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Unsupervised POS Tagging

I Quintessential unsupervised problem in NLP

This/DET is/VERB unlabeled/ADJ text/NOUN

I Naively estimating an HMM with the EM algorithm
I Terrible performance!
I Problem 1. Model misspecification
I Problem 2. Suboptimal learning

I Extensions
I Better models

Hard-clustering HMM (Brown et al., 1992),
Feature-rich models (Berg-Kirkpatrick et al., 2010)

I Better learning

Contrastive estimation (Smith and Eisner, 2005)

Sparse prior (Johnson, 2007)
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This Work

I New model: Anchor HMM
I Each POS tag is “anchored” at some unambiguous word

NOUN loss

ADP on

NUM 1

DET the

I New learning algorithm
I Based on non-negative matrix factorization (Arora et al., 2012)

I Exact, simple, and efficient

I Competitive with state-of-the-art on universal tagset
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Anchor HMM: Definition
I HMM with structural restriction on emission probabilities

p(x1 . . . xN , h1 . . . hN ) = π(h1)×
N∏
i=1

o(xi|hi)×
N∏
i=2

t(hi|hi−1)

π : initial tag probabilities

o : emission probabilities

t : transition probabilities

I Restriction: each tag has at least 1 “anchor word” that
belongs to that tag only.

o(loss|NOUN) = 0.0001 o(loss|h 6= NOUN) = 0

I Reasonable assumption for POS tags
True for all 10 languages in universal treebank (with 12 tags)
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Game Plan

I Will exploit the anchor restriction to derive an exact
parameter estimation algorithm.

I Key step: non-negative matrix factorization (NMF) of
word-context co-occurrence matrix
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Context Representation
I X ∈ {1 . . . n}: word

I H ∈ {1 . . .m}: POS tag of X

I Pick “context” representation Y ∈ Rd of X.

I Define matrix Ω ∈ Rn×d with rows Ωx := E[Y |X = x].

I Conditions on Y

1. Conditional independence

P (Y |X,H) = P (Y |H)

2. Non-degeneracy

rank(Ω) = m
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Example Y

I Indicator vector of neighboring words Y ∈ {0, 1}2n

the dog saw the cat

1. p(dog, the|saw,verb) = p(dog, the|verb)

2. Ω ∈ Rn×2n has rank m. ∗

∗Unless the model is degenerate.
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Factorization of Ω

I Under the conditions, Ωx := E[Y |X = x] factorizes:

Ωx =
m∑
h=1

p(h|x)× E[Y |h]

I If x is an anchor: Ωx = E[Y |hx]

the

on

loss

Ωx form a convex hull with anchor words at m vertices.
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Finding Anchors (Arora et al., 2012)

0

the

on

loss
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NMF

Input. Ω with rows Ωx = E[Y |X = x], number of anchors m
Conditions. Y � X | H, rank(Ω) = m

1. Find anchor rows Ωa1 . . .Ωam .

2. Express each row Ωx as a convex combination of anchor rows:

Ωx =
m∑

h=1

p(h|x)× Ωah

Can be solved with Frank-Wolfe.

Output. p(h|x) for all tags h, words x
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Basic Idea

I Ωx = E[Y |X = x] can be estimated from unlabeled data.

I NMF of Ω gives “flipped” emission probabilities p(h|x).
I Use them to solve for model parameters.
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Algorithm

1. Estimate Ω̂ by counting word-context cooccurrences:

[Ω̂x]i = p̂(yi|x) =
count(x, yi)

count(x)

2. Compute p̂(h|x)← NMF(Ω̂,m).

3. Use Bayes’ rule to recover emission parameters

ô(x|h)← p̂(h|x)× p̂(x)∑n
x=1 p̂(h|x)× p̂(x)

4. Given ô, recover t̂ and π̂ (easy).
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Practical Issues: Dimensionality Reduction

I Context Y ∈ R2n is sparse and high-dimensional.
I Cumbersome to work with.

I Can use projection Π ∈ R2n×d to reduce dimension
I Conditional independence does not break: YΠ � X | H
I Must ensure that ΩΠ has rank m.

I Various choices of Π:
I Random projection (Arora et al., 2012)

I Projection onto best-fit subspace (i.e., SVD)
I Projection based on canonical correlation analysis (CCA)
I Projection based on hard-clustering assumption
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Practical Issues: Better Anchors

I Issue. Anchors tend to be extremely rare words

Fix. Only consider top K frequent words as anchor candidates

thw the

on

loss

I Issue. No spelling information used

Fix. Augment Ωx with spelling features

The+<CAP>

1988+<NUM>

renewed+<ed>
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Setting

I Dataset. Universal treebank (McDonald et al., 2013)

12 POS tags for 10 languages
Hyperparameters tuned on English portion

I All models trained with 12 hidden states and evaluated on
many-to-1 accuracy

I Models.
I em: HMM trained with EM
I brown: Brown clusters (Brown et al., 1993)

I anchor: Anchor HMM
I anchor-feat: Anchor HMM + spelling features
I log-linear: Log-linear model with same features

(Berg-Kirkpatrick et al., 2010)
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Context for Learning Anchor HMM

I Y ∈ R2n: previous and next words

the dog saw the cat

I Choice of dimensionality reduction

Accuracy (English)

Random 48.2
Best-Fit 53.4

CCA 57.0
Hard 66.1

25 / 31



Results: 12 Universal Tags

de en es fr id it ja ko pt-br sv

em 46 60 61 60 50 52 60 52 60 42
brown 60 63 67 66 59 66 60 48 67 62
anchor 61 66 69 68 64 60 65 54 65 51

anchor-feat 63 71 74 72 67 60 69 62 66 61
log-linear 68 62 67 62 61 53 78 61 63 57

I Anchor HMM: generally good performance
I Spelling features help.
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Results: 45 Original Tags (English)

Accuracy

em 62.6 (1.1)
cluster 65.6
anchor 67.2
anchor-feat 67.7

log-linear 74.9 (1.5)

I Behind log-linear

I Possible reason: spelling features more important with
fine-grained tags

27 / 31



Discovered Anchor Words (for 12 Tags)

German English Spanish French Italian Korean
empfehlen loss y avait radar 완전

wie 1 hizo commune però 중에

; on - Le sulle 경우

Sein one especie de - 줄

Berlin closed Además président Stati 같아요

und are el qui Lo 많은

, take páıses ( legge ,
- , la à al 볼

der vice España États far- 자신의

im to en Unis di 받고

des York de Cette la 맛있는

Region Japan municipio quelques art. 위한

I loss ≈ noun 1 ≈ number on ≈ preposition . . .

I Not perfect, but reasonable

28 / 31



Summary
I New model & algorithm for unsupervised POS tagging

I Anchor HMM: each tag “anchored” at unambiguous word
I NMF-based learning: exact, simple, and efficient

I Automatically discovers anchor words
I Interpretable model

h1 loss

h2 on

h3 1

h4 the

I Future directions
I Can exploit anchor assumption to learn richer model families?
I Can we relax the anchor assumption further?
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Relation to Other HMM Variants

I HMM emission probabilities in matrix form O

Ox,h := o(x|h)


N V

loss 0.4 0.1
set 0.3 0.2
hit 0.2 0.3
ran 0.1 0.4




N V

loss 0.6 0.0
set 0.4 0.0
hit 0.0 0.4
ran 0.0 0.6




N V

loss 0.4 0.0
set 0.3 0.2
hit 0.2 0.3
ran 0.0 0.4


General HMM

Hard-clustering HMM
(Brown et al., 1992)

Anchor HMM
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