Notes on online convex optimization*

Karl Stratos

Online convex optimization (OCO) is a principled framework for online learning:

OnlineConvexOptimization
Input: convex set S, number of steps T

e Fort=1,2,...,T:
— Select w; € S.

— Receive a convex loss f; : S — R chosen adversarially.
— Suffer loss fi(w;).

Each hypothesis is a vector in some convex set S. The loss function f; : S — R is
convex and defined for each time step ¢ individually. Our goal is to have small “regret”
with respect to a hypothesis space U, namely Regret,(U) := max,cy Regret,(u)
where

T
Regret,(u) := Z fe(we) — fi(u)

1 Unregularized aggregate loss minimization

At time ¢, we have observed losses fi ... fi—1, so a natural choice of w; is one that
minimizes the sum of all past losses. This is known as Follow-the-Leader (FTL):

t—1

wy = arg minz fi(w) (1)
wesS T
Lemma 1.1. If we use Eq. (1) in OCO, we have

T
Regret;(S) < Z fe(we) = fe(weg)
t=1

2 Regularized aggregate loss minimization

Lemma 1.1 suggests a need for containing fi(wi) — fi(wer1). If we assume f; is
L;-Lipschitz with respect to S and some norm ||-||, we have

fe(we) — fe(wegr) < Ly |Jwe — wega]

*This is a bird’s eye view of the incredible tutorial by Shai Shalev-Shwartz (2011). For full details,
see the original tutorial.

which in turn suggests a need for containing ||w; — wy41]|. If the objective in Eq. (1)

t—1
Fy(w) == fi(w)
i=1
happens to be o-strongly-convez, ||wy — wi41|| cannot be arbitrarily large: by the
definition of wy and w1 and strong convexity,
o
Fy(wiy1) — Fi(wy) = 3 llwe = we |
o
Fyr1(we) = Fpa(wega) 2 5 fJwe = wi |

Adding these two inequalities, we get:

fe(wi) — fr(wigr)

(2

lwe — wipa|] < <

Ly

2

We can always endow o-strong-convexity on F; by adding a o-strongly-convex regu-
larizer R : S — R. This is known as Follow-the-Regularized-Leader (FoReL):

weS

t—1
wy = argmin R(w) + Z fi(w) (2)
i=1

By treating R as the (convex) “loss at time ¢t = 07, we get the following corollary
from Lemma 1.1.

Corollary 2.1. If we use Eq. (2) in OCO, for all u € S we have

T
Regretp(u) < R(u) — min R(v)+ > fulws) = fi(wisa)
t=1

Theorem 2.2. Let f; : S — R be convex loss functions that are L;-Lipschitz over
convex S with respect to ||-||. Let L € R be a constant such that L* > (1/T) Zthl L?,
and let R : S — R be a o-strongly-convez reqularizer. Then the regret of FoReL with
respect to u € S is bounded above as:

TL?

Regrety(u) < R(u) — Iglelél R(v) + —

3 Linearization of convex losses

Theorem 2.2 assumes an oracle that solves Eq. (2), so it’s not very useful for deriving
concrete algorithms. But a technique known as “linearization” of convex losses greatly
simplifies this task. Since S is a convex set and f; is convex, at each round of OCO
we can select z; € 9f;(w;) so that

fe(we) = fe(wegr) < (2, we) — (20, Wip1) 3

Thus given a general convex loss f;, we can pretend that it’s a linear loss g;(u) :=
(zt,u) where z; is a sub-gradient of f; at ws. In light of Corollary 2.1 and Eq. (3),
running FoReL on these linearized losses:

~

t—1
wy = argmin R(w) + Z (w, z;) (4)
weS i=1

enjoys the same regret bound in Theorem 2.2.

3.1 Online mirror descent
Eq. (4) can be additionally analyzed in a dual framework known as online mirror

descent (OMD). OMD frames Eq. (4) as two separate steps: starting with 6, := 0,

Wy = 9(9t)
Oy =0i1 — 21

where g(f) := arg max,,c g (w, #) — R(w) is known as the link function. The particular
form of the link function comes from the convex conjugate of R (R is assumed to be
closed and convex):

R*(0) := max (w,0) — R(w)

A property of R* is that if z € OR*(0), then R*(0) = (z,0) — R(z). Thus ¢g(6;) = 2z €
OR*(0;). This framework can be used to show that OMD achieves

- Z) 5)

i=1

t

T
Regret <R in R Dpg+ | — i
egrety(u) < R(u) + min (v) + ; R (Z z

i=1

where D« (ul|v) is the Bregman divergence between « and v under R*. If R is (1/7)-
strongly-convex with respect to ||-||, then R* is n-strongly-smooth with respect to the
dual norm [|-||,: in this case,

T
. n 2
Regrety(u) < R(u) +min R(v) + 5 ; [EA] (6)

3.2 Example algorithms

We can now crank out algorithms under the OMD framework. All these algorithms
enjoy the bound in Theorem 2.2 (or Eq. (6)).

Online gradient descent (OGD): Assumes an unconstrained domain S = R? and
an [y regularizer R(w) = % ||w||§ We have ¢(0) = nf and

Wt = Wt—1 — N2t-1 (7)

Online gradient descent with lazy projections (OGDLP): Assumes a general

convex set S and an Iy regularizer R(w) = ﬁ \|w||§ Note that

o1 .
w; = arg min o ||w||§ — (w, 0;) = argmin ||w — 779t||§ (8)
weS weS

Thus the link function g(#) projects n6 onto S.

Unnormalized exponentiated gradient descent (UEG): Assumes an uncon-
strained domain S = R? and a shifted entropy regularizer R(w) = %Zl w;(logw; —

1—1log A) where A > 0. We have g;(0) = Aexp(n0;), thus w; = (A...) and for i > 1:

[we]i = [wi—1]i exp(—=n[zt-1]i) 9)

Normalized exponentiated gradient descent (NEG): Assumes a probability
simplex S = {w € R? : w > 0,5, w; = 1} and an entropy regularizer R(w) =
%El w; logw;. We have g;(6) = %, thus wy = (1/d...1/d) and for ¢ > 1:
[wi—1]; exp(—n[zi-1]i)
Zj[wtfl}j exp(—nlzt-1]5)

(10)

[wt]i =

4 Applications to classification problems

The central step in applying OCO to a classification problem is finding the right
“convex surrogate” of the problem.

4.1 Perceptron

At each round, we're given a point x; € R%. We predict p; € {—1,+1} and receive
the true class y; € {—1,4+1}. The (non-convex) loss is given by

1 if

Note that the cumulative loss M := ", l(ps, y¢) is the number of mistakes.

Convex surrogate: We maintain a vector w; € R? that defines p; := sign(wy,).
We use a “hinge” loss

fi(wy) := max(0, 1 — y4 {we, x4))

which by the particular construction is convex and upperbounds the original loss
U(pt,yt). Using a sub-gradient z; € df;(w;) where z; = —yxy if y{wy, z) < 1 and
z¢ = 0 otherwise, we can now run OGD using some 1 > 0: w; := 0 and

w4 wet gy i y(wg,) <1
t+l Wi lf yt<wt,xt> > 1

Let L :=max; ||z|. It’s possible to apply Eq. (6) and show that for any u € R?

M <y filw)+ ||u||2L\/%+L2 el

In particular, if there exists u € R? such that), f;(u) = 0, we have M < L2 Hu||§

4.2 Weighted majority

At each round, we’re given a point x; € X and d hypotheses H = {hq,..., hq} where
hi : X — {0,1}. We make a choice p; € [d] and receive the true class y; € {0,1}. The
(non-convex) loss is given by

1 ifhy () #
I(pe, yt) = { 0 if hy,(x) =u

Convex surrogate: We maintain a vector wy € {w € RY : w > 0, >, w; = 1}
This vector defines “weighted majority”: p; =1 if Z?Zl[wt]ihi(xt) >1/2and p; =0
otherwise. We use the convex loss function:

d
felwe) =Y wili [hi(we) = yi| = (wy, 20)
i=1
where [z]; := |hi(z) — y¢| (thus 2z, is also the gradient of f;). Hence we have an

online linear problem suitable for NEG. It’s possible to show that if there exists some
h € H such that Zthl |h(x¢) — y¢| = 0, then NEG achieves }_, f;(w;) < 4logd.

4.2.1 Multi-armed bandit

A problem closely related to weighted majority is the so-called multi-armed bandit
problem. At each round, there d slot machines (“one-armed bandits”) to choose from.
We make a choice p; € [d] and receive the cost of playing that machine: [y;],, € [0,1].
A crucial aspect of the problem is the existence of unobserved costs [y;]; € [0,1] for
i # py, because if we observe all y; € [0,1]% we can just formulate it as an online linear
problem by minimizing the expected loss

fe(we) = (wi, ye)

where w; € {w € R : w > 0, 3", w; = 1} again defines “weighted majority” over d
machines. Since y; is the gradient of f;, another way of stating the difficulty is that
gradients are not fully observed.

A solution is to use a p;-dependent estimator zt(p *) of the gradient y; as follows:

[Z(Pt)]. [yeli/[we]s if i = py
L 0 ifi#p
This is indeed an unbiased estimator of y; over the randomness of p; since

d
B = Y pn el = w2+ 3 0=)
K3 #’L

pr=1

Thus we can run NEG by substituting the unobserved gradient y; with zt(p) Note
that the algorithm will be slightly different from the weighted majority algorithm
since we need to actually make the prediction p; ~ w; which is required for computing
z,ﬁp J T possible to derive regret bounds where the regret is defined as the difference
between the algorithm’s expected cumulative cost (over the randomness of p;) and

the cumulative cost of the best machine:

T

T
Z[%]pt] - flelhfﬁ Z[yt]z

t=1

E

Reference

Shalev-Shwartz, S. (2011). Online Learning and Online Convex Optimization.

