsupervised spectral learning of wcfg as low-rank matrix completion. Association for

Computational Linguistics, 2013.

Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A discriminative framework for

clustering via similarity functions. In Proceedings of the Fortieth Annual ACM Symposium

on Theory of Computing, pages 671–680, 2008.

Borja Balle, Ariadna Quattoni, and Xavier Carreras. A spectral learning algorithm for finite

state transducers. In Machine Learning and Knowledge Discovery in Databases, pages

156–171. Springer, 2011.

MSo Bartlett. The square root transformation in analysis of variance. Supplement to the

Journal of the Royal Statistical Society, pages 68–78, 1936.

Leonard E Baum and Ted Petrie. Statistical inference for probabilistic functions of finite

state markov chains. The annals of mathematical statistics, 37(6):1554–1563, 1966.

Leonard E Baum, John Alonzo Eagon, et al. An inequality with applications to statistical

estimation for probabilistic functions of markov processes and to a model for ecology.

Bull. Amer. Math. Soc, 73(3):360–363, 1967.

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero, and Dan Klein. Pain-

less unsupervised learning with features. In Human Language Technologies: The 2010

BIBLIOGRAPHY 172

Annual Conference of the North American Chapter of the Association for Computational

Linguistics, pages 582–590. Association for Computational Linguistics, 2010.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the Journal

of machine Learning research, 3:993–1022, 2003.

Eric Brill. Automatic grammar induction and parsing free text: A transformation-based

approach. In Proceedings of the workshop on Human Language Technology, pages 237–

242. Association for Computational Linguistics, 1993.

Peter F. Brown, Peter V. Desouza, Robert L. Mercer, Vincent J. Della Pietra, and

Jenifer C. Lai. Class-based n-gram models of natural language. Computational Lin-

guistics, 18(4):467–479, 1992.

Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra, and Robert L Mercer. The

mathematics of statistical machine translation: Parameter estimation. Computational

linguistics, 19(2):263–311, 1993.

Glenn Carroll and Eugene Charniak. Two experiments on learning probabilistic dependency

grammars from corpora. Department of Computer Science, Univ., 1992.

Arun Tejasvi Chaganty and Percy Liang. Spectral experts for estimating mixtures of linear

regressions. arXiv preprint arXiv:1306.3729, 2013.

Arun T Chaganty and Percy Liang. Estimating latent-variable graphical models using

moments and likelihoods. In Proceedings of the 31st International Conference on Machine

Learning (ICML-14), pages 1872–1880, 2014.

Danqi Chen and Christopher D Manning. A fast and accurate dependency parser using

neural networks. In EMNLP, pages 740–750, 2014.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,

2014.

BIBLIOGRAPHY 173

Noam Chomsky. Three models for the description of language. Information Theory, IRE

Transactions on, 2(3):113–124, 1956.

Christos Christodoulopoulos, Sharon Goldwater, and Mark Steedman. Two decades of un-

supervised pos induction: How far have we come? In Proceedings of the 2010 Conference

on Empirical Methods in Natural Language Processing, pages 575–584. Association for

Computational Linguistics, 2010.

Kenneth Ward Church. A stochastic parts program and noun phrase parser for unrestricted

text. In Proceedings of the second conference on Applied natural language processing, pages

136–143. Association for Computational Linguistics, 1988.

Alan Kaylor Cline and Inderjit S Dhillon. Computation of the singular value decomposition.

Handbook of linear algebra, pages 45–1, 2006.

S. B. Cohen and M. Collins. A provably correct learning algorithm for latent-variable

PCFGs. In Proceedings of ACL, 2014.

S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar. Spectral learning of

latent-variable PCFGs. In Proceedings of the 50th Annual Meeting of the Association for

Computational Linguistics, 2012.

S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar. Experiments with spectral

learning of latent-variable pcfgs. In Proceedings of the 2013 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, 2013.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing:

Deep neural networks with multitask learning. In Proceedings of the 25th international

conference on Machine learning, pages 160–167. ACM, 2008.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and

Pavel Kuksa. Natural language processing (almost) from scratch. The Journal of Machine

Learning Research, 12:2493–2537, 2011.

BIBLIOGRAPHY 174

Dipanjan Das and Slav Petrov. Unsupervised part-of-speech tagging with bilingual graph-

based projections. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies-Volume 1, pages 600–609. As-

sociation for Computational Linguistics, 2011.

Sanjoy Dasgupta and Philip M. Long. Performance guarantees for hierarchical clustering.

J. Comput. Syst. Sci., 70(4):555–569, June 2005.

Sanjoy Dasgupta. Learning mixtures of gaussians. In Foundations of Computer Science,

1999. 40th Annual Symposium on, pages 634–644. IEEE, 1999.

Scott C. Deerwester, Susan T Dumais, Thomas K. Landauer, George W. Furnas, and

Richard A. Harshman. Indexing by latent semantic analysis. Journal of the American

Society for Information Science, 41(6):391–407, 1990.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from in-

complete data via the em algorithm. Journal of the royal statistical society. Series B

(methodological), pages 1–38, 1977.

Paramveer Dhillon, Dean P Foster, and Lyle H Ungar. Multi-view learning of word em-

beddings via CCA. In Proceedings of the Advances in Neural Information Processing

Systems, pages 199–207, 2011.

Paramveer S. Dhillon, Dean Foster, and Lyle Ungar. Multi-view learning of word embed-

dings via CCA. In Advances in Neural Information Processing Systems (NIPS), vol-

ume 24, 2011.

Paramveer S. Dhillon, Jordan Rodu, Dean P. Foster, and Lyle H. Ungar. Two step cca:

A new spectral method for estimating vector models of words. In Proceedings of the

International Conference on Machine learning, 2012.

Paramveer S. Dhillon, Dean P. Foster, and Lyle H. Ungar. Eigenwords: Spectral word

embeddings. Journal of Machine Learning Research, 16:3035–3078, 2015.

William E Donath and Alan J Hoffman. Lower bounds for the partitioning of graphs. IBM

Journal of Research and Development, 17(5):420–425, 1973.

BIBLIOGRAPHY 175

David Donoho and Victoria Stodden. When does non-negative matrix factorization give a

correct decomposition into parts? In Advances in neural information processing systems,

page None, 2003.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.

Psychometrika, 1(3):211–218, 1936.

Sean R Eddy and Richard Durbin. Rna sequence analysis using covariance models. Nucleic

acids research, 22(11):2079–2088, 1994.

Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical journal,

23(2):298–305, 1973.

Dean P Foster, Sham M Kakade, and Tong Zhang. Multi-view dimensionality reduction

via canonical correlation analysis. Toyota Technological Institute, Chicago, Illinois, Tech.

Rep. TTI-TR-2008-4, 2008.

D. P. Foster, J. Rodu, and L.H. Ungar. Spectral dimensionality reduction for hmms. Arxiv

preprint arXiv:1203.6130, 2012.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval

research logistics quarterly, 3(1-2):95–110, 1956.

Pasi Franti, Timo Kaukoranta, D-F Shen, and K-S Chang. Fast and memory efficient

implementation of the exact pnn. Image Processing, IEEE Transactions on, 9(5):773–

777, 2000.

Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence. Linear Algebra. Pearson

Education, Inc., 4 edition, 2003.

Jianfeng Gao, Joshua Goodman, Jiangbo Miao, et al. The use of clustering techniques

for language modeling–application to asian languages. Computational Linguistics and

Chinese Language Processing, 6(1):27–60, 2001.

J. S. Garofolo et al. Getting started with the darpa timit cd-rom: An acoustic phonetic

continuous speech database. National Institute of Standards and Technology (NIST),

Gaithersburgh, MD, 107, 1988.

BIBLIOGRAPHY 176

Nicolas Gillis and François Glineur. Low-rank matrix approximation with weights or missing

data is np-hard. SIAM Journal on Matrix Analysis and Applications, 32(4):1149–1165,

2011.

Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012.

Gene H Golub and Hongyuan Zha. The canonical correlations of matrix pairs and their

numerical computation. In Linear algebra for signal processing, pages 27–49. Springer,

1995.

Stephen Guattery and Gary L Miller. On the quality of spectral separators. SIAM Journal

on Matrix Analysis and Applications, 19(3):701–719, 1998.

Aria Haghighi and Dan Klein. Prototype-driven learning for sequence models. In Proceed-

ings of the main conference on Human Language Technology Conference of the North

American Chapter of the Association of Computational Linguistics, pages 320–327. As-

sociation for Computational Linguistics, 2006.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with ran-

domness: Probabilistic algorithms for constructing approximate matrix decompositions.

SIAM review, 53(2):217–288, 2011.

David R Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation analysis:

An overview with application to learning methods. Neural Computation, 16(12):2639–

2664, 2004.

Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. Journal of the

ACM (JACM), 60(6):45, 2013.

Ngoc-Diep Ho. Nonnegative matrix factorization algorithms and applications. PhD thesis,

ÉCOLE POLYTECHNIQUE, 2008.

Harold Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):321–377,

1936.

Daniel Hsu, Sham M Kakade, and Tong Zhang. A spectral algorithm for learning hidden

markov models. arXiv preprint arXiv:0811.4413, 2008.

BIBLIOGRAPHY 177

Daniel Hsu, Sham M Kakade, and Tong Zhang. A spectral algorithm for learning hidden

markov models. Journal of Computer and System Sciences, 78(5):1460–1480, 2012.

Hisashi Ito, S-I Amari, and Kingo Kobayashi. Identifiability of hidden markov information

sources and their minimum degrees of freedom. Information Theory, IEEE Transactions

on, 38(2):324–333, 1992.

Herbert Jaeger. Observable operator models for discrete stochastic time series. Neural

Computation, 12(6):1371–1398, 2000.

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-

convexity: Guaranteed training of neural networks using tensor methods. CoRR

abs/1506.08473, 2015.

Mark Johnson. Why doesn’t em find good hmm pos-taggers? In EMNLP-CoNLL, pages

296–305, 2007.

Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.

Sham M Kakade and Dean P Foster. Multi-view regression via canonical correlation analysis.

In Learning theory, pages 82–96. Springer, 2007.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network

for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

Dan Klein and Christopher D Manning. Corpus-based induction of syntactic structure:

Models of dependency and constituency. In Proceedings of the 42nd Annual Meeting

on Association for Computational Linguistics, page 478. Association for Computational

Linguistics, 2004.

Reinhard Kneser and Hermann Ney. Improved clustering techniques for class-based statis-

tical language modelling. In Third European Conference on Speech Communication and

Technology, 1993.

Terry Koo, Xavier Carreras, and Michael Collins. Simple semi-supervised dependency pars-

ing. In Proceedings of the 46th Annual Meeting of the Association for Computational

Linguistics. Association for Computational Linguistics, 2008.

BIBLIOGRAPHY 178

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-

mender systems. Computer, (8):30–37, 2009.

Volodymyr Kuleshov, Arun Tejasvi Chaganty, and Percy Liang. Tensor factorization via

matrix factorization. arXiv preprint arXiv:1501.07320, 2015.

K. Lari and S. J. Young. The estimation of stochastic context-free grammars using the

inside-outside algorithm. Computer speech & language, 4(1):35–56, 1990.

K.F. Lee and H.W. Hon. Speaker-independent phone recognition using hidden markov

models. Acoustics, Speech and Signal Processing, IEEE Transactions on, 37(11):1641–

1648, 1989.

Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755):788–791, 1999.

Erich Leo Lehmann and George Casella. Theory of point estimation, volume 31. Springer

Science & Business Media, 1998.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. Low-rank tensors

for scoring dependency structures. In Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics, volume 1, pages 1381–1391, 2014.

Omer Levy and Yoav Goldberg. Linguistic regularities in sparse and explicit word repre-

sentations. In Proceedings of the Computational Natural Language Learning, page 171,

2014.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In

Proceedings of the Advances in Neural Information Processing Systems, pages 2177–2185,

2014.

Omer Levy, Yoav Goldberg, Ido Dagan, and Israel Ramat-Gan. Improving distributional

similarity with lessons learned from word embeddings. Transactions of the Association

for Computational Linguistics, 3, 2015.

BIBLIOGRAPHY 179

Shen Li, Joao V Graça, and Ben Taskar. Wiki-ly supervised part-of-speech tagging. In

Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning, pages 1389–1398. Association

for Computational Linguistics, 2012.

Percy Liang and Dan Klein. Analyzing the errors of unsupervised learning. In ACL, pages

879–887, 2008.

P. Liang. Semi-supervised learning for natural language. Master’s thesis, Massachusetts

Institute of Technology, 2005.

Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 581–

588. ACM, 2013.

Lek-Heng Lim. Singular values and eigenvalues of tensors: a variational approach. arXiv

preprint math/0607648, 2006.

Franco M Luque, Ariadna Quattoni, Borja Balle, and Xavier Carreras. Spectral learn-

ing for non-deterministic dependency parsing. In Proceedings of the 13th Conference of

the European Chapter of the Association for Computational Linguistics, pages 409–419.

Association for Computational Linguistics, 2012.

Zhuang Ma, Yichao Lu, and Dean Foster. Finding linear structure in large datasets with

scalable canonical correlation analysis. arXiv preprint arXiv:1506.08170, 2015.

Sven Martin, Jörg Liermann, and Hermann Ney. Algorithms for bigram and trigram word

clustering. Speech communication, 24(1):19–37, 1998.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. Probabilistic cfg with latent anno-

tations. In Proceedings of the 43rd Annual Meeting on Association for Computational

Linguistics, pages 75–82. Association for Computational Linguistics, 2005.

Ryan T McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan

Das, Kuzman Ganchev, Keith B Hall, Slav Petrov, Hao Zhang, Oscar Täckström, et al.

BIBLIOGRAPHY 180

Universal dependency annotation for multilingual parsing. In ACL (2), pages 92–97,

2013.

Bernard Merialdo. Tagging english text with a probabilistic model. Computational linguis-

tics, 20(2):155–171, 1994.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed

representations of words and phrases and their compositionality. In Advances in Neural

Information Processing Systems, pages 3111–3119, 2013.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous

space word representations. In Proceedings of NAACL-HLT, pages 746–751, 2013.

George A Miller and Walter G Charles. Contextual correlates of semantic similarity. Lan-

guage and cognitive processes, 6(1):1–28, 1991.

Scott Miller, Jethran Guinness, and Alex Zamanian. Name tagging with word clusters and

discriminative training. In HLT-NAACL, volume 4, pages 337–342. Citeseer, 2004.

Leon Mirsky. Symmetric gauge functions and unitarily invariant norms. The quarterly

journal of mathematics, 11(1):50–59, 1960.

Andrew Y Ng, Michael I Jordan, Yair Weiss, et al. On spectral clustering: Analysis and an

algorithm. Advances in neural information processing systems, 2:849–856, 2002.

Kamal Nigam, Andrew McCallum, Sebastian Thrun, and Tom Mitchell. Learning to classify

text from labeled and unlabeled documents. AAAI/IAAI, 792, 1998.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin Gimpel, Nathan Schneider, and

Noah A Smith. Improved part-of-speech tagging for online conversational text with word

clusters. Association for Computational Linguistics, 2013.

BIBLIOGRAPHY 181

Patrick Pantel and Dekang Lin. Discovering word senses from text. In Proceedings of the

ACM SIGKDD international conference on Knowledge discovery and data mining, pages

613–619. ACM, 2002.

A. Parikh, L. Song, and E.P. Xing. A spectral algorithm for latent tree graphical models.

In Proceedings of the 28th International Conference on Machine Learning, 2011.

K Pearson. On lines and planes of closest fit to system of points in space. philiosophical

magazine, 2, 559-572, 1901.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors

for word representation. In Proceedings of the Empiricial Methods in Natural Language

Processing, volume 12, 2014.

F. Pereira and Y. Schabes. Inside-outside reestimation from partially bracketed corpora.

In Proceedings of the 30th annual meeting on Association for Computational Linguistics,

pages 128–135. Association for Computational Linguistics, 1992.

Fernando Pereira, Naftali Tishby, and Lillian Lee. Distributional clustering of english words.

In Proceedings of the 31st annual meeting on Association for Computational Linguistics,

pages 183–190. Association for Computational Linguistics, 1993.

Slav Petrov and Dan Klein. Improved inference for unlexicalized parsing. In HLT-NAACL,

volume 7, pages 404–411, 2007.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate, compact,

and interpretable tree annotation. In Proceedings of the 21st International Conference

on Computational Linguistics and the 44th annual meeting of the Association for Com-

putational Linguistics, pages 433–440. Association for Computational Linguistics, 2006.

Slav Petrov, Adam Pauls, and Dan Klein. Learning structured models for phone recognition.

In Proc. of EMNLP-CoNLL, 2007.

Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-speech tagset. arXiv

preprint arXiv:1104.2086, 2011.

BIBLIOGRAPHY 182

Slav Petrov. Products of random latent variable grammars. In Human Language Technolo-

gies: The 2010 Annual Conference of the North American Chapter of the Association

for Computational Linguistics, pages 19–27. Association for Computational Linguistics,

2010.

Eduard Prugovečki. Quantum mechanics in Hilbert space, volume 41. Academic Press,

1971.

Liqun Qi. Eigenvalues of a real supersymmetric tensor. Journal of Symbolic Computation,

40(6):1302–1324, 2005.

L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Pushpendre Rastogi, Benjamin Van Durme, and Raman Arora. Multiview lsa: Represen-

tation learning via generalized cca. In Proceedings of NAACL, 2015.

Lev Ratinov and Dan Roth. Design challenges and misconceptions in named entity recog-

nition. In Proceedings of the Thirteenth Conference on Computational Natural Language

Learning, pages 147–155. Association for Computational Linguistics, 2009.

Sujith Ravi and Kevin Knight. Bayesian inference for zodiac and other homophonic ci-

phers. In Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies-Volume 1, pages 239–247. Association for

Computational Linguistics, 2011.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free

approach to parallelizing stochastic gradient descent. In Advances in Neural Information

Processing Systems, pages 693–701, 2011.

Doug Rohde. SVDLIBC (available at http://tedlab.mit.edu/~dr/SVDLIBC/), 2007.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations

by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

http://tedlab.mit.edu/~dr/SVDLIBC/

BIBLIOGRAPHY 183

Tobias Schnabel and Hinrich Schütze. Flors: Fast and simple domain adaptation for part-of-

speech tagging. Transactions of the Association for Computational Linguistics, 2:15–26,

2014.

Jamshid Shanbehzadeh and PO Ogunbona. On the computational complexity of the lbg

and pnn algorithms. Image Processing, IEEE Transactions on, 6(4):614–616, 1997.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 22(8):888–905, 2000.

Sajid M Siddiqi, Byron Boots, and Geoffrey J Gordon. Reduced-rank hidden markov models.

arXiv preprint arXiv:0910.0902, 2009.

S. Siddiqi, B. Boots, and G. J. Gordon. Reduced-rank hidden Markov models. In Proceed-

ings of the Thirteenth International Conference on Artificial Intelligence and Statistics

(AISTATS-2010), 2010.

Noah A Smith and Jason Eisner. Contrastive estimation: Training log-linear models on

unlabeled data. In Proceedings of the 43rd Annual Meeting on Association for Computa-

tional Linguistics, pages 354–362. Association for Computational Linguistics, 2005.

Noah A Smith and Jason Eisner. Guiding unsupervised grammar induction using contrastive

estimation. In Proc. of IJCAI Workshop on Grammatical Inference Applications, pages

73–82, 2005.

Richard Socher, Christopher D Manning, and Andrew Y Ng. Learning continuous phrase

representations and syntactic parsing with recursive neural networks. In Proceedings of

the NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop, pages 1–9,

2010.

Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. Parsing natural scenes and

natural language with recursive neural networks. In Proceedings of the 28th international

conference on machine learning (ICML-11), pages 129–136, 2011.

Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. Parsing With

Compositional Vector Grammars. In ACL. 2013.

BIBLIOGRAPHY 184

Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, An-

drew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality

over a sentiment treebank. In Proceedings of the conference on empirical methods in

natural language processing (EMNLP), volume 1631, page 1642. Citeseer, 2013.

Le Song, Byron Boots, Sajid M Siddiqi, Geoffrey J Gordon, and Alex Smola. Hilbert space

embeddings of hidden markov models. 2010.

Le Song, Eric P Xing, and Ankur P Parikh. Kernel embeddings of latent tree graphical

models. In Advances in Neural Information Processing Systems, pages 2708–2716, 2011.

Le Song, Eric P Xing, and Ankur P Parikh. A spectral algorithm for latent tree graphical

models. In Proceedings of the 28th International Conference on Machine Learning (ICML-

11), pages 1065–1072, 2011.

Nathan Srebro, Tommi Jaakkola, et al. Weighted low-rank approximations. In Proceedings

of the International Conference on Machine learning, volume 3, pages 720–727, 2003.

Robert G. D. Steel. Relation between poisson and multinomial distributions. Technical

Report BU-39-M, Cornell University, 1953.

GW Stewart and Ji-Guang Sun. Matrix perturbation theory (computer science and scientific

computing), 1990.

Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press Wellesley, MA,

4 edition, 2009.

Karl Stratos, Alexander M Rush, Shay B Cohen, and Michael Collins. Spectral learning of

refinement hmms. In Proceedings of CoNLL, 2013.

Karl Stratos, Do-kyum Kim, Michael Collins, and Daniel Hsu. A spectral algorithm for

learning class-based n-gram models of natural language. Proceedings of the Association

for Uncertainty in Artificial Intelligence, 2014.

Karl Stratos, Michael Collins, and Daniel Hsu. Model-based word embeddings from decom-

positions of count matrices. In Proceedings of the 53rd Annual Meeting of the Association

BIBLIOGRAPHY 185

for Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), pages 1282–1291, Beijing, China, July

2015. Association for Computational Linguistics.

Karl Stratos, Michael Collins, and Daniel Hsu. Unsupervised part-of-speech tagging with

anchor hidden markov models. Transactions of the Association for Computational Lin-

guistics, 4:245–257, 2016.

Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan McDonald, and Joakim Nivre. To-

ken and type constraints for cross-lingual part-of-speech tagging. Transactions of the

Association for Computational Linguistics, 1:1–12, 2013.

Sebastiaan A Terwijn. On the learnability of hidden markov models. In Grammatical

Inference: Algorithms and Applications, pages 261–268. Springer, 2002.

Kristina Toutanova and Mark Johnson. A bayesian lda-based model for semi-supervised

part-of-speech tagging. In Advances in Neural Information Processing Systems, pages

1521–1528, 2007.

Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of

Computational Mathematics, pages 1–46, 2011.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and gen-

eral method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of

the Association for Computational Linguistics, pages 384–394. Association for Computa-

tional Linguistics, 2010.

Jakob Uszkoreit and Thorsten Brants. Distributed word clustering for large scale class-based

language modeling in machine translation. In ACL, pages 755–762, 2008.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,

1984.

Stephen A Vavasis. On the complexity of nonnegative matrix factorization. SIAM Journal

on Optimization, 20(3):1364–1377, 2009.

BIBLIOGRAPHY 186

Santosh Vempala and Grant Wang. A spectral algorithm for learning mixture models.

Journal of Computer and System Sciences, 68(4):841–860, 2004.

Stephan Vogel, Hermann Ney, and Christoph Tillmann. Hmm-based word alignment in

statistical translation. In Proceedings of the 16th conference on Computational linguistics-

Volume 2, pages 836–841. Association for Computational Linguistics, 1996.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–

416, 2007.

Dorothea Wagner and Frank Wagner. Between min cut and graph bisection. Springer, 1993.

Joe H Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the

American statistical association, 58(301):236–244, 1963.

Per-Åke Wedin. Perturbation bounds in connection with singular value decomposition. BIT

Numerical Mathematics, 12(1):99–111, 1972.

Hermann Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller dif-

ferentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Math-

ematische Annalen, 71(4):441–479, 1912.

CF Jeff Wu. On the convergence properties of the em algorithm. The Annals of statistics,

pages 95–103, 1983.

Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain, Dan Kershaw, Xunying Liu,

Gareth Moore, Julian Odell, Dave Ollason, Dan Povey, et al. The HTK book, volume 2.

Entropic Cambridge Research Laboratory Cambridge, 1997.

Tianyi Zhou, Jeff A Bilmes, and Carlos Guestrin. Divide-and-conquer learning by anchoring

a conical hull. In Advances in Neural Information Processing Systems, pages 1242–1250,

2014.

Will Y Zou, Richard Socher, Daniel M Cer, and Christopher D Manning. Bilingual word

embeddings for phrase-based machine translation. In EMNLP, pages 1393–1398, 2013.

187

Part V

Appendices

APPENDIX A. APPENDIX FOR CHAPTER 5 188

Appendix A

Appendix for Chapter 5

A.1 Clustering Algorithm of Brown et al. [1992]

We review the clustering algorithm of Brown et al. [1992]. We first show that maximizing

the log likelihood of the data is equivalent to maximizing the mutual information of clusters

under the Brown model. Then we show an efficient scheme to track changes in the mutual

information.

Given a word sequence x1 . . . xN ∈ [n]N and a cluster mapping C : [n] 7→ [m], the

empirical log likelihood of the sequence is given by

L̂(C) :=
∑

x,x′∈[n]

#(x, x′)× log

(
#(C(x), C(x′))

#(C(x))
× #(x′)

#(C(x′))

)
(A.1)

where #(E) denotes the count of the event E. The empirical mutual information of clusters

is given by

Î(C) :=
∑

x,x′∈[n]

#(C(x), C(x′))

N
× log

(
#(C(x), C(x′))×N
#(C(x))×#(C(x′))

)
(A.2)

APPENDIX A. APPENDIX FOR CHAPTER 5 189

To see arg maxC:[n] 7→[m] L̂(C) = arg maxC:[n]7→[m] Î(C), note that

L̂(C) ∝
∑

x,x′∈[n]

#(x, x′)

N
× log

(
#(C(x), C(x′))

#(C(x))×#(C(x′))
×#(x′)

)

=
∑

x,x′∈[n]

#(x, x′)

N
log

#(C(x), C(x′))×N
#(C(x))×#(C(x′))

+
∑

x,x′∈[n]

#(x, x′)

N
log

#(x′)

N

=
∑

x,x′∈[n]

#(C(x), C(x′))

N
log

#(C(x), C(x′))×N
#(C(x))×#(C(x′))

+
∑
x∈[n]

#(x)

N
log

#(x)

N

= Î(C)− Ĥ

where Ĥ := −∑x∈[n]
#(x)
N log #(x)

N is the empirical entropy of words (independent of C).

In each iteration of the Brown et al. [1992] algorithm, there is a search over O(k2) cluster

pairs to find one whose merge results in the smallest decrease in mutual information. A

naive approach is to take, for each pair, O(k2) time to calculate the mutual information of

the new set of clusters C′ obtained by merging the pair:

∑
c,c′∈C′

#(c, c′)

N
× log

(
#(c, c′)×N

#(c)×#(c′))

)
(A.3)

where N is the number of words in the corpus. Instead, the algorithm maintains a lookup

table L where L(c, c′) contains the loss of mutual information when clusters c and c′ are

merged. Clearly, the runtime of the search using this table is O(k2), rather than O(k4) of

the naive approach.

By fastidiously maintaining relevant quantities, it is possible to update L in O(k2) time

after a merge. First, we track the empirical bigram and unigram cluster probabilities:

p̂(c, c′|C) =
#(c, c′)

N
∀c, c′ ∈ C p̂(c|C) =

#(c)

N
∀c ∈ C

where C is the current set of clusters, |C| = k. Note that p̂ upon a merge can be easily

calculated. For instance, if C′ = C\{α, β}∪{α+β} denotes the new set of clusters obtained

by merging α, β ∈ C as α + β, then p̂(c, α + β|C′) = p̂(c, α|C) + p̂(c, β|C). Using these

probabilities, we can also track the contribution of c, c′ ∈ C in mutual information:

q̂(c, c|C) = p̂(c, c′|C)× log
p̂(c, c′|C)

p̂(c|C)× p̂(c′|C)

APPENDIX A. APPENDIX FOR CHAPTER 5 190

Again, q̂ upon a merge can be easily calculated (since p̂ is). It is convenient to track the

contribution of an individual cluster c ∈ C:

q̂(c|C) =
∑
c′∈C

q̂(c, c′|C) +
∑
c′∈C

q̂(c′, c|C)− q̂(c, c|C)

Now we define the central quantity L(α, β|C): the loss of mutual information upon merging

α, β ∈ C to result in C′ = C\{α, β} ∪ {α+ β}.

L(α, β|C) = q̂(α|C) + q̂(β|C)− q̂(α, β|C)− q̂(β, α|C)

−
∑
c∈C′

q̂(α+ β, c|C′)−
∑
c∈C′

q̂(c, α+ β|C′) + q̂(α+ β, α+ β|C′) (A.4)

This is already an improvement over using Eq. (A.3) since it takes O(k) to compute instead

of O(k2). But a critical observation is that if both c 6= α + β and c′ 6= α + β, then we

can compute L(c, c′|C′) from L(c, c′|C) in constant time. Let C1 = C\{c, c′} ∪ {c + c′} and

C2 = C′\{c, c′} ∪ {c+ c′}. Then

L(c, c′|C′) = L(c, c′|C)− q̂(c+ c′, α|C1)− q̂(α, c+ c′|C1)− q̂(c+ c′, β|C1)− q̂(β, c+ c′|C1)

+ q̂(c+ c′, α+ β|C2) + q̂(α+ β, c+ c′|C2) (A.5)

The final algorithm is given in Figure A.1. The algorithm also limits the number of clusters

to be at most m+ 1 in each iteration, where m is a tunable parameter. The total runtime

of the algorithm is O(N + nm2) where n is the number of word types.

A.2 Incorporating Richer Context

We assume a function φ such that for i ∈ [N], it returns a set of positions other than

i. For example, we may define φ(i) = {i − 1, i + 1} to look at one position to the left

and to the right. Let s = |φ(i)| and enumerate the elements of φ(i) as j1, . . . , js. Define

B(j) ∈ Rn×n, v(j) ∈ Rn for all j ∈ φ(i) as follows:

B
(j)
x,x′ = P (Xi = x,Xj = x′) ∀x, x′ ∈ [n]

v(j)
x = P (Xj = x) ∀x ∈ [n]

The new definitions of B ∈ Rn×ns, v ∈ Rns are given by B = [B(j1), . . . , B(js)] and v =

[(v(j1))>, . . . , (v(js))>]>. Letting Ω ∈ Rn×ns as in Eq. (5.1), it is easy to verify Theorem 5.4.1

using similar techniques.

APPENDIX A. APPENDIX FOR CHAPTER 5 191

BrownClustering

Input: corpus of length N containing n word types, number of active clusters m ≤ n
Output: hierarchical clustering of n word types with m leaf clusters

Variables to maintain: cluster probabilities p̂, contribution in mutual information q̂, loss

in mutual information upon a merge L
Algorithm:

1. Process the corpus to collect relevant statistics. Let w(1) . . . w(n) ∈ [n] be word types

sorted in decreasing frequency.

2. Initialize active clusters C ← {{w(1)}, . . . , {w(m)}} and compute p̂ and q̂. Compute

L(c, c′) from scratch using Eq. (A.4) for all c, c′ ∈ C.

3. For i = (m+ 1) . . . (n+m− 1):

(a) If i ≤ n: let C ← C ∪ {{w(i)}}, and update p̂, q̂, and L.

(b) Compute (α, β)← arg minc,c′∈C L(c, c′|C).

(c) Perform the merge of α and β in C. Update p̂ and q̂.

(d) For c, c′ ∈ C:

i. If c = α+β or c′ = α+β: recompute L(c, c′|C) from scratch using Eq. (A.4).

ii. If c 6= α+β and c′ 6= α+β: update L(c, c′|C) in constant time using Eq. (A.5).

4. Prune the hierarchy to have m leaf clusters.

Figure A.1: The O(N +nm2) clustering algorithm of Brown et al. [1992]. The variables are

explained in the main text.

A.3 Consistency of Clusters: Proof of Theorem 5.4.4

Write the rank-m SVD of Ω as Ω = USV >, and similarly write the rank-m SVD of Ω̂ as

Û ŜV̂ >. Since Ω has rank m, it follows by Eckart-Young that

‖Û ŜV̂ > − Ω̂‖ ≤ ‖Ω− Ω̂‖.

APPENDIX A. APPENDIX FOR CHAPTER 5 192

Therefore, by the triangle inequality,

‖Û ŜV̂ > − USV >‖ ≤ 2‖Ω− Ω̂‖ = 2εσm(Ω).

This implies, via applications of Wedin’s theorem and Weyl’s inequality,

‖U>⊥ Û‖ ≤ 2ε and ‖Û>⊥U‖ ≤
2ε

1− 2ε
(A.6)

where U⊥ ∈ Rn×(n−m) is a matrix whose columns form an orthonormal basis for the orthog-

onal complement of the range of U , and Û⊥ ∈ Rn×(n−m) is similarly defined (and note that

ε < 1/2 by assumption).

Recall that by Theorem 5.4.1, there exists an orthogonal matrix Q ∈ Rm×m such that

U =
√
OQ>. Define Q̂ := Û>

√
O = Û>UQ, and, for all c ∈ [m], q̂c := Q̂ec. The fact that

‖UQec‖ = 1 implies

‖q̂c‖ =

√
1− ‖Û⊥Û>⊥UQec‖2 ≤ 1.

Therefore, by Eq. (A.6),

1 ≥ ‖q̂c‖ ≥ ‖q̂c‖2 ≥ 1−
(

2ε

1− 2ε

)2

. (A.7)

We also have, for c 6= c′,

q̂>c q̂c′ ≤ ‖Û>⊥UQec‖‖Û>⊥UQec′‖ ≤
(

2ε

1− 2ε

)2

, (A.8)

where the first inequality follows by Cauchy-Schwarz, and the second inequality follows from

(A.6). Therefore, by Eq. (A.7) and Eq. (A.8), we have for c 6= c′,

‖q̂c − q̂c′‖2 ≥ 2

(
1− 2

(
2ε

1− 2ε

)2
)
. (A.9)

Let ōx := O
1/2
x,C(x). Recall that

√
O
>
ex = ōxeC(x) ∈ Rm, so Q̂

√
O
>
ex = ōxq̂C(x) and

‖Q̂
√
O
>
ex‖ = ōx‖qC(x)‖. By the definition of Q̂, we have

Û −
√
OQ̂> = Û − UU>Û = U⊥U

>
⊥ Û

This implies, for any x ∈ [n],

‖Û>ex − ōxq̂C(x)‖ = ‖(Û −
√
OQ̂>)>ex‖

= ‖Û>U⊥U>⊥ ex‖ ≤ 2ε (A.10)

APPENDIX A. APPENDIX FOR CHAPTER 5 193

by Eq. (A.6). Moreover, by the triangle inequality,

|‖Û>ex‖ − ōx‖qC(x)‖| ≤ 2ε. (A.11)

Since M̂>ex = ‖Û>ex‖−1Û>ex, we have

‖M̂>ex − q̂C(x)‖ =

∣∣∣∣∣
∣∣∣∣∣ 1

‖Û>ex‖
Û>ex − q̂C(x)

∣∣∣∣∣
∣∣∣∣∣

≤ 1

ōx
‖Û>ex − ōxq̂C(x)‖+ |1− ‖q̂C(x)‖|+

|ōx‖q̂C(x)‖ − ‖Û>ex‖|
ōx

≤ 4ε

ōx
+

(
2ε

1− 2ε

)2

, (A.12)

where the first inequality follow by the triangle inequality and norm homogeneity, and the

second inequality uses Eq. (A.10), Eq. (A.11), and Eq. (A.7). Using Eq. (A.12), we may

upper bound the distance ‖M̂>ex − M̂>ex′‖ when C(x) = C(x′); using Eq. (A.9) and

Eq. (A.12), we may lower bound the distance ‖M̂>ex − M̂>ex′′‖ when C(x) 6= C(x′′). The

theorem then follows by invoking the assumption on ε.

A.4 Sample Complexity: Proof of Theorem 5.4.6

Instead of estimating B, u, and v from a single long sentence, we estimate them (via

maximum likelihood) using N i.i.d. sentences, each of length 2. We make this simplification

because dealing with a single long sentence requires the use of tail inequalities for fast mixing

Markov chains, which is rather involved. Using N i.i.d. sentences allows us to appeal

to standard tail inequalities such as Chernoff bounds because the maximum likelihood

estimates of B, u, and v are simply sample averages over the N i.i.d. sentences. Since the

length of each sentence is 2, we can omit the random choice of index (since it is always 1).

Call these N sentences (X
(1)
1 , X

(1)
2), . . . , (X

(N)
1 , X

(N)
2) ∈ [n]2.

We use the following error decomposition for Ω̂ in terms of the estimation errors for B̂,

APPENDIX A. APPENDIX FOR CHAPTER 5 194

û, and v̂:

Ω̂− Ω = (I − diag(u)−1/2 diag(û)1/2)(Ω̂− Ω)

+ (Ω̂− Ω)(I − diag(v̂)1/2 diag(v)−1/2)

− (I − diag(u)−1/2 diag(û)1/2)(Ω̂− Ω)(I − diag(v̂)1/2 diag(v)−1/2)

+ (I − diag(u)−1/2 diag(û)1/2)Ω

+ Ω(I − diag(v̂)1/2 diag(v)−1/2)

− (I − diag(u)−1/2 diag(û)1/2)Ω(I − diag(v̂)1/2 diag(v)−1/2)

+ diag(u)−1/2(B̂ −B) diag(v)−1/2.

Above, I denotes the n× n identity matrix.

Provided that ε1 := ‖I − diag(u)−1/2 diag(û)1/2‖ and ε2 := ‖I − diag(v̂)1/2 diag(v)−1/2‖
are small enough, we have

‖Ω̂− Ω‖ ≤ ε1 + ε2 + ε1ε2
1− ε1 − ε2

‖Ω‖ (A.13)

+
‖ diag(u)−1/2(B̂ −B) diag(v)−1/2‖

1− ε1 − ε2
. (A.14)

Observe that

ε1 = max
x∈[n]

|1−
√
ûx/ux|, ε2 = max

x∈[n]
|1−

√
v̂x/vx|.

Using Bernstein’s inequality and union bounds, it can be shown that with probability at

least 1− δ,

ε1 ≤ c ·

√ log(n/δ)

uminN
+

log(n/δ)

uminN

 ,

ε2 ≤ c ·

√ log(n/δ)

vminN
+

log(n/δ)

vminN

 ,

for some absolute constant c > 0, where umin := minx∈[n] ux and vmin := minx∈[n] vx.

Therefore we can bound the first term in ‖Ω̂−Ω‖ bound (Eq. (A.13)), and the denominator

in the second term (Eq. (A.14)).

It remains to bound the numerator of the second term of the ‖Ω̂−Ω‖ bound (Eq. (A.14)),

which is the spectral norm of a sum of N i.i.d. random matrices, each with mean zero. We

APPENDIX A. APPENDIX FOR CHAPTER 5 195

focus on a single random sentence (X1, X2) (dropping the superscript). The contribution of

this sentence to the sum defining diag(u)−1/2(B̂ −B) diag(v)−1/2 is the zero-mean random

matrix

Y :=
1

N

(
diag(u)−1/2eX1e

>
X2

diag(v)−1/2 − Ω
)
.

We will apply the matrix Bernstein inequality [Tropp, 2011]; to do so, we must bound the

following quantities:

‖Y ‖, ‖E Y Y >‖, ‖E Y >Y ‖.

To bound ‖Y ‖, we simply use

‖Y ‖ ≤ 1

N

(
1√

uminvmin
+ ‖Ω‖

)
.

To bound ‖E Y Y >‖, observe that

N2 E Y Y > =
∑
x,x′

P (X1 = x,X2 = x′)

P (X1 = x)P (X2 = x′)
exe
>
x − ΩΩ>.

The spectral norm of the summation is∥∥∥∥∥∥
∑
x,x′

P (X1 = x,X2 = x′)

P (X1 = x)P (X2 = x′)
exe
>
x

∥∥∥∥∥∥
= max

x∈[n]

∑
x′

P (X1 = x,X2 = x′)

P (X1 = x)P (X2 = x′)

= max
x∈[n]

∑
x′

Ox,C(x)πC(x)TC(x′),C(x)Ox′,C(x′)

Ox,C(x)πC(x)P (C2 = C(x′))Ox′,C(x′)

= max
x∈[n]

∑
x′

P (C2 = C(x′)|C1 = C(x))

P (C2 = C(x′))
=: n1.

Therefore ‖E Y Y >‖ ≤ (n1 + ‖Ω‖2)/N2. To bound ‖E Y >Y ‖, we use

N2 E Y >Y =
∑
x,x′

P (X1 = x,X2 = x′)

P (X1 = x)P (X2 = x′)
ex′e

>
x′ − Ω>Ω,

APPENDIX A. APPENDIX FOR CHAPTER 5 196

and bound the summation as∥∥∥∥∥∥
∑
x,x′

P (X1 = x,X2 = x′)

P (X1 = x)P (X2 = x′)
ex′e

>
x′

∥∥∥∥∥∥
= max

x′∈[n]

∑
x

P (X1 = x,X2 = x′)

P (X1 = x)P (X2 = x′)

= max
x′∈[n]

∑
x

Ox,C(x)πC(x)TC(x′),C(x)Ox′,C(x′)

Ox,C(x)πC(x)P (C2 = C(x′))Ox′,C(x′)

= max
x′∈[n]

∑
x

P (C2 = C(x′)|C1 = C(x))

P (C2 = C(x′))
=: n2.

Therefore ‖E Y >Y ‖ ≤ (n2 + ‖Ω‖2)/N2.

The matrix Bernstein inequality implies that with probability at least 1− δ,

‖diag(u)−1/2(B̂ −B) diag(v)−1/2‖

≤ c′ ·
(√

max{n1, n2} log(n/δ)

N
+

log(n/δ)√
uminvminN

)
c′ · ‖Ω‖ ·

(√
log(n/δ)

N
+

log(n/δ)

N

)
for some absolute constant c′ > 0.

We can now finally state the sample complexity bound. Let κm(Ω) := σ1(Ω)/σm(Ω) =

‖Ω‖/σm(Ω) be the rank-m condition number of Ω. There is an absolute constant c′′ > 0

such that for any ε ∈ (0, 1), if

N ≥ c′′ · κm(Ω)2 log(n/δ) max {n1, n2, 1/umin, 1/vmin}
ε2

,

then with probability at least 1− δ, ‖Ω̂− Ω‖/σm(Ω) ≤ ε.
We note that n1 and n2 are bounded by n/minc∈[m] πc and n/minc∈[m](Tπ)c, respec-

tively. However, these bounds can be considerably improved in some cases. For instance, if

all transition probabilities in T and initial cluster probabilities in π are near uniform, then

both n1 and n2 are approximately n.

APPENDIX B. APPENDIX FOR CHAPTER 6 197

Appendix B

Appendix for Chapter 6

B.1 Proof of Theorem 6.3.1

We first define some random variables. Let ρ be the number of left/right context words to

consider in CCA. Let (W1, . . . ,WN) ∈ [n]N be a random sequence of words drawn from the

Brown model where N ≥ 2ρ + 1, along with the corresponding sequence of hidden states

(H1, . . . ,HN) ∈ [m]N . Independently, pick a position I ∈ [ρ+1, N−ρ] uniformly at random;

pick an integer J ∈ [−ρ, ρ]\{0} uniformly at random. Define B ∈ Rn×n, u, v ∈ Rn, π̃ ∈ Rm,

and T̃ ∈ Rm×m as follows:

Bw,c := P (WI = w,WI+J = c) ∀w, c ∈ [n]

uw := P (WI = w) ∀w ∈ [n]

vc := P (WI+J = c) ∀c ∈ [n]

π̃h := P (HI = h) ∀h ∈ [m]

T̃h′,h := P (HI+J = h′|HI = h) ∀h, h′ ∈ [m]

First, we show that Ω〈a〉 has a particular structure under the Brown assumption. For the

choice of positive vector s ∈ Rm in the theorem, we define sh := (
∑

w o(w|h)a)−1/2 for all

h ∈ [m].

Lemma B.1.1. Ω〈a〉 = AΘ> where Θ ∈ Rn×m has rank m and A ∈ Rn×m is defined as:

A := diag(Oπ̃)−a/2O〈a〉 diag(π̃)a/2 diag(s)

APPENDIX B. APPENDIX FOR CHAPTER 6 198

Proof. Let Õ := OT̃ . It can be algebraically verified that B = O diag(π̃)Õ>, u = Oπ̃, and

v = Õπ̃. By Assumption 6.3.1, each entry of B〈a〉 has the form

B〈a〉w,c =

∑
h∈[m]

Ow,h × π̃h × Õc,h

a

=
(
Ow,H(w) × π̃H(w) × Õc,H(w)

)a
= Oaw,H(w) × π̃aH(w) × Õac,H(w)

=
∑
h∈[m]

Oaw,h × π̃ah × Õac,h

Thus B〈a〉 = O〈a〉 diag(π̃)a(Õ〈a〉)>. Therefore,

Ω〈a〉 =
(

diag(u)−1/2B diag(v)−1/2
)〈a〉

= diag(u)−a/2B〈a〉 diag(v)−a/2

= diag(Oπ̃)−a/2O〈a〉 diag(π̃)a/2 diag(s)

diag(s)−1 diag(π̃)a/2(Õ〈a〉)> diag(Õπ̃)−a/2

This gives the desired result.

Next, we show that the left component of Ω〈a〉 is in fact the emission matrix O up to

(nonzero) scaling and is furthermore orthonormal.

Lemma B.1.2. The matrix A in Lemma B.1.1 has the expression A = O〈a/2〉 diag(s) and

has orthonormal columns.

Proof. By Assumption 6.3.1, each entry of A is simplified as follows:

Aw,h =
o(w|h)a × π̃a/2h × sh
o(w|H(w))a/2 × π̃a/2H(w)

= o(w|h)a/2 × sh

This proves the first part of the lemma. Note that:

[A>A]h,h′ =

 s2
h ×

∑
w o(w|h)a if h = h′

0 otherwise

Thus our choice of s gives A>A = Im×m.

APPENDIX B. APPENDIX FOR CHAPTER 6 199

Proof of Theorem 6.3.1. With Lemma B.1.1 and B.1.2, the proof is similar to the proof of

Theorem 5.4.1.

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Learning Lexical Representations
	1.2.1 Hierarchical Word Clusters
	1.2.2 Word Embeddings

	1.3 Estimating Parameters of Latent-Variable Models
	1.3.1 Unsupervised POS Tagging
	1.3.2 Phoneme Recognition

	1.4 Thesis Overview
	1.5 Notation

	2 Related Work
	2.1 Latent-Variable Models in NLP
	2.2 Representation Learning in NLP
	2.3 Spectral Techniques

	I The Spectral Framework
	3 A Review of Linear Algebra
	3.1 Basic Concepts
	3.1.1 Vector Spaces and Euclidean Space
	3.1.2 Subspaces and Dimensions
	3.1.3 Matrices
	3.1.4 Orthogonal Matrices
	3.1.5 Orthogonal Projection onto a Subspace
	3.1.6 Gram-Schmidt Process and QR Decomposition

	3.2 Eigendecomposition
	3.2.1 Square Matrices
	3.2.2 Symmetric Matrices
	3.2.3 Variational Characterization
	3.2.4 Semidefinite Matrices
	3.2.5 Numerical Computation

	3.3 Singular Value Decomposition (SVD)
	3.3.1 Derivation from Eigendecomposition
	3.3.2 Variational Characterization
	3.3.3 Numerical Computation

	3.4 Perturbation Theory
	3.4.1 Perturbation Bounds on Singular Values
	3.4.2 Canonical Angles Between Subspaces
	3.4.3 Perturbation Bounds on Singular Vectors

	4 Examples of Spectral Techniques
	4.1 The Moore–Penrose Pseudoinverse
	4.2 Low-Rank Matrix Approximation
	4.3 Finding the Best-Fit Subspace
	4.4 Principal Component Analysis (PCA)
	4.4.1 Best-Fit Subspace Interpretation

	4.5 Canonical Correlation Analysis (CCA)
	4.5.1 Least Squares Interpretation
	4.5.2 New Coordinate Interpretation
	4.5.3 Dimensionality Reduction with CCA

	4.6 Spectral Clustering
	4.7 Subspace Identification
	4.8 Alternating Minimization Using SVD
	4.9 Non-Negative Matrix Factorization
	4.10 Tensor Decomposition

	II Inducing Lexical Representations
	5 Word Clusters Under Class-Based Language Models
	5.1 Introduction
	5.2 Background
	5.2.1 The Brown Clustering Algorithm
	5.2.2 CCA and Agglomerative Clustering

	5.3 Brown Model Definition
	5.4 Clustering Under the Brown Model
	5.4.1 An Overview of the Approach
	5.4.2 Spectral Estimation of Observation Parameters
	5.4.3 Estimation from Samples
	5.4.4 Agglomerative Clustering

	5.5 Experiments
	5.5.1 Experimental Settings
	5.5.2 Comparison to the Brown Algorithm: Quality
	5.5.3 Comparison to the Brown Algorithm: Speed
	5.5.4 Effect of the Choice of and Context

	5.6 Conclusion

	6 Word Embeddings from Decompositions of Count Matrices
	6.1 Introduction
	6.2 Background in CCA
	6.2.1 CCA Objective
	6.2.2 Exact Solution via SVD
	6.2.3 Using CCA for Word Representations

	6.3 Using CCA for Parameter Estimation
	6.3.1 Clustering under a Brown Model
	6.3.2 Spectral Estimation
	6.3.3 Choice of Data Transformation

	6.4 A Template for Spectral Methods
	6.5 Related Work
	6.6 Experiments
	6.6.1 Word Similarity and Analogy
	6.6.2 As Features in a Supervised Task

	6.7 Conclusion

	III Estimating Latent-Variable Models
	7 Spectral Learning of Anchor Hidden Markov Models
	7.1 Introduction
	7.2 The Anchor Hidden Markov Model
	7.3 Parameter Estimation for A-HMMs
	7.3.1 NMF
	7.3.2 Random Variables
	7.3.3 Derivation of a Learning Algorithm
	7.3.4 Construction of the Convex Hull

	7.4 Experiments
	7.4.1 Background on Unsupervised POS Tagging
	7.4.2 Experimental Setting
	7.4.3 Practical Issues with the Anchor Algorithm
	7.4.4 Tagging Accuracy
	7.4.5 Qualitative Analysis

	7.5 Related Work
	7.5.1 Latent-Variable Models
	7.5.2 Unsupervised POS Tagging

	7.6 Conclusion

	8 Spectral Learning of Refinement Hidden Markov Models
	8.1 Introduction
	8.2 Related Work
	8.3 The R-HMM Model
	8.3.1 Definition of an R-HMM

	8.4 The Forward-Backward Algorithm
	8.5 Spectral Estimation of R-HMMs
	8.5.1 Random Variables
	8.5.2 Estimation of the Operators

	8.6 The Spectral Estimation Algorithm
	8.7 Experiments
	8.8 Conclusion

	9 Conclusions
	9.1 Limitations of the Existing Spectral Framework
	9.2 Future Work
	9.2.1 Flexible Framework for Spectral Optimization
	9.2.2 Online/Randomized Spectral Methods
	9.2.3 Spectral Methods for Other NLP Tasks

	IV Bibliography
	Bibliography

	V Appendices
	A Appendix for Chapter 5
	A.1 Clustering Algorithm of brown1992class
	A.2 Incorporating Richer Context
	A.3 Consistency of Clusters: Proof of Theorem 5.4.4
	A.4 Sample Complexity: Proof of Theorem 5.4.6

	B Appendix for Chapter 6
	B.1 Proof of Theorem 6.3.1

