
Projections onto linear subspaces

Karl Stratos

Viewing vector/matrix multiplications as “projections onto linear subspaces” is one
of the most useful ways to think about these operations. In this note, I’ll put together
necessary pieces to achieve this understanding.

1 Terminology

Given a set of linearly independent vectors {u1, . . . , um} ⊂ Rd where m ≤ d, the
(linear) subspace of Rd spanned by {u1, . . . , um} is defined as:

span({u1, . . . , um}) :=

{
m∑
i=1

aiui

∣∣∣∣ ai ∈ R

}

In other words, span({u1, . . . , um}) is all possible linear combinations of u1 . . . um. If
m = 1, it will be an infinite line. If m = 2, it will be an infinite plane.

Note that for a subspace V ⊂ Rd (e.g., a line, a plane, etc.), there are many choices
for a set of linearly independent vectors that span V. Any of these choices is called a
basis of V. The number of elements in any basis of V can be shown to be unique and
is called the dimension of V. We make two conventions (without loss of generality)
that significantly simplify derivations below.

1. We always choose a basis to be orthogonal unit vectors. Such a basis is called
an orthonormal basis of V.

2. We always organize basis vectors into a matrix: the orthonormal basis u1 . . . um ∈
Rd is expressed as a matrix U := [u1 . . . um] ∈ Rd×m whose i-th column is ui.
Note that U>U = Im×m due to orthogonality.

Given two linearly independent vectors u, v ∈ Rd, we often measure the angle θ
between u and v. This is provided by the dot product between u and v (a result
from the law of cosines):

u>v = ||u|| ||v|| cos(θ) (1)

An important fact from this result is that if u and v are orthogonal, then their dot
product is zero since cos(π/2) = 0. A vector u is orthogonal to the subspace spanned
by U if u>v = 0 for every v ∈ span(U).

1.1 Projection onto a subspace

Consider some subspace of Rd spanned by an orthonormal basis U = [u1, . . . , um].
Given some x ∈ Rd, a central calculation is to find y ∈ span(U) such that ||x− y|| is
the smallest. We call this element the projection of x onto span(U).
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The problem can be made precise as follows. We search for a vector y =
∑m
i=1 aiui

for some constants a1 . . . am ∈ R such that the distance ||x− y|| is minimized. The
answer is given by ai = u>i x and there are at least two ways to obtain this.

Method 1. Define the objective function J(a1 . . . am) = ||x−
∑m
i=1 aiui||. We

can immediately see that the minimum is achieved by regression: we solve for a =
[a1 . . . am]> ∈ Rm minimizing ||x− Ua||2. The closed form answer is given by a =
(U>U)−1U>x = U>x.

Method 2. We note that the vector x− y must be orthogonal to the subspace, since
otherwise we can further decrease the distance. In particular, this means for each

i = 1 . . .m we must have: u>i (x− y) = u>i

(
x−

∑m
j=1 ajuj

)
= u>i x− ai = 0.

Thus the projection of x onto span(U) is given by

y =

m∑
i=1

(u>i x)ui = UU>x

The squared length of this projection is:

||y||2 =

m∑
i=1

(u>i x)2 =
∣∣∣∣U>x∣∣∣∣2

This says that the length of y ∈ Rd is the same as the length of U>x ∈ Rm. For this
reason, the orthonormal matrix U can be viewed as defining a new coordinate system
for projections. In this system, the value of the i-th coordinate is given by the length
of the projection along that coordinate u>i x:

U>x =

u
>
1 x
...

u>mx


To make these points clear:

• The d×d matrix (orthogonal projection) UU> projects a point x onto span(U)
in the same coordinate system, as y = UU>x ∈ Rd.

• The d×m matrix (orthonormal basis) U projects a point x onto span(U) in a
new coordinate system, as U>x ∈ Rm.

Finally, an important property we will exploit later is that because x−y is orthogonal
to y by construction, the Pythagorean theorem gives us

||x||2 = ||y||2 + ||x− y||2 (2)

2 Choice of a subspace

At this point, we know how to project points onto a subspace spanned by an or-
thonormal basis U : for each x, we obtain the projection UU>x. Now given a set of
points x1 . . . xn ∈ Rd, we ask the question: out of all possible subspaces of dimension
m ≤ d, which one should we choose to project the points onto?
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2.1 Best-fit subspace

One sensible choice is a subspace such that the projections onto this subspace y1 . . . yn
minimize

∑n
l=1 ||xl − yl||

2
. This subspace is known as the best-fit subspace for

x1 . . . xn.

In other words, we seek an orthonormal basis V = [v1 . . . vm] such that:

V = arg min
U∈Rd×m: U>U=Im×m

n∑
l=1

∣∣∣∣xl − UU>xl∣∣∣∣2
But since the points are constant, this is equivalent to the following by Eq. (2):

V = arg max
U∈Rd×m: U>U=Im×m

n∑
l=1

∣∣∣∣U>xl∣∣∣∣2
Define the “data matrix” X := [x1 . . . xn]> ∈ Rn×d whose l-th row is x>l . Then∑n
l=1

∣∣∣∣U>xl∣∣∣∣2 = ||XU ||2F = Tr(U>X>XU), so the above problem can be framed as:

V = arg max
U∈Rd×m: U>U=Im×m

Tr(U>X>XU)

This solution is given by the singular value decomposition (SVD) of X = Ū Σ̄V̄ > where
Σ̄ is the diagonal matrix of singular values in decreasing magnitude. Specifically, V
is the first m columns of V̄ , i.e., the right singular vectors of X corresponding to
the largest m singular values. See Appendix 3 for a discussion. Consequently, the
projections onto the best-fit subspace are given by the rows of

XV = ŪmΣ̄m

where Ūm is the first m columns of Ū and Σ̄m is the first m ×m block of Σ̄ in the
upper left corner.

2.1.1 Relation to principal component analysis (PCA)

In general, the best-fit subspace may be useless in characterizing arbitrary x1 . . . xn.
This is because a subspace must pass through the origin. To see how this can be
problematic, suppose we have three points (−1, 1), (0, 1), and (1, 1). Even though
they are in R2, it is obvious they are essentially points −1, 0, 1 in R. But the best-
fit subspace is given by the y-axis. Consequently, all points collapse to (0, 1) when
projected to the best-fit subspace.

A remedy is to first preprocess points so that they are centered at the origin: we
subtract (1/n)

∑n
l=1 xl from each xl. The above example would then be (−1, 0),

(0, 0), and (1, 0) and the best-fit subspace is now given by the x-axis.

Finding the best-fit subspace of “centered” points is called PCA. It has an interpre-
tation of maximizing the variance of projections along each orthogonal axis.

2.1.2 Relation to least squares

Least squares refers to the minimization of squared loss between certain input and
target variables. The original dimension is partitioned as d = m1 +m2 and then m1
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input coordinates and m2 target coordinates are selected. Thus a point xl ∈ Rd is
divided into an input part x̄l ∈ Rm1 and a target part yl ∈ Rm2 . Then we compute

arg min
U∈Rm1×m2

n∑
l=1

∣∣∣∣yl − U>x̄l∣∣∣∣2
This objective is more compactly represented as

∣∣∣∣Y − X̄U ∣∣∣∣2
F

where Y := [y1 . . . yn]>

and X̄ := [x̄1 . . . x̄n]> and the solution is given by U = (X>X)−1X>Y .

While least squares is similar to finding the best-fit subspace in the sense that they
both minimize the sum of squared differences, they are clearly different in major ways.
First, the best-fit subspace is selected based on all coordinates: in contrast, in least
squares, coordinates must be partitioned to input and target variables. Second, there
is no orthonormal constraint on the parameter U in least squares. Third, finding the
best-fit subspace is equivalent to the problem of low-rank approximation which is a
non-convex problem (despite this non-convexity, SVD can find an exact solution): on
the other hand, least squares is a convex problem.

2.2 Random subspace

Perhaps surprisingly, another sensible choice of subspace is a random subspace chosen
independently of the data. This might not sound as sensible as the best-fit subspace
since it does not consider the information in the data. But a crucial advantage of this
approach is that due to its randomness, adversaries are prevented from hindering our
objective by manipulating the data.

An important result is the following.

Theorem 2.1 (Johnson-Lindenstrauss lemma). Let x1 . . . xn ∈ Rd. Then there is a
distribution D over Rd×m where m = O(log n) such that if U ∼ D, then∣∣∣∣U>xi − U>xj∣∣∣∣2 ≈ ||xi − xj ||2
for all i 6= j with high probability.

That is, we can reduce the dimension of data points x1 . . . xn from d to O(log n) while

preserving pairwise distances ||xi − xj ||2 (with high probability). This is accomplished
by linearly embedding the points onto a random m-dimensional subspace.1 Further-
more, the reduced dimension m does not depend on the original dimension d at all,
only the number of data points n. Thus if d is as large as n, this yields an exponential
reduction in dimension.

When should we prefer random subspaces over PCA? Dasgupta (2000) gives an ar-
gument based on clustering under a mixture of 2d Gaussians in Rd. It is easy to
adversarially configure the Gaussians (e.g., symmetrically along each axis) so that
PCA must collapse some of them together in any lower-dimensional subspace, thereby
destroying any hope of separating the collapsed Gaussians. In contrast, a random pro-
jection is guaranteed to preserve pairwise separations independently of d. This is an
example of how randomness prevents adversarial configurations of data.

1Since U ∈ Rd×m is not required to be orthonormal, UU> is generally not a projection in Rd

unlike the best-fit projections. But clearly U>x ∈ Rm resides in some m-dimensional subspace of
Rd, so we will just say U “linearly embeds” x onto it.
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2.2.1 A formulation of the Johnson-Lindenstrauss lemma

Here is a more formal statement of Theorem 2.1.

Theorem 2.2. Given 0 < ε < 1 and 0 < δ < 1, there is a distribution D over Rd×m
where m = O(ε−2 log(n/δ)) such that if U ∼ D, then

(1− ε) ||xi − xj ||2 ≤
∣∣∣∣U>xi − U>xj∣∣∣∣2 ≤ (1 + ε) ||xi − xj ||2

for all i 6= j with probability at least 1− δ.

It turns out that there are many possible distributions D that can be used to prove
Theorem 2.2. One such formulation is the following (a sketch proof is provided in
Appendix 4).

Theorem 2.3 (Indyk and Motwani (1998)). Let 0 < ε < 1 and 0 < δ < 1.
Pick U ∈ Rd×m where each term is randomly drawn as Ui,j ∼ N (0, 1/m) for m =
O(ε−2 log(n/δ)). Then

(1− ε) ||xi − xj ||2 ≤
∣∣∣∣U>xi − U>xj∣∣∣∣2 ≤ (1 + ε) ||xi − xj ||2

for all i 6= j with probability at least 1− δ.

3 Appendix: SVD for optimization

A useful characterization of SVD is the maximization of the norm or the trace. In
particular, we can solve the following problem: given X ∈ Rn×d, find a matrix V =
[v1 . . . vm] ∈ Rd×m such that

V = arg max
U∈Rd×m: U>U=Im×m

||XU ||2F

Since ||M ||F =
√

Tr(M>M), this is the same as

V = arg max
U∈Rd×m: U>U=Im×m

Tr(U>X>XU) (3)

Let X = Ū Σ̄V̄ > be the standard SVD of X (assume n ≥ d wlog):

Ū = [ū1 . . . ūd] ∈ Rn×d Σ̄ = diag(σ1, . . . , σd) ∈ Rd×d V̄ = [v̄1 . . . v̄d] ∈ Rd×d

where σ1 ≥ . . . ≥ σd ≥ 0 and Ū and V̄ have orthonormal columns. Then U>X>XU =
U>V̄ Σ̄2V̄ >U and (3) can be expressed in terms of the right singular vectors:

v1 . . . vm = arg max
u1...um∈Rd:
u>i ui=1 ∀i
u>i uj=0 ∀i6=j

m∑
i=1

d∑
l=1

σ2
l (u>i v̄l)

2 (4)

We will need the following lemma.

Lemma 3.1. Let θ be an angle in [0, π/2]. Let a ≥ b be constants. Then

a cos2(θ) + b sin2(θ)

is maximized at θ = 0.
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Proof. The objective is concave in θ. Setting the derivative with respect to θ to zero,
we arrive in the equation

a sin(2θ) = b sin(2θ)

implying that sin(2θ) = 0 and thus θ = 0. Note that if a = b then θ can be anything
(including 0).

Theorem 3.2. For all 1 ≤ m ≤ d, a solution of (4) is given by vi = v̄i for i = 1 . . .m.

Proof. When m = 1, we seek v1 ∈ Rd such that

v1 = arg max
u∈Rd:
u>u=1

d∑
l=1

σ2
l (u>v̄l)

2 (5)

Let θl denote the angle between u and v̄l. Since both u and v̄l are unit vectors, we
have cos(θl) = u>v̄l by (1). Now select any a 6= b in {1, . . . , d} where σa ≥ σb. Since
v̄a and v̄b are orthogonal, we have θb = π/2− θa and cos(θb) = sin(θa). At maximum
of (5), we must have

θa = arg max
θ∈[0,π/2]

σ2
a cos2(θ) + σ2

b sin2(θ)

By Lemma 3.1, θa = 0 and θb = π/2. Apply this between a = 1 and b = 1 . . . d and
conclude that θ1 = 0 and θl = π/2 for all l 6= 1. Thus v1 = v̄1.

Assume the statement is true for some m = C where 1 ≤ C < d. We consider the
case m = C + 1. For convenience, define

S = {u1 . . . uC+1 ∈ Rd : u>i ui = 1 ∀i, u>i uj = 0 ∀i 6= j}
S′ = {u1 . . . uC ∈ Rd : u>i ui = 1 ∀i, u>i uj = 0 ∀i 6= j}

Observe that the maximum of (4) is achieved at:

max
u1...uC+1∈S

C∑
i=1

d∑
l=1

σ2
l (u>i v̄l)

2 +

d∑
l=1

σ2
l (u>C+1v̄l)

2

= max
u1...uC∈S′

C∑
i=1

d∑
l=1

σ2
l (u>i v̄l)

2 + max
u∈Rd:
u>u=1

u>ui=0 ∀i=1...C

d∑
l=1

σ2
l (u>v̄l)

2

The two terms can be treated independently. The first term is maximized at v̄1 . . . v̄m
by assumption. Thus the solution is given by vi = v̄i for i = 1 . . . C and

vC+1 = arg max
u∈Rd:
u>u=1

u>ui=0 ∀i=1...C

d∑
l=1

σ2
l (u>v̄l)

2

It is easy to verify that vC+1 = v̄C+1 using an argument similar to the above.
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4 Appendix: proof of Theorem 2.3

The proof of Theorem 2.3 relies on the following lemma.

Lemma 4.1. Let z ∈ Rd be any unit vector. There exists a constant C such that
given 0 < ε < 1 and 0 < δ < 1, if we pick m ≥ (C/ε2) log(1/δ) then the matrix
U ∈ Rd×m defined as in Theorem 2.3 satisfies∣∣∣∣∣∣∣U>z∣∣∣∣2 − 1

∣∣∣ > ε

with probability at most δ.

In other words, U preserves the norm of unit vectors. Using this lemma, it is straight-
forward to prove the main theorem, which is re-stated here for convenience.

Theorem (Indyk and Motwani (1998)). Let 0 < ε < 1 and 0 < δ < 1. Pick
U ∈ Rd×m where each term is randomly drawn as Ui,j ∼ N (0, 1/m) for m =
O(ε−2 log(n/δ)). Then

(1− ε) ||xi − xj ||2 ≤
∣∣∣∣U>xi − U>xj∣∣∣∣2 ≤ (1 + ε) ||xi − xj ||2

for all i 6= j with probability at least 1− δ.

Proof. By Lemma 4.1, there is some constant C such that for particular i 6= j, we
can apply Lemma 4.1 to the unit vector (xi − xj)/ ||xi − xj || to obtain∣∣∣∣U>xi − U>xj∣∣∣∣2 > (1 + ε) ||xi − xj ||2 or∣∣∣∣U>xi − U>xj∣∣∣∣2 < (1− ε) ||xi − xj ||2

with probability at most δ′ where m ≥ (C/ε2) log(1/δ′). By the union bound, the
probability that this happens for some i 6= j is at most

(
n
2

)
δ′. Thus for all i 6= j

(1− ε) ||xi − xj ||2 ≤
∣∣∣∣U>xi − U>xj∣∣∣∣2 ≤ (1 + ε) ||xi − xj ||2

with probability at least 1−
(
n
2

)
δ′. Solving for δ′ in m ≥ (C/ε2) log(1/δ′), we obtain

δ′ ≥ exp(−C−1mε2). Thus

δ =

(
n

2

)
δ′ ≥ n2 − n

2
exp

(
− 1

C
mε2

)
When we solve for m, we obtain

m ≥ C

ε2
log

(
n2 − n

2δ

)
Thus the statement holds for m = O(ε−2 log(n/δ)).

Sketch proof of Lemma 4.1. DefineX =
√
mU>z (which is a random variable because

U is random). Note that Xi =
√
mz>ui for independent ui ∼ N (0,m−1Im×m) with

E[Xi] = 0 E[X2
i ] = 1

Thus each Xi is distributed asN (0, 1) and ||X||2 = m
∣∣∣∣U>z∣∣∣∣2 is distributed as χ2(d).

A Chernoff bound on χ2(d) gives the desired result.
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