Unsupervised Part-Of-Speech Tagging with Anchor Hidden Markov Models

Karl Stratos¹

Joint work with Michael ${\rm Collins}^2$ and ${\rm Daniel}\ {\rm Hsu}^2$

¹Bloomberg (work done while at Columbia University)

²Columbia University (Michael Collins is currently on leave at Google)

Unsupervised POS Tagging

Quintessential unsupervised problem in NLP

This/DET is/VERB unlabeled/ADJ text/NOUN

Naively estimating an HMM with the EM algorithm

- Terrible performance!
- Problem 1. Model misspecification
- Problem 2. Suboptimal learning

Extensions

Better models

Hard-clustering HMM (Brown et al., 1992),

Feature-rich models (Berg-Kirkpatrick et al., 2010)

Better learning

Contrastive estimation (Smith and Eisner, 2005) Sparse prior (Johnson, 2007)

This Work

► New model: Anchor HMM

▶ Each POS tag is "anchored" at some *unambiguous* word

NOUN	loss
ADP	on
NUM	1
DET	the

New learning algorithm

- Based on non-negative matrix factorization (Arora et al., 2012)
- Exact, simple, and efficient

Competitive with state-of-the-art on universal tagset

Overview

Anchor HMM

Learning Anchor HMM

Non-Negative Matrix Factorization (NMF) Parameter Estimation

Experiments

Anchor HMM: Definition

▶ HMM with structural restriction on emission probabilities

$$p(x_1...x_N, h_1...h_N) = \pi(h_1) \times \prod_{i=1}^N o(x_i|h_i) \times \prod_{i=2}^N t(h_i|h_{i-1})$$

- $\pi:$ initial tag probabilities
- o: emission probabilities
- t: transition probabilities

Anchor HMM: Definition

▶ HMM with structural restriction on emission probabilities

$$p(x_1 \dots x_N, h_1 \dots h_N) = \pi(h_1) \times \prod_{i=1}^N o(x_i | h_i) \times \prod_{i=2}^N t(h_i | h_{i-1})$$

$$\pi : \text{initial tag probabilities}$$

$$o : \text{emission probabilities}$$

- t: transition probabilities
- Restriction: each tag has at least 1 "anchor word" that belongs to that tag only.

o(loss|NOUN) = 0.0001 $o(loss|h \neq NOUN) = 0$

Anchor HMM: Definition

▶ HMM with structural restriction on emission probabilities

$$p(x_1 \dots x_N, h_1 \dots h_N) = \pi(h_1) \times \prod_{i=1}^N o(x_i | h_i) \times \prod_{i=2}^N t(h_i | h_{i-1})$$

$$\pi : \text{initial tag probabilities}$$

$$o : \text{emission probabilities}$$

- t: transition probabilities
- Restriction: each tag has at least 1 "anchor word" that belongs to that tag only.

o(loss|NOUN) = 0.0001 $o(loss|h \neq NOUN) = 0$

 Reasonable assumption for POS tags True for all 10 languages in universal treebank (with 12 tags)

Game Plan

 Will exploit the anchor restriction to derive an exact parameter estimation algorithm.

 Key step: non-negative matrix factorization (NMF) of word-context co-occurrence matrix Overview

Anchor HMM

Learning Anchor HMM

Non-Negative Matrix Factorization (NMF) Parameter Estimation

Experiments

Context Representation

- $X \in \{1 \dots n\}$: word
- $H \in \{1 \dots m\}$: POS tag of X

Context Representation

- $X \in \{1 \dots n\}$: word
- $H \in \{1 \dots m\}$: POS tag of X
- Pick "context" representation $Y \in \mathbb{R}^d$ of X.
- Define matrix $\Omega \in \mathbb{R}^{n \times d}$ with rows $\Omega_x := \mathbf{E}[Y|X = x]$.

Context Representation

- $X \in \{1 \dots n\}$: word
- $H \in \{1 \dots m\}$: POS tag of X
- Pick "context" representation $Y \in \mathbb{R}^d$ of X.
- Define matrix $\Omega \in \mathbb{R}^{n \times d}$ with rows $\Omega_x := \mathbf{E}[Y|X = x]$.
- Conditions on Y
 - 1. Conditional independence

$$P(\boldsymbol{Y}|\boldsymbol{X},\boldsymbol{H}) = P(\boldsymbol{Y}|\boldsymbol{H})$$

2. Non-degeneracy

$$\mathsf{rank}(\Omega)=m$$

$\mathsf{Example}\ Y$

• Indicator vector of neighboring words $Y \in \{0,1\}^{2n}$

the dog saw the cat

1. $p(\text{dog}, \text{the}|\text{saw}, \text{VERB}) = p(\text{dog}, \text{the}|\text{VERB}) \checkmark$

2. $\Omega \in \mathbb{R}^{n \times 2n}$ has rank m.

^{*}Unless the model is degenerate.

Factorization of Ω

• Under the conditions, $\Omega_x := \mathbf{E}[Y|X=x]$ factorizes:

$$\Omega_x = \sum_{h=1}^m p(h|x) \times \mathbf{E}[Y|h]$$

Factorization of Ω

• Under the conditions, $\Omega_x := \mathbf{E}[Y|X = x]$ factorizes:

$$\Omega_x = \sum_{h=1}^m p(h|x) \times \mathbf{E}[Y|h]$$

• If x is an anchor: $\Omega_x = \mathsf{E}[Y|h_x]$

Factorization of Ω

• Under the conditions, $\Omega_x := \mathbf{E}[Y|X = x]$ factorizes:

$$\Omega_x = \sum_{h=1}^m p(h|x) \times \mathbf{E}[Y|h]$$

▶ If x is an anchor: $\Omega_x = \mathbf{E}[Y|h_x]$ on loss the

 Ω_x form a **convex hull** with anchor words at m vertices.

Input. Ω with rows $\Omega_x = \mathbf{E}[Y|X = x]$, number of anchors mConditions. $Y \perp X \mid H$, rank $(\Omega) = m$

Input. Ω with rows $\Omega_x = \mathbf{E}[Y|X = x]$, number of anchors mConditions. $Y \perp X \mid H$, rank $(\Omega) = m$

1. Find anchor rows $\Omega_{a_1} \dots \Omega_{a_m}$.

Input. Ω with rows $\Omega_x = \mathbf{E}[Y|X = x]$, number of anchors mConditions. $Y \perp \!\!\!\perp X \mid H$, rank $(\Omega) = m$

1. Find anchor rows $\Omega_{a_1} \dots \Omega_{a_m}$.

2. Express each row Ω_x as a convex combination of anchor rows:

$$\Omega_x = \sum_{h=1}^m p(h|x) \times \Omega_{\mathbf{a_h}}$$

Can be solved with Frank-Wolfe.

Input. Ω with rows $\Omega_x = \mathbf{E}[Y|X = x]$, number of anchors mConditions. $Y \perp \!\!\!\perp X \mid H$, rank $(\Omega) = m$

1. Find anchor rows $\Omega_{a_1} \dots \Omega_{a_m}$.

2. Express each row Ω_x as a convex combination of anchor rows:

$$\Omega_x = \sum_{h=1}^m p(h|x) \times \Omega_{\mathbf{a_h}}$$

Can be solved with Frank-Wolfe.

Output. p(h|x) for all tags h, words x

Overview

Anchor HMM

Learning Anchor HMM Non-Negative Matrix Factorization (NMF) Parameter Estimation

Experiments

• $\Omega_x = \mathbf{E}[Y|X = x]$ can be estimated from unlabeled data.

- ▶ NMF of Ω gives "flipped" emission probabilities p(h|x).
 - Use them to solve for model parameters.

Algorithm

1. Estimate $\widehat{\Omega}$ by counting word-context cooccurrences:

$$[\widehat{\Omega}_x]_i = \hat{p}(y_i|x) = \frac{\operatorname{count}(x, y_i)}{\operatorname{count}(x)}$$

2. Compute
$$\hat{p}(h|x) \leftarrow \mathsf{NMF}(\widehat{\Omega}, m)$$
.

3. Use Bayes' rule to recover emission parameters

$$\hat{o}(x|h) \leftarrow \frac{\hat{p}(h|x) \times \hat{p}(x)}{\sum_{x=1}^{n} \hat{p}(h|x) \times \hat{p}(x)}$$

4. Given \hat{o} , recover \hat{t} and $\hat{\pi}$ (easy).

Practical Issues: Dimensionality Reduction

- Context $Y \in \mathbb{R}^{2n}$ is sparse and high-dimensional.
 - Cumbersome to work with.
- Can use projection $\Pi \in \mathbb{R}^{2n \times d}$ to reduce dimension
 - Conditional independence does not break: $Y \coprod \bot X \mid H$
 - Must ensure that $\Omega \Pi$ has rank m.
- ► Various choices of II:
 - Random projection (Arora et al., 2012)
 - Projection onto best-fit subspace (i.e., SVD)
 - Projection based on canonical correlation analysis (CCA)
 - Projection based on hard-clustering assumption

Practical Issues: Better Anchors

Issue. Anchors tend to be extremely rare words

Fix. Only consider top K frequent words as anchor candidates

Practical Issues: Better Anchors

Issue. Anchors tend to be extremely rare words

Fix. Only consider top K frequent words as anchor candidates

Issue. No spelling information used
 Fix. Augment Ω_x with spelling features
 1988+<NUM>

The+<CAP>

Overview

Anchor HMM

Learning Anchor HMM

Non-Negative Matrix Factorization (NMF) Parameter Estimation

Experiments

Setting

- Dataset. Universal treebank (McDonald et al., 2013)
 12 POS tags for 10 languages
 Hyperparameters tuned on English portion
- All models trained with 12 hidden states and evaluated on many-to-1 accuracy

Models.

- EM: HMM trained with EM
- BROWN: Brown clusters (Brown et al., 1993)
- ► ANCHOR: Anchor HMM
- ► ANCHOR-FEAT: Anchor HMM + spelling features
- LOG-LINEAR: Log-linear model with same features (Berg-Kirkpatrick et al., 2010)

Context for Learning Anchor HMM

the	dog	saw	the	cat
-----	-----	-----	-----	-----

Choice of dimensionality reduction

	Accuracy (English)
Random	48.2
Best-Fit	53.4
CCA	57.0
Hard	66.1

Results: 12 Universal Tags

	de	en	es	fr	id	it	ja	ko	pt-br	SV
EM	46	60	61	60	50	52	60	52	60	42
BROWN	60	63	67	66	59	66	60	48	67	62
ANCHOR	61	66	69	68	64	60	65	54	65	51
ANCHOR-FEAT	63	71	74	72	67	60	69	62	66	61
LOG-LINEAR	68	62	67	62	61	53	78	61	63	57

Anchor HMM: generally good performance

Spelling features help.

Results: 45 Original Tags (English)

	Accuracy
EM	62.6 (1.1)
CLUSTER	65.6
ANCHOR	67.2
ANCHOR-FEAT	67.7
LOG-LINEAR	74.9 (1.5)

- Behind LOG-LINEAR
- Possible reason: spelling features more important with fine-grained tags

Discovered Anchor Words (for 12 Tags)

German	English	Spanish	French	Italian	Korean
empfehlen	loss	у	avait	radar	완전
wie	1	hizo	commune	però	중에
;	on	-	Le	sulle	경우
Sein	one	especie	de	-	줄
Berlin	closed	Además	président	Stati	같아요
und	are	el	qui	Lo	많은
,	take	países	(legge	,
-	,	la	à	al	볼
der	vice	España	États	far-	자신의
im	to	en	Unis	di	받고
des	York	de	Cette	la	맛있는
Region	Japan	municipio	quelques	art.	위한

- ▶ loss \approx noun 1 \approx number on \approx preposition ...
- Not perfect, but reasonable

Summary

- New model & algorithm for unsupervised POS tagging
 - ► Anchor HMM: each tag "anchored" at unambiguous word
 - NMF-based learning: exact, simple, and efficient

- Automatically discovers anchor words
 - Interpretable model

h_1	loss
h_2	on
h_3	1
h_4	the

Future directions

- Can exploit anchor assumption to learn richer model families?
- Can we relax the anchor assumption further?

EXTRA SLIDES

Relation to Other HMM Variants

HMM emission probabilities in matrix form O

 $O_{x,h} := o(x|h)$

General HMM

Hard-clustering HMM (Brown et al., 1992)

Anchor HMM