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1 The Implications of Self-Contained Worlds

It sucks to have an upper bound of light speed on velocity (especially for those
who demand space travel). Being able to loop around the globe seven times and
a half in one second is pretty fast, but it’s still far from infinitely fast. Light has
a definite speed, so why can’t we just reach it, and accelerate a little bit more?

This unfortunate limitation follows from certain physical facts of the universe.

• Maxwell’s equations enforce a certain speed for light waves: While de-
scribing how electric and magnetic fields interact, they predict waves that
move at around 3 × 108 meters per second, which are established to be
light waves.

• Inertial (i.e., non-accelerating) frames of reference are fully self-contained,
with respect to the physical laws: For illustration, Galileo observed in
a steadily moving ship that things were indistinguishable from being on
terra firma. The physical laws (of motion) apply exactly the same.

People concocted a medium called the “aether” through which light waves trav-
eled, like sound waves through the air. But then inertial frames of reference are
not self-contained, because if one moves at a different velocity from the other, it
will experience a different light speed with respect to the common aether. This
violates the results from Maxwell’s equations. That is, light beams in a steadily
moving ship will be distinguishable from being on terra firma; the physical laws
(of Maxwell’s equations) do not apply the same.

Einstein ducked the contradiction by concluding that the speed of light is the
same in every frame of reference. This is confirmed exerimentally. Conclusively,
modern equipments such as particle accelerators now allow us to directly verify
the claim. This simple fact yields mind-bending implications, but they will be
meaningless to you unless you derive them to see for yourself. Linear algebraic
derivation of a 4×4 space-time transformation matrix, called the Lorentz trans-
formation, offers a crisp way to understand these curious phenomena. A set of
extremely simple assumptions are sufficient to conjure up this magical matrix.

2 The Derivation of the Lorentz Transformation

We have coordinate systems in R3, each equipped with a clock (itself a coor-
dinate system in R). Together, a coordinate system and a clock compose a
world. An event can be characterized as a space-time coordinate (x, y, z, t),

1



where x, y, z denote the spatial position and t denotes the temporal position of
the event perceived by a particular world. Let W1 = (S,C) and W2 = (S′, C ′)
be two worlds such that S′ is moving away from S along the x-axis at a constant
velocity v. We will derive a transformation T : R4 → R4 that “translates” the
perception (x, y, z, t) of an event in W1 to the perception (x′, y′, z′, t′) of the
same event in W2.

We need a set of axioms for the derivation:

1. The speed of light is the same in both W1 and W2.

2. T : R4 → R4 is an isomorphism.

3. The y, z coordinates are the same in both worlds: T (x, y, z, t) = (x′, y, z, t′).

4. The values for x, t coordinates are independent of the values for y, z coor-
dinates: if T (x, y1, z1, t) = (x, y′, z′, t), then T (x, y2, z2, t) = (x, y′′, z′′, t).

For simplicity, express the speed of light as 1, in unit of light second (the distance
light travels in one second) per second. In addition, we will overload the notation
T to mean both the linear transformation, and its corresponding 4 × 4 matrix
in standard basis (e1, e2, e3, e4). This immediately explains how T transforms
the y, z coordinates.

Theorem 2.1. T is of the following form:

T =


· 0 0 ·
0 1 0 0
0 0 1 0
· 0 0 ·

 .

Proof. First, we show T (e2) = e2 and T (e3) = e3. By Axiom 2, T (0) = 0
where 0 = (0, 0, 0, 0) is the zero vector. Because 0, e2, e3 happen at the same
x, t coordinates, T (0), T (e2), T (e3) must as well by Axiom 4, so T (e2), T (e3)
have 0 for x, t. But the remaining coordinates y, z remain unchanged by Axiom
3, and thus the result follows.

Next, we show span({e1, e4}) is T -invariant, i.e., the set is closed under T . If
w ∈ span({e1, e4}), then w = (a, 0, 0, b) for some a, b ∈ R. But the coordinates
y, z remain unchanged by Axiom 3, so that T (w) = (c, 0, 0, d) ∈ span({e1, e4})
for some c, d ∈ R.

The middle two columns of T come from the first point. The middle two entries
of the first and fourth columns of T must be 0 to enforce the second point.

We now investigate how T transforms the x, t coordinates by making the fol-
lowing observation. Suppose that the world W2 flies past W1. We assume that
both clocks C,C ′ have value 0 when S, S′ overlap. A flash of light is emitted at
the moment of the overlap. So this event of light emission has the space-time
coordinate (0, 0, 0, 0) with respect to both W1,W2 at the moment.
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Consider the event of seeing the light. Because the light travels at speed 1, this
event happens at spatial positions (x, y, z) whose distance from (0, 0, 0) is the
duration of time after the light emission. The set of all such events is

E = {(x, y, z, t) | x2 + y2 + z2 − t2 = 0, t ≥ 0},

where the coordinate values are specific to specific worlds. Define a 4×4 matrix

A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

Then given an event w ∈ R4, we can verify w ∈ E by checking if the projection
of w by A is orthogonal to itself, (Aw) · w = 0. But this is the same event
whether it is seen in W1 or it is seen in W2, so we must have (AT (w)) ·T (w) = 0
as well. We exploit this relation to derive the pivotal information about T :

Theorem 2.2. Let B = TTAT . Then B = A.

Proof. Let w1 = (1, 0, 0, 1) and w2 = (1, 0, 0,−1). We first show that

B(w1) = aw2

B(w2) = bw1

for some a, b 6= 0. The first expression is proved as follows. Note that {w1, w2}
forms an orthogonal basis of span({e1, e4}), and that w1 ∈ E. Thus

(AT (w1)) · T (w1) = (TTAT (w1)) · w1 = 0.

So B(w1) is orthogonal to w1. It is easily seen from Theorem 2.1 and the
definition of A that span({e1, e4}) is B-invariant. Thus B(w1) ∈ span({e1, e4}).
But this means B(w1) is some multiple of w2, B(w1) = aw2. This a cannot be
zero, since B is invertible, and we have the desired result. The second expression
is proved similarly.

Note that e1 = (w1 + w2)/2 and e4 = (w1 − w2)/2, so that B(e1) = (B(w1) +
B(w2))/2 = (aw2 + bw1)/2 and B(e4) = (B(w1) − B(w2))/2 = (aw2 − bw1)/2
for some a, b 6= 0. Clearly, B(e2) = e2 and B(e3) = e3 from Theorem 2.1 and
the definition of A. Thus

B =


p 0 0 q
0 1 0 0
0 0 1 0
−q 0 0 −p

 .

for p = (a + b)/2 and q = (a − b)/2. But B is symmetric, because B =
TTBT = TTBTT = (TTBT )T = BT , so we must have q = 0. Furthermore,
consider w3 = (0, 1, 0, 1) ∈ E. Then (AT (w3)) · T (w3) = (TTAT (w3)) · w3 =
B(w3) · w3 = 1− p = 0, so we must have p = 1. Hence B = A.

Theorem 2.2 will allow us to reveal the remaining hidden entries of T by pro-
viding two equivalent transformations of an event. Specifically, let’s consider
the space-time coordinates 1 second after S′ flies by S. For W1, the space-time
coordinate of S′ is (v, 0, 0, 1); for W2, it is (0, 0, 0, t′) for some t′ > 0.
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Lemma 2.3. T (v, 0, 0, 1) = (0, 0, 0,
√

1− v2).

Proof. We have

TTAT (v, 0, 0, 1) · (v, 0, 0, 1) = AT (v, 0, 0, 1) · T (v, 0, 0, 1)

= A(0, 0, 0, t′) · (0, 0, 0, t′) = −(t′)2

but by Theorem 2.2 also

TTAT (v, 0, 0, 1) · (v, 0, 0, 1) = A(v, 0, 0, 1) · (v, 0, 0, 1) = v2 − 1.

Thus t′ =
√

1− v2.

For W1, the space coordinate of S is (0, 0, 0, 1); for W2, it is (−vt′′, 0, 0, t′′) for
some t′′ > 0.

Lemma 2.4. T (0, 0, 0, 1) = (−v/
√

1− v2, 0, 0, 1/
√

1− v2).

Proof. We have

TTAT (0, 0, 0, 1) · (0, 0, 0, 1) = AT (0, 0, 0, 1) · T (0, 0, 0, 1)

= A(−vt′′, 0, 0, t′′) · (−vt′′, 0, 0, t′′) = v2(t′′)2 − (t′′)2

but by Theorem 2.2 also

TTAT (0, 0, 0, 1) · (0, 0, 0, 1) = A(0, 0, 0, 1) · (0, 0, 0, 1) = −1.

Thus t′′ = 1/
√

1− v2.

We are ready to fully express T at this point.

Theorem 2.5.

T =


1/
√

1− v2 0 0 −v/
√

1− v2

0 1 0 0
0 0 1 0

−v/
√

1− v2 0 0 1/
√

1− v2

 .

Proof. The second and third columns follow from Theorem 2.1. The fourth
column follows from Lemma 2.4. Thus we only need to show for the first column,
T (e1) = e1. If v = 0, T must be of the following form:

T =


p 0 0 0
0 1 0 0
0 0 1 0
q 0 0 1

 .

But since S′ is stationary, T (x, y, z, t) = (x, y, z, t), thus p = 1 and q = 0. This
means T (e1) = e1 = (1/

√
1− v2, 0, 0,−v/

√
1− v2) for v = 0. If v > 0, note

that

T (e1) = T (((v, 0, 0, 1)− (0, 0, 0, 1))/v)

= ((0, 0, 0,
√

1− v2)− (
−v√

1− v2
, 0, 0,

1√
1− v2

))/v

= (1/
√

1− v2, 0, 0,−v/
√

1− v2).
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3 The Corollaries of the Lorentz Transformation

Time may flow slower in W2 than in W1.

Corollary 3.1. The time t′ with respect to W2 since the overlap of S and S′

can be expressed via the time t with respect to W1 since the overlap of S and S′

as
t′ = t

√
1− v2.

Proof. The space-time coordinate of W2 is (vt, 0, 0, t) for W1; it is (0, 0, 0, t′) for
W2. By Theorem 2.5,

T (vt, 0, 0, t) =

(
0, 0, 0,

−v2t√
1− v2

+
t√

1− v2

)
= (0, 0, 0, t′),

and thus t′ = t
√

1− v2.

But how is the same distance covered in a smaller amount of time, with the same
speed? The inconsistency is resolved by the fact that the distance is measured
as shorter in W2 than in W1.

Corollary 3.2. Suppose there is a destination R that is b away from S along
the x-axis, and S′ is moving towards R. Then the distance between S and R is
perceived by W2 as

b′ = b
√

1− v2.

Proof. For W1, the time for S′ to reach the star is t = b/v. For W2, the time for
S′ to reach the star is t′ = t

√
1− v2 = b/v

√
1− v2 by Corollary 3.1. At time t,

the space-time coordinate of R is (b, 0, 0, t) for W1, and

T (b, 0, 0, t) =

(
b− vt√
1− v2

, 0, 0,
t− bv√
1− v2

)
for W2. But then the value of the x coordinate for W2 is

x′ =
b− vt√
1− v2

=
b− bv2√

1− v2
− vt− bv2√

1− v2

= b
√

1− v2 − vt′.

This means S′ has covered the distance of vt′ out of b
√

1− v2.

4 Discussion

Note that the time and distance perceived in W2 are different from those in W1

by a factor of
√

1− v2. Thus v > 1 is not allowed, since time and distance are
defined only in real numbers. If v = 1 (i.e., S′ is moving at the speed of light)
time stops for S′ and everywhere is where S′ is. If there is God, God must be
moving at the speed of light.
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Hence our original goal of showing that the speed of light serves as an upper
bound for velocity in general is achieved. It is beyond the scope of this writing
to account for exactly how and why Maxwell’s equations mandate a certain
value for the speed of light, which lie at the core of this result. Nevertheless,
one has to scratch the head in wonder of such peculiar phenomena that arise
from such a specific thing as moving as fast as light beams.
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