
Personal Project: Shift-Reduce Dependency Parsing

1 Problem Statement

The goal of this project is to implement a shift-reduce dependency parser. This entails two subgoals:

• Inference: We must have a shift-reduce parser that finds the correct parse given an oracle.

• Learning : We must choose a model that approximates the oracle and train it with labeled data.

2 Framework

2.1 Projective Dependency Trees

Given a sentence x = x1 . . . xn, we want to find its dependency tree structure. The n words x1 . . . xn
correspond to n nodes in the tree. A valid dependency tree y for x is a directed tree over the n nodes
rooted at a special node ∗. We will characterize it as a set of arcs (i, j, l) where the pair (i, j) forms a
directed edge and l ∈ L is the label of the edge. An example is worth a thousand words:

x = I see .

y = {(0, 2,ROOT), (2, 1,SBJ), (2, 3,PU)}

∗ I see .
0 1 2 3

ROOT

SBJ PU

We will only consider projective dependency trees, in which for every edge (i, j) there is a directed path
from i to all nodes between i and j. As an illustration, tree (a) below is not projective since there is no
path from 3 to 4 even though there is an edge (3, 5). In contrast, tree (b) is projective.

∗ x1 x2 x3 x4 x5 ∗ x1 x2 x3 x4 x5

(a) (b)

A projective dependency tree has the “nested property” that for every word x, all words that are reachable
from x form a contiguous subsequence of the sentence. Note that tree (a) violates this property.

2.2 Shift-Reduce Parsing

At any point in parsing sentence x, a shift-reduce parser maintains a parser configuration c = (S,Q,A)
with respect to x where

• S is a stack [. . . i]S of nodes that are processed.

• Q is a queue [j . . .]Q of nodes that are yet to be processed.

• A is a set of arcs at this point.
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The parser moves from one configuration to the next by performing one of the following transitions:

• left-arc(l): ([. . . i, j]S , Q,A)⇒ ([. . . j]S , Q,A ∪ {(j, i, l)})

• right-arc(l): ([. . . i, j]S , Q,A)⇒ ([. . . i]S , Q,A ∪ {(i, j, l)})

• shift: ([. . .]S , [i . . .]Q, A)⇒ ([. . . i]S , [. . .]Q, A)

Let T be the set of all transitions. Given x = x1 . . . xn, the parser initializes the configuration as
c = ([0]S , [1 . . . n]Q, {}) and applies a sequence of transitions t ∈ T to reach the goal configuration
c = ([0]S , []Q, A) for some final set of arcs A. Then it returns y = A as the predicted dependency tree.

3 Inference

Let o be an oracle that predicts the correct transition o(x, c) = t ∈ T for any configuration c with respect
to sentence x. Using this oracle, we can find the true dependency tree for any sentence with the algorithm
Shift-ReduceParse. Note that the running time is linear in the length of the sentence n, since there
can be at most 2n transitions before reaching the goal configuration.

Shift-ReduceParse
Input: a sentence x = x1 . . . xn, an oracle o
Output: a dependency tree y, transition history H

• Initialize c← ([0]S , [1 . . . n]Q, {}) and H ← {}.

• While |S| > 1 or Q 6= [],

� t← o(x, c)

� H ← H ∪ {(c, t)}
� c = (S,Q,A)← t(c)

• Return y = A and H.

4 Learning

Given Q training examples (x(1), y(1)) . . . (x(Q), y(Q)) where x(q) is a sentence and y(q) is the dependency
tree associated with it, we want to train a predictor ô that approximates the oracle o.

4.1 Sample Extraction

Since the oracle receives a sentence x and a parser configuration c with respect to x as the input and
returns a transition t ∈ T as the output, we need to prepare samples of form ((q, c), t) where q ∈ [Q] points
to the relevant sentence x(q). For this purpose, we make use of an auxiliary function NextTransition.

NextTransition
Input: a dependency tree y, a configuration c = (S,Q,A)
Output: the next transition to be applied to c based on y

1. Return shift if |S| < 2.

2. Otherwise, S = [. . . i, j]S for some i < j.

(a) Return left-arc(l) if (j, i, l) ∈ y.

(b) Return right-arc(l) if (i, j, l) ∈ y and every (j, j′, l′) ∈ y is also in A.

(c) Return shift otherwise.
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The extra condition in 2(b) makes sure that node j parents all its children before it is removed from the
stack. This is not necessary in 2(a) since if the tree y is projective, node i must parent all its children
before reaching j in order to satisfy the nested property.

Now we can extract a set of samples E = {((q(z), c(z)), t(z))}Zz=1 of some size Z using the algorithm
ExtractSamples.

ExtractSamples
Input: training examples (x(1), y(1)) . . . (x(Q), y(Q))

Output: a set of samples E = {((q(z), c(z)), t(z))}Zz=1

• E ← {}

• For q = 1 . . . Q,

� Define oracle oq for x(q) as follows. Given configuration c, the oracle will predict

oq(x(q), c) = NextTransition(y(q), c)

� y
q
, Hq ← Shift-ReduceParse(x(q), oq) // y

q
= y(q) must hold

� E ← E ∪ {((q, c), t) : (c, t) ∈ Hq}

• Return E.

4.2 Feature Representation

Now that we have labeld samples ((q, c), t), it is straightforward to train a multiclass classifier that mimics
the oracle. But first, we must decide on how to represent the input (q, c). Let φ be a feature function
that maps a sentence-configuration pair (x, c) to a d-dimensional vector φ(x, c) ∈ Rd. We can use any
features in x and c = (S,Q,A) useful for making prediction, such as

• Part-of-speech tags of the nodes on the stack

• Word identities of the nodes on the stack

• Labels of the arcs originating from the nodes on the stack

For example, suppose we extract a sample ((q, c), t) where

x(q) = I see .

c = ([0, 2, 3]S , []Q, {(2, 1,SBJ)})
t = right-arc(PU)

We can use a binary vector v = φ(x(q), c) ∈ Rd to encode the following information:

ROOT = True

POS(3) = SYM

POS(2) = VB

WORD(3) = .

WORD(2) = see

ARC-L(3) = ∅
ARC-R(3) = ∅
ARC-L(2) = SBJ

ARC-R(2) = ∅

For notational cleanness, we will use E′ = {(v(z), t(z))}Zz=1 = {(φ(x(q
(z)), c(z)), t(z))}Zz=1 to denote the set

of feature-transformed samples.
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4.3 Averaged Perceptron

A linear classifier keeps a weight vector wt ∈ Rd for each t ∈ T and defines a score function f(wt, φ(c)) ∈ R.
Given a sentence x and a parser configuration c with respect to x, an oracle approximator ô using this
classifier will predict

ô(x, c) = arg max
t∈T

f(wt, φ(x, c))

We will choose the averaged perceptron as our classifier, which defines f(wt, φ(c)) = wt ·φ(c). The weight
vector wt ∈ Rd is learned from feature-transformed samples E′ = {(v(z), t(z))}Zz=1 using the algorithm
TrainAveragedPerceptron. Two remarks on this specific installment of the algorithm:

• Averaging : Instead of storing a vector wr,z
t ∈ Rd for all t ∈ T , r ∈ [R], z ∈ [Z] and then averaging

wt =

∑R
r=1

∑Z
z=1 w

r,z
t

RZ

we keep distinct weights w′
t only once and record how many examples it endures without making a

mistake by a dictionary st. Then the final weights are given by

wt ←
∑

w′
t∈st

w′
t × st(w′

t)∑
w′

t∈st
st(w′

t)

• Update: The update scheme here is called “ultraconservative”: wt ← wt +γtφ(c(z)) where γt(z) = 1,∑
t6=t(z) γt = −1, and γt = 0 for t ∈ T on which no mistake is made. The normalization contraint

is necessary for the percetron convergence guarantee.

TrainAveragedPerceptron
Input: E′ = {(v(z), t(z))}Zz=1, number of rounds R ∈ N
Data Structure: a dictionary st for each t ∈ T
Output: wt ∈ Rd for each t ∈ T

• wt ← (0, . . . , 0) ∈ Rd for all t ∈ T

• For r = 1 . . . R, for z = 1 . . . Z,

� For t ∈ T , st(wt)← st(wt) + 1 if wt ∈ st, st(wt)← 1 otherwise

� Find a set of transitions that incorrectly scored higher than the true transition:

Ψ = {t ∈ T − {t(z)} : wt · v(z) > wt(z) · v(z)}

� If |Ψ| > 0,

∗ Update wt(z) ← wt(z) + v(z)

∗ For t ∈ Ψ, update wt ← wt −
1
|Ψ| v

(z)

• Return

wt ←
∑

w′
t∈st

w′
t × st(w′

t)∑
w′

t∈st
st(w′

t)
for all t ∈ T

4.4 Summary

Here we summarize the procedure of estimating the oracle developed in this section. The inputs are
training data of dependency trees, a feature function φ to represent any sentence-configuration pair
(x, c), and the number of training rounds R.
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EstimateOracle
Input: (x(1), y(1)) . . . (x(Q), y(Q)), feature function φ, number of rounds R
Output: an oracle appoximator ô

• E ← ExtractSamples((x(1), y(1)) . . . (x(Q), y(Q)))

• E′ ← {(φ(x(q), c), t) : ((q, c), t) ∈ E}

• {wt}t∈T ← TrainAveragedPerceptron(E′, R)

• Return an oracle approximator ô that predicts for any sentence x and a configuration
c with respect to x

ô(c) = arg max
t∈T

wt · φ(x, c)
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