
Notes on online convex optimization∗

Karl Stratos

Online convex optimization (OCO) is a principled framework for online learning:

OnlineConvexOptimization
Input: convex set S, number of steps T

• For t = 1, 2, . . . , T :

– Select wt ∈ S.

– Receive a convex loss ft : S → R chosen adversarially.

– Suffer loss ft(wt).

Each hypothesis is a vector in some convex set S. The loss function ft : S → R is
convex and defined for each time step t individually. Our goal is to have small “regret”
with respect to a hypothesis space U , namely RegretT (U) := maxu∈U RegretT (u)
where

RegretT (u) :=

T∑
t=1

ft(wt)− ft(u)

1 Unregularized aggregate loss minimization

At time t, we have observed losses f1 . . . ft−1, so a natural choice of wt is one that
minimizes the sum of all past losses. This is known as Follow-the-Leader (FTL):

wt = arg min
w∈S

t−1∑
i=1

fi(w) (1)

Lemma 1.1. If we use Eq. (1) in OCO, we have

RegretT (S) ≤
T∑
t=1

ft(wt)− ft(wt+1)

2 Regularized aggregate loss minimization

Lemma 1.1 suggests a need for containing ft(wt) − ft(wt+1). If we assume ft is
Lt-Lipschitz with respect to S and some norm ||·||, we have

ft(wt)− ft(wt+1) ≤ Lt ||wt − wt+1||
∗This is a bird’s eye view of the incredible tutorial by Shai Shalev-Shwartz (2011). For full details,

see the original tutorial.

1

which in turn suggests a need for containing ||wt − wt+1||. If the objective in Eq. (1)

Ft(w) :=

t−1∑
i=1

fi(w)

happens to be σ-strongly-convex, ||wt − wt+1|| cannot be arbitrarily large: by the
definition of wt and wt+1 and strong convexity,

Ft(wt+1)− Ft(wt) ≥
σ

2
||wt − wt+1||2

Ft+1(wt)− Ft+1(wt+1) ≥ σ

2
||wt − wt+1||2

Adding these two inequalities, we get:

||wt − wt+1|| ≤
ft(wt)− ft(wt+1)

σ
≤ Lt

σ

We can always endow σ-strong-convexity on Ft by adding a σ-strongly-convex regu-
larizer R : S → R. This is known as Follow-the-Regularized-Leader (FoReL):

wt = arg min
w∈S

R(w) +

t−1∑
i=1

fi(w) (2)

By treating R as the (convex) “loss at time t = 0”, we get the following corollary
from Lemma 1.1.

Corollary 2.1. If we use Eq. (2) in OCO, for all u ∈ S we have

RegretT (u) ≤ R(u)−min
v∈S

R(v) +

T∑
t=1

ft(wt)− ft(wt+1)

Theorem 2.2. Let ft : S → R be convex loss functions that are Lt-Lipschitz over
convex S with respect to ||·||. Let L ∈ R be a constant such that L2 ≥ (1/T)

∑T
t=1 L

2
t ,

and let R : S → R be a σ-strongly-convex regularizer. Then the regret of FoReL with
respect to u ∈ S is bounded above as:

RegretT (u) ≤ R(u)−min
v∈S

R(v) +
TL2

σ

3 Linearization of convex losses

Theorem 2.2 assumes an oracle that solves Eq. (2), so it’s not very useful for deriving
concrete algorithms. But a technique known as “linearization” of convex losses greatly
simplifies this task. Since S is a convex set and ft is convex, at each round of OCO
we can select zt ∈ ∂ft(wt) so that

ft(wt)− ft(wt+1) ≤ 〈zt, wt〉 − 〈zt, wt+1〉 (3)

Thus given a general convex loss ft, we can pretend that it’s a linear loss gt(u) :=
〈zt, u〉 where zt is a sub-gradient of ft at wt. In light of Corollary 2.1 and Eq. (3),
running FoReL on these linearized losses:

wt = arg min
w∈S

R(w) +

t−1∑
i=1

〈w, zi〉 (4)

enjoys the same regret bound in Theorem 2.2.

2

3.1 Online mirror descent

Eq. (4) can be additionally analyzed in a dual framework known as online mirror
descent (OMD). OMD frames Eq. (4) as two separate steps: starting with θ1 := 0,

wt = g(θt)

θt = θt−1 − zt−1

where g(θ) := arg maxw∈S 〈w, θ〉−R(w) is known as the link function. The particular
form of the link function comes from the convex conjugate of R (R is assumed to be
closed and convex):

R?(θ) := max
w∈S
〈w, θ〉 −R(w)

A property of R? is that if z ∈ ∂R?(θ), then R?(θ) = 〈z, θ〉−R(z). Thus g(θt) = zt ∈
∂R?(θt). This framework can be used to show that OMD achieves

RegretT (u) ≤ R(u) + min
v∈S

R(v) +

T∑
t=1

DR?

(
−

t∑
i=1

zi

∣∣∣∣∣∣∣∣− t−1∑
i=1

zi

)
(5)

where DR?(u||v) is the Bregman divergence between u and v under R?. If R is (1/η)-
strongly-convex with respect to ||·||, then R? is η-strongly-smooth with respect to the
dual norm ||·||?: in this case,

RegretT (u) ≤ R(u) + min
v∈S

R(v) +
η

2

T∑
t=1

||zt||2? (6)

3.2 Example algorithms

We can now crank out algorithms under the OMD framework. All these algorithms
enjoy the bound in Theorem 2.2 (or Eq. (6)).

Online gradient descent (OGD): Assumes an unconstrained domain S = Rd and

an l2 regularizer R(w) = 1
2η ||w||

2
2. We have g(θ) = ηθ and

wt = wt−1 − ηzt−1 (7)

Online gradient descent with lazy projections (OGDLP): Assumes a general

convex set S and an l2 regularizer R(w) = 1
2η ||w||

2
2. Note that

wt = arg min
w∈S

1

2η
||w||22 − 〈w, θt〉 = arg min

w∈S
||w − ηθt||22 (8)

Thus the link function g(θ) projects ηθ onto S.

Unnormalized exponentiated gradient descent (UEG): Assumes an uncon-
strained domain S = Rd and a shifted entropy regularizer R(w) = 1

η

∑
i wi(logwi −

1− log λ) where λ > 0. We have gi(θ) = λ exp(ηθi), thus w1 = (λ . . . λ) and for i > 1:

[wt]i = [wt−1]i exp(−η[zt−1]i) (9)

3

Normalized exponentiated gradient descent (NEG): Assumes a probability
simplex S = {w ∈ Rd : w ≥ 0,

∑
i wi = 1} and an entropy regularizer R(w) =

1
η

∑
i wi logwi. We have gi(θ) = exp(ηθi)∑

j exp(ηθj)
, thus w1 = (1/d . . . 1/d) and for i > 1:

[wt]i =
[wt−1]i exp(−η[zt−1]i)∑
j [wt−1]j exp(−η[zt−1]j)

(10)

4 Applications to classification problems

The central step in applying OCO to a classification problem is finding the right
“convex surrogate” of the problem.

4.1 Perceptron

At each round, we’re given a point xt ∈ Rd. We predict pt ∈ {−1,+1} and receive
the true class yt ∈ {−1,+1}. The (non-convex) loss is given by

l(pt, yt) :=

{
1 if pt 6= yt
0 if pt = yt

Note that the cumulative loss M :=
∑
t l(pt, yt) is the number of mistakes.

Convex surrogate: We maintain a vector wt ∈ Rd that defines pt := sign〈wt, xt〉.
We use a “hinge” loss

ft(wt) := max(0, 1− yt〈wt, xt〉)

which by the particular construction is convex and upperbounds the original loss
l(pt, yt). Using a sub-gradient zt ∈ ∂ft(wt) where zt = −ytxt if yt〈wt, xt〉 ≤ 1 and
zt = 0 otherwise, we can now run OGD using some η > 0: w1 := 0 and

wt+1 :=

{
wt + ηytxt if yt〈wt, xt〉 ≤ 1

wt if yt〈wt, xt〉 > 1

Let L := maxt ||zt||. It’s possible to apply Eq. (6) and show that for any u ∈ Rd

M ≤
∑
t

ft(u) + ||u||2 L
√∑

t

ft(u) + L2 ||u||22

In particular, if there exists u ∈ Rd such that
∑
t ft(u) = 0, we have M ≤ L2 ||u||22.

4.2 Weighted majority

At each round, we’re given a point xt ∈ X and d hypotheses H = {h1, . . . , hd} where
hi : X → {0, 1}. We make a choice pt ∈ [d] and receive the true class yt ∈ {0, 1}. The
(non-convex) loss is given by

l(pt, yt) :=

{
1 if hpt(xt) 6= yt
0 if hpt(xt) = yt

4

Convex surrogate: We maintain a vector wt ∈ {w ∈ Rd : w ≥ 0,
∑
i wi = 1}.

This vector defines “weighted majority”: pt = 1 if
∑d
i=1[wt]ihi(xt) ≥ 1/2 and pt = 0

otherwise. We use the convex loss function:

ft(wt) :=

d∑
i=1

[wt]i |hi(xt)− yt| = 〈wt, zt〉

where [zt]i := |hi(xt)− yt| (thus zt is also the gradient of ft). Hence we have an
online linear problem suitable for NEG. It’s possible to show that if there exists some
h ∈ H such that

∑T
t=1 |h(xt)− yt| = 0, then NEG achieves

∑
t ft(wt) ≤ 4 log d.

4.2.1 Multi-armed bandit

A problem closely related to weighted majority is the so-called multi-armed bandit
problem. At each round, there d slot machines (“one-armed bandits”) to choose from.
We make a choice pt ∈ [d] and receive the cost of playing that machine: [yt]pt ∈ [0, 1].
A crucial aspect of the problem is the existence of unobserved costs [yt]i ∈ [0, 1] for
i 6= pt, because if we observe all yt ∈ [0, 1]d we can just formulate it as an online linear
problem by minimizing the expected loss

ft(wt) := 〈wt, yt〉

where wt ∈ {w ∈ Rd : w ≥ 0,
∑
i wi = 1} again defines “weighted majority” over d

machines. Since yt is the gradient of ft, another way of stating the difficulty is that
gradients are not fully observed.

A solution is to use a pt-dependent estimator z
(pt)
t of the gradient yt as follows:

[z
(pt)
t]i

{
[yt]i/[wt]i if i = pt

0 if i 6= pt

This is indeed an unbiased estimator of yt over the randomness of pt since

E[z
(pt)
t]i :=

d∑
pt=1

p(pt)[z
(pt)
t]i = wi

[yt]i
[wt]i

+
∑
pt 6=i

0 = [yt]i

Thus we can run NEG by substituting the unobserved gradient yt with z
(pt)
t . Note

that the algorithm will be slightly different from the weighted majority algorithm
since we need to actually make the prediction pt ∼ wt which is required for computing

z
(pt)
t . It’s possible to derive regret bounds where the regret is defined as the difference

between the algorithm’s expected cumulative cost (over the randomness of pt) and
the cumulative cost of the best machine:

E

[
T∑
t=1

[yt]pt

]
−min
i∈[d]

T∑
t=1

[yt]i

Reference

Shalev-Shwartz, S. (2011). Online Learning and Online Convex Optimization.

5

