
A Hitchhiker’s Guide to PCA and CCA

Karl Stratos

1 Notation

Vectors and matrices are denoted by boldface letters. The transpose operator is denoted
by a superscript >. Vectors x(1), . . . ,x(N) ∈ Rn are organized into a matrix in two ways:

Matrix (x1 . . .xN) ∈ RN×n has x>1 . . .x
>
N as rows.

Matrix [x1 . . .xN] ∈ Rn×N has x1 . . .xN as columns.

2 Principal Component Analysis (PCA)

Consider a random variable X ∈ Rn which is an n-dimensional vector. We want to derive
a lower dimensional variable X ∈ Rm (m ≤ n) to represent X. Intuitively, X should
capture as much information about X as possible in these fewer dimensions. PCA finds
X = (X1 . . . Xm) such that each component Xi ∈ R is a one-dimensional projection of X
with maximum variance that is uncorrelated with the previous components. Specifically,
for i = 1 . . .m, it finds

Xi = arg max
Ψ∈R

Var(Ψ)

under the constraint that Ψ = a>X for some vector a ∈ Rn with ||a||2 = 1 and that

Cor(Ψ, Xj) = 0

for j = 1 . . . i− 1. Note that we need to constrain the length of a; otherwise, Var(a>X)
can be arbitrarily large. This new variable X ∈ Rm found by PCA can be viewed as an
optimal m-dimensional representation of X ∈ Rn.

2.1 A Derivation of the Algorithm

Let a1 . . .am be the projection vectors used for deriving X1 . . . Xm. Finding a1 can be
framed as the following optimization problem.

a1 = arg max
a∈Rn: ||a||2=1

Var(a>X) (1)

1

Without loss of generality, we can assume that each dimension is centered so that E[X1] =
· · · = E[Xn] = 0 since Var(X − E[X]) = Var(X) for any random variable X. Using this
assumption, we manipulate the expression as follows.

Var(a>X) = E[(a>X)2]

= E[a>XX>a]

= a>E[XX>]a

= a>CXXa

where CXX ∈ Rn×n is the covariance matrix of X with value [CXX]i,j = Cov(Xi, Xj) =
E[XiXj]. Then the optimization problem in Eq. (1) can be reframed as

a1 = arg max
a∈Rn: ||a||2=1

a>CXXa (2)

Since CXX is positive semi-definite, it has non-negative eigenvalues and orthonormal
eigenvectors. We will now use an eigenvalue decomposition on CXX to solve Eq. (2) (see
section 5.1).

Proposition 1. a1 is the unit eigenvector of CXX with the greatest eigenvalue.

Proof. We use the Lagrangian relaxation to maximize the quantity a>CXXa under the
normalization constraint ||a||2 = 1:

L = a>CXXa +
1

2
λ(1− a>a)

When we differentiate with respect to a and set to zero, we arrive in the equation

CXXa = λa

which tells us that a is an eigenvector of CXX and the Lagrangian multiplier λ is its
eigenvalue. Since our objective is to maximize a>CXXa = λ, the claim follows.

More generally, a1 . . .am are the unit eigenvectors of CXX that correspond to the top m
largest eigenvalues.

Theorem 1. ai is the unit eigenvector of CXX with the ith greatest eigenvalue.

Proof. The base case is given by proposition 1. Let ai be the ith unit eigenvector of CXX .
Then ai maximizes over all a ∈ Rn

a>CXXa = Var(a>X)

while satisfying a>i aj = 0 for j ∈ {1 . . . i− 1}. This means

Cor(aiX,ajX) ∝ a>i CXXaj = λja
>
i aj = 0

where we used CXXaj = λjaj . Hence

ai = arg max
a∈Rn: ||a||2=1

Cor(a>X,a>
j X)=0 ∀j∈{1...i−1}

Var(a>X)

as desired.

2

Theorem 1 states that the eigenvalue λi of CXX is the variance of Xi:

λi = Var(Xi)

Thus we can decide dimension m by inspecting the eigenvalue spectrum of CXX .

We have shown that we can obtain vectors a1 . . .am in a single shot via an eigenvalue de-
composition on CXX . Once we have these vectors, we can form matrix Am = [a1 . . .am] ∈
Rn×m to project X down to X = A>mX.

X = A>mX = (a>1 X . . .a>mX) = (X1 . . . Xm)

The algorithm to compute this projection is given below.

PCA-PROJECTION
Input: covariance matrix CXX ∈ Rn×n for X ∈ Rn where E[Xi] = 0, m ≤ d
Output: PCA projection Am ∈ Rn×m

1. Compute an eigenvalue decomposition

CXX = [a1 . . .an]× Λ× [a1 . . .an]>

where Λ is a diagonal matrix of n eigenvalues λ1 ≥ . . . ≥ λn ≥ 0 and ai is
the corresponding (normalized) eigenvector.

2. Return Am = [a1 . . .am].

Suppose now we wish to recover X from X. Since Am ∈ Rn×m is a mapping from Rn

to Rm, a natural solution is to let the Moore-Penrose pseudoinverse A+
m ∈ Rm×n be a

reverse mapping from Rm to Rd. Then we recover

X̃ = (A+
m)>X

= (AmA+
m)>X

The linear operator AmA+
m ∈ Rn×n is an orthogonal projection onto the subspace

spanned by a1 . . .am. This implies that if we use m = rank(CXX), we will have X̃ = X
exactly. If m < rank(CXX), X̃ ≈ X is not exact; however, the impressive quality of the
best-fit subspace will be demonstrated in the experiment section.

2.2 Sample-Based PCA

In practice, we have samples x(1), . . . ,x(N) ∈ Rn of the random variable X ∈ Rn and
compute an empirical estimate ĈXX of the covariance matrix CXX . Since we must have
E[Xi] = 0, we center the samples to obtain z(1), . . . , z(N) ∈ Rn where each dimension has
zero mean: for all k = 1 . . . N ,

z
(k)
i = x

(k)
i − 1

N

N∑
k=1

x
(k)
i ∀i ∈ {1 . . . n}

3

If we define Z = [z(1) . . . z(N)] ∈ Rn×N , then the covariance matrix is estimated as

ĈXX = 1
NZZ> ∈ Rn×n where

[ĈXX]i,j =
1

N

N∑
k=1

z
(k)
i z

(k)
j

≈ E[(Xi −E[Xi])(Xj −E[Xj])] = Cov(Xi, Xj)

The algorithm for deriving the lower dimensional samples is given below.

PCA-SAMPLE
Input: samples x(1) . . .x(N) of X ∈ Rn, an integer m ≤ n
Output: samples x(1) . . .x(N) of X ∈ Rm

1. Compute µ ∈ Rn where µi = 1
N

∑N
k=1 x

(k)
i . Let Z = [z(1) . . . z(N)] ∈

Rn×N where
z(k) = x(k) − µ

2. ĈXX ← 1
NZZ> ∈ Rn×n

3. Âm ← PCA-PROJECTION(ĈXX ,m)

4. Return x(1), . . . ,x(N) ∈ Rm where

x(k) = Â
>
mz(k)

The new points x(1) . . .x(N) ∈ Rm have zero mean, so when we reverse project using

Â
+

m to approximate the original points, we must add back the subtracted mean to each
dimension:

x̃(k) = Â
+

mx(k) + µ

3 Canonical Correlation Analysis (CCA)

Consider two random variable X ∈ Rn1 and Y ∈ Rn2 . We believe that they characterize
the same object, each a distinct “view” offering different information. So from them, we
want to derive new variables X,Y ∈ Rm (where m ≤ min(n1, n2)) whose correlation is
maximized. CCA finds X = (X1 . . . Xm) and Y = (Y 1 . . . Y m) such that

Xi, Y i = arg max
Φ,Ψ∈R

Cor(Φ,Ψ)

under the constraint that Φ = a>X and Ψ = b>Y for some vectors a ∈ Rn1 and b ∈ Rn2

and that

Cor(Φ, Xj) = 0

Cor(Ψ, Y j) = 0

for j = 1 . . . i − 1. Note that we no longer constrain the length of projection vectors
because scaling does not affect correlation. These new variables X and Y found by CCA
can be viewed as m-dimensional representations of X ∈ Rn1 and Y ∈ Rn2 that have
incorporated our prior belief that X and Y are referring to the same object.

4

3.1 A Derivation of the Algorithm

Let (a1,b1) . . . (am,bm) be the projection vectors used for deriving (X1, Y 1) . . . (Xm, Y m).
Finding (a1,b1) can be framed as the following optimization problem.

(a1,b1) = arg max
a∈Rn1 , b∈Rn2

Cor(a>X,b>Y) (3)

Again, we will assume that each dimension is centered so that

E[X1] = · · · = E[Xn1
] = E[Y1] = · · · = E[Yn2

] = 0

without loss of generality because Cor(X−E[X], Y −E[Y]) = Cor(X,Y) for any random
variables X and Y . Using this assumption, we manipulate the expression as follows.

Cor(a>X,b>Y) =
E[(a>X)(b>Y)]√

E[(a>X)2]E[(b>Y)2]

=
a>E[XY >]b√

a>E[XX>]a
√

b>E[Y Y >]b

=
a>CXY b√

a>CXXa
√

b>CY Y b

where CXY ∈ Rn1×n2 , CXX ∈ Rn1×n1 , and CY Y ∈ Rn2×n2 are the covariance matri-
ces. Maximizing it is equivalent to maximizing only the numerator with an additional
constraint a>CXXa = b>CY Y b = 1. Thus the optimization problem in Eq. (3) can be
reframed as

(a1,b1) = arg max
a∈Rn1 , b∈Rn2 :

a>CXXa=b>CY Y b=1

a>CXY b

We can simplify the constraint by defining Ω ∈ Rn1×n2 , c ∈ Rn1 , and d ∈ Rn2 as

Ω = C
−1/2
XX CXY C

−1/2
Y Y

c = C
1/2
XXa

d = C
1/2
Y Y b

For this, we need CXX and CY Y to be invertible. This corresponds to requiring that
each Xi behaves differently from Xj for j 6= i (similarly for Yi), which is benign in that
we can always choose to ignore redundant variables. Now we first solve for

(c1,d1) = arg max
c∈Rd, d∈Rd′ : ||c||2=||d||2=1

c>Ωd (4)

Then a1 = C
−1/2
XX c1 and b1 = C

−1/2
Y Y d1 are the solution to Eq. (3). We will now use an

SVD on Ω to solve Eq. (4) (see section 5.2).

Proposition 2. c1 and d1 are respectively the left and right unit singular vectors of Ω
with the greatest singular value.

5

Proof. We again use the Lagrangian relaxation to maximize the quantity c>Ωd under
the normalization constraint ||c||2 = ||d||2 = 1:

L = c>Ωd +
1

2
σ(1− c>c) +

1

2
σ′(1− d>d)

When we differentiate with respect to c and d and set to zero, we arrive in the equations

Ωd = σc

Ω>c = σ′d

The fact that σ = σ′ can be seen by multiplying the equations by c> and d>, and using
the normalization constraint,

c>Ωd = σ

d>Ω>c = σ′

where c>Ωd = d>Ωc. This tells us that c is the left and d is the right unit singular
vector of Ω with singular value σ. Since our objective is to maximize c>Ωd = σ, the
claim follows.

More generally, (c1,d1) . . . (cm,dm) are the unit singular vectors of Ω that correspond to
the top m largest singular values.

Theorem 2. ci and di are respectively the left and right unit singular vectors of Ω with
the ith greatest singular value.

Proof. The base case is given by proposition 2. Let (ci,di) be the ith unit singular vectors
of Ω. Then (ci,di) maximizes over all c ∈ Rn1 and d ∈ Rn2

c>Ωd = Cor((C
−1/2
XX c)>X, (C

−1/2
Y Y d)>Y)

while satisfying c>i cj = d>i dj = 0 for j ∈ {1 . . . i− 1}. This means

Cor((C
−1/2
XX ci)

>X, (C
−1/2
XX cj)

>X) = c>i cj = 0

Cor((C
−1/2
Y Y di)

>Y, (C
−1/2
Y Y dj)

>Y) = d>i dj = 0

Letting ai = C
−1/2
XX ci and bi = C

−1/2
Y Y di, we have

(ai,bi) = arg max
a∈Rn1 , b∈Rn2 :

Cor(a>X,a>
j X)=0 ∀j∈{1...i−1}

Cor(b>Y,b>
j Y)=0 ∀j∈{1...i−1}

Cor(a>X,b>Y)

as desired.

Theorem 2 states that the singular value σi of Ω is the correlation between Xi and Y i:

σi = Cor(Xi, Y i)

6

Thus we can decide dimension m by inspecting the singular value spectrum of Ω.

We have shown that we can obtain vectors (c1,d1) . . . (cm,dm) in a single shot via an

SVD on Ω and then set ai = C
−1/2
XX ci and bi = C

−1/2
Y Y di for i = 1 . . .m. Once we have

these vectors, we can form matrix Am = [a1 . . .am] ∈ Rn1×m to project X down to
X = A>mX and matrix Bm = [b1 . . .bm] ∈ Rn2×m to project Y down to Y = B>mX.

X = A>mX = (a>1 X . . .a>mX) = (X1 . . . Xm)

Y = B>mY = (b>1 Y . . .b
>
mY) = (Y 1 . . . Y m)

The algorithm for computing these transformations is given below.

CCA-PROJECTIONS
Input: covariance matrices for X ∈ Rn1 and Y ∈ Rn2 where E[Xi] = E[Yi] = 0

• CXY ∈ Rn1×n2

• invertible CXX ∈ Rn1×n1 and invertible CY Y ∈ Rn2×n2

• dimension m ≤ min(n1, n2)

Output: CCA projections Am ∈ Rn1×m and Bm ∈ Rn2×m

1. Ω← C
−1/2
XX CXY C

−1/2
Y Y ∈ Rd×d′

.

2. Compute an SVD

Ω = [c1 . . . cn1
]× Σ× [d1 . . .dn2

]>

where Σ is a diagonal matrix of singular values σ1 ≥ · · · ≥ σmin(n1,n2) ≥ 0 and
(ci,di) are the corresponding (normalized) left and right singular vectors.

3. Return Am = C
−1/2
XX [c1 . . . cm] and Bm = C

−1/2
Y Y [d1 . . .dm].

3.2 Sample-Based CCA

In practice, we have samples (x(1),y(1)) . . . (x(N),y(N)) of the random variables X ∈
Rn1 and Y ∈ Rn2 and compute empirical estimates ĈXY , ĈXX , and ĈY Y . Since we
must have E[Xi] = E[Yi] = 0, we center the samples to obtain s(1) . . . , s(N) ∈ Rn1 and
t(1), . . . , t(N) ∈ Rn2 : for all k = 1 . . . N ,

s
(k)
i = x

(k)
i − 1

N

N∑
k=1

x
(k)
i ∀i ∈ {1 . . . n1}

t
(k)
i = y

(k)
i − 1

N

N∑
k=1

y
(k)
i ∀i ∈ {1 . . . n2}

If we define S = [s(1) . . . s(N)] ∈ Rn1×N and T = [t(1) . . . t(N)] ∈ Rn2×N , then the
coavriance matrices are estimated as

ĈXY =
1

N
ST> ĈXX =

1

N
SS> ĈY Y =

1

N
TT>

7

The algorithm for deriving the CCA samples is given below. For simplicity, we assume
ĈXX and ĈY Y have full rank, but we can ensure this condition by preprocessing. For
instance, we can remove redundant dimensions with PCA:

x(1) . . .x(N) = PCA-SAMPLE(x
(1)
old . . .x

(N)
old , rank(ĈXX))

y(1) . . .y(N) = PCA-SAMPLE(y
(1)
old . . .y

(N)
old , rank(ĈY Y))

CCA-SAMPLE
Input: samples (x(1),y(1)) . . . (x(N),y(N)) of X ∈ Rn1 and Y ∈ Rn2 , m ≤ min(n1, n2)
Output: samples (x(1),y(1)) . . . (x(N),y(N)) of X ∈ Rm and Y ∈ Rm

1. Compute µX ∈ Rn1 and µY ∈ Rn2 where

µX
i =

1

N

N∑
k=1

x
(k)
i µY

i =
1

N

N∑
k=1

y
(k)
i

Let S = [s(1) . . . s(N)] ∈ Rn1×N and T = [t(1) . . . t(N)] ∈ Rn2×N where

s(k) = x(k) − µX

t(k) = y(k) − µY

2. ĈXY ← 1
N ST>, ĈXX ← 1

N SS>, ĈY Y ← 1
NTT>

3. (Âm, B̂m)← CCA-PROJECTION(ĈXY , ĈXX , ĈY Y ,m)

4. Return x(1), . . . ,x(N) ∈ Rm and y(1), . . . ,y(N) ∈ Rm where

x(k) = Â
>
ms(k)

y(k) = B̂
>
mt(k)

4 Experiments

4.1 PCA

A primary usage of PCA is to condense information into a smaller space. By doing so,
we often gain better understanding of the data and eliminate noise.

4.1.1 Condensed Information

Our data consists of 435 representatives’ voting record on 16 bills, where a vote can be
either yes, no, or ?.1 Thus we can model a representative as a 16-dimensional random

1Congressional Quarterly Almanac, 98th Congress, 2nd session 1984, Volume XL: Congres-
sional Quarterly Inc. Washington, D.C., 1985

8

Figure 1: RED: using all of the original 16 features; BLUE: using the top m PCA components;
GREEN: using a single original feature, averaged over the 16 features

variable

X = (X1 . . . X16) : Xi ∈ {yes, no, ?}

for which we have 435 samples x(1), . . . ,x(435) ∈ R16. The eigenvalue spectrum of the
sample covariance matrix ĈXX ∈ R16×16 is

1 2 3 4 5 · · · 15 16
2971.3 554.9 441.4 347.2 300.6 · · · 88.5 55.4

Note the eigenvalue mass is heavily concentrated in the first few components. This means
given m� 16, the PCA representation

X = (X1 . . . Xm) : Xi ∈ R

will preserve much of the information in the data.

To demonstrate this, we will predict a representative’s party affiliation (either republican
or democratic), using the votes as features to an SVM. We train on 390 points and test on
45 points. The classification performance is shown in figure 1. For training and testing,

• RED: 16 original bills X1, . . . , X16 ∈ {yes, no, ?}
• BLUE: m PCA components Xi, . . . , Xm ∈ R
• GREEN: 1 original bill Xi ∈ {yes, no, ?} (averaged)

We see that there is no drastic loss in accuracy with the lower dimensional PCA repre-
sentation. In particular, note that the top component alone packs an enormous amount
of information. In contrast, using a single original feature performs poorly.

4.1.2 Size Reduction

Consider a 768 × 1024 black and white picture of an old castle. We will “squash” each
row of the image via PCA. A row is modeled as a 1024-dimensional random variable

X = (X1 . . . X1024) : Xi ∈ [0, 1]

9

m = 1 m = 10 m = 100

m = 300 m = 767 original

Table 1: Images restored from varying m values

The eigenvalue spectrum of ĈXX is

1 2 3 4 5 6 · · · 767 768 · · · 1024
54314 11690 6606 1993 1226 948 · · · 1.2265 × 10−4 0 · · · 0

The images restored from various m values are shown in table 1. We can see that the
approximated recovery with m = 767 is almost as good as the original image. This is a
25% reduction in size.

4.2 CCA

CCA is most interesting when the two variables are significantly different. By projecting
them down to the most correlated space, CCA derives new variables that have learned
from each other.

4.2.1 Multi-view Learning

We again consider the classification task in section 4.1.1 with a twist: we only have the
voting record on 7 bills. Thus our view of a person is limited to the following random
variable.

X = (X1 . . . X7) : Xi ∈ {yes, no, ?}

Now, assume we obtain the voting record on the other 9 bills for training only. This
becomes our second view of a person.

Y = (Y1 . . . Y9) : Yi ∈ {yes, no, ?}

Within the training data, CCA learns two projections Am ∈ R7×m and Bm ∈ R9×m that
map X and Y to an m-dimensional space where their correlation is maximized. For the
test data in which the second view is absent, we project each instance (i.e., the votes on
7 bills) with Am and then do the classification, essentially amplifying the semantics of
the data by leveraging the second view that was available in training. The effect is seen
in a boost in performance.

10

Figure 2: The first two dimensions in a CCA representation of words from Gigaword. The two red
dots correspond to “Paul” and “David”.

classification procedure accuracy
single-view learning train (X), test (X) 75%

multi-view learning via CCA train (X,Y), test (X) 78%

As a final example, we derive a CCA represenation of English words. One view of a word
is its identity. The other view is its surrounding context. Figure 2 shows the first two CCA
components of the words obtained from 4.1 billion tokens in the Gigaword dataset. The
horizontal axis corresponds to the first dimension and the vertical axis to the second. The
two red dots correspond to words “Paul” and “David”. Note their closeness, especially in
the first dimension which is far more important than the second. CCA has learned that
“Paul” and “David” are similar words from their neighboring context.

Further Reading

Hardoon, D. R., Szedmak, S. R., and Shawe-Taylor, J. R. (2004). Canonical cor-
relation analysis: An overview with application to learning methods.

Kakade, S. and Foster, D. (2007). Multi-view regression via canonical correlation
analysis.

D Hsu, S M. Kakade, and Tong Zhang (2009). A spectral algorithm for learning
hidden markov models.

Shay Cohen, Karl Stratos, Michael Collins, Dean Foster, and Lyle Ungar (2012).
Spectral learning of latent-variable PCFGs.

11

5 Appendix

5.1 Eigenvalue Decomposition

Let A ∈ Rn×n be a matrix that can be expressed as A = BB> for some real matrix B.
Then A is said to be positive semi-definite and has real non-negative eigenvalues. Thus
an eigenvalue decomposition of A

A︸︷︷︸
n×n

= Q︸︷︷︸
n×n

Λ︸︷︷︸
n×n

Q>︸︷︷︸
n×n

=
[
q1 · · · qn

]
×

λ1 ∅
. . .

∅ λn

×
q
>
1
...

q>n


with the following properties is always possible.

• We have n eigenvalues λ1 ≥ . . . ≥ λn ≥ 0.

• We have n eigenvectors q1, . . . ,qn ∈ Rn such that

� Each qi corresponds to λi.

� Each qi yields q>i qi = 1.

� Each qi yields q>i qj = 0 for j 6= i.

5.2 Singular Value Decomposition

Let A ∈ Rn×m be any real matrix and r = min(n,m). A singular value decomposition
(SVD) of A has the form

A︸︷︷︸
n×m

= U︸︷︷︸
n×n

Σ︸︷︷︸
n×m

V >︸︷︷︸
m×m

=
[
u1 · · · un

]
×


σ1 ∅

. . .

σr
∅

×
v
>
1
...

v>m


with the following properties

• We have r singular values σ1 ≥ . . . ≥ σr ≥ 0.

• We have n left singular vectors u1, . . . ,un ∈ Rn and m right singular vectors
v1, . . . ,vm ∈ Rm such that

� Each pair (ui,vi) corresponds to σi for j = 1 . . . r.

� Each pair (ui,vi) yields u>i ui = v>i vi = 1.

� Each pair (ui,vi) yields u>i uj = v>i vj = 0 for j 6= i.

The singular values of A ∈ Rn×m are related to the eigenvalues of AA> ∈ Rn×n as

σi =
√
λi

where λ1 . . . λr are the top r eigenvalues of AA> sorted in descending order.

12

